6070
|
1 |
(* Title: ZF/Tools/induct_tacs.ML
|
6065
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Induction and exhaustion tactics for Isabelle/ZF
|
6070
|
7 |
|
|
8 |
The theory information needed to support them (and to support primrec)
|
|
9 |
|
|
10 |
Also, a function to install other sets as if they were datatypes
|
6065
|
11 |
*)
|
|
12 |
|
|
13 |
|
|
14 |
signature DATATYPE_TACTICS =
|
|
15 |
sig
|
|
16 |
val induct_tac : string -> int -> tactic
|
|
17 |
val exhaust_tac : string -> int -> tactic
|
6070
|
18 |
val rep_datatype_i : thm -> thm -> thm list -> thm list -> theory -> theory
|
6065
|
19 |
end;
|
|
20 |
|
|
21 |
|
6070
|
22 |
|
|
23 |
(** Datatype information, e.g. associated theorems **)
|
|
24 |
|
|
25 |
type datatype_info =
|
|
26 |
{inductive: bool, (*true if inductive, not coinductive*)
|
|
27 |
constructors : term list, (*the constructors, as Consts*)
|
|
28 |
rec_rewrites : thm list, (*recursor equations*)
|
|
29 |
case_rewrites : thm list, (*case equations*)
|
|
30 |
induct : thm,
|
|
31 |
mutual_induct : thm,
|
|
32 |
exhaustion : thm};
|
|
33 |
|
|
34 |
structure DatatypesArgs =
|
|
35 |
struct
|
|
36 |
val name = "ZF/datatypes";
|
|
37 |
type T = datatype_info Symtab.table;
|
|
38 |
|
|
39 |
val empty = Symtab.empty;
|
6556
|
40 |
val copy = I;
|
6070
|
41 |
val prep_ext = I;
|
|
42 |
val merge: T * T -> T = Symtab.merge (K true);
|
|
43 |
|
|
44 |
fun print sg tab =
|
|
45 |
Pretty.writeln (Pretty.strs ("datatypes:" ::
|
6851
|
46 |
map #1 (Sign.cond_extern_table sg Sign.typeK tab)));
|
6070
|
47 |
end;
|
|
48 |
|
|
49 |
structure DatatypesData = TheoryDataFun(DatatypesArgs);
|
|
50 |
|
|
51 |
|
|
52 |
(** Constructor information: needed to map constructors to datatypes **)
|
|
53 |
|
|
54 |
type constructor_info =
|
|
55 |
{big_rec_name : string, (*name of the mutually recursive set*)
|
|
56 |
constructors : term list, (*the constructors, as Consts*)
|
6141
|
57 |
free_iffs : thm list, (*freeness simprules*)
|
6070
|
58 |
rec_rewrites : thm list}; (*recursor equations*)
|
|
59 |
|
|
60 |
|
|
61 |
structure ConstructorsArgs =
|
|
62 |
struct
|
|
63 |
val name = "ZF/constructors"
|
|
64 |
type T = constructor_info Symtab.table
|
|
65 |
|
|
66 |
val empty = Symtab.empty
|
6556
|
67 |
val copy = I;
|
6070
|
68 |
val prep_ext = I
|
|
69 |
val merge: T * T -> T = Symtab.merge (K true)
|
|
70 |
|
|
71 |
fun print sg tab = () (*nothing extra to print*)
|
|
72 |
end;
|
|
73 |
|
|
74 |
structure ConstructorsData = TheoryDataFun(ConstructorsArgs);
|
|
75 |
|
|
76 |
val setup_datatypes = [DatatypesData.init, ConstructorsData.init];
|
|
77 |
|
|
78 |
|
|
79 |
|
6065
|
80 |
structure DatatypeTactics : DATATYPE_TACTICS =
|
|
81 |
struct
|
|
82 |
|
|
83 |
fun datatype_info_sg sign name =
|
|
84 |
(case Symtab.lookup (DatatypesData.get_sg sign, name) of
|
|
85 |
Some info => info
|
|
86 |
| None => error ("Unknown datatype " ^ quote name));
|
|
87 |
|
|
88 |
|
|
89 |
(*Given a variable, find the inductive set associated it in the assumptions*)
|
|
90 |
fun find_tname var Bi =
|
|
91 |
let fun mk_pair (Const("op :",_) $ Free (v,_) $ A) =
|
|
92 |
(v, #1 (dest_Const (head_of A)))
|
|
93 |
| mk_pair _ = raise Match
|
|
94 |
val pairs = mapfilter (try (mk_pair o FOLogic.dest_Trueprop))
|
|
95 |
(#2 (strip_context Bi))
|
|
96 |
in case assoc (pairs, var) of
|
|
97 |
None => error ("Cannot determine datatype of " ^ quote var)
|
|
98 |
| Some t => t
|
|
99 |
end;
|
|
100 |
|
|
101 |
(** generic exhaustion and induction tactic for datatypes
|
|
102 |
Differences from HOL:
|
|
103 |
(1) no checking if the induction var occurs in premises, since it always
|
|
104 |
appears in one of them, and it's hard to check for other occurrences
|
|
105 |
(2) exhaustion works for VARIABLES in the premises, not general terms
|
|
106 |
**)
|
|
107 |
|
|
108 |
fun exhaust_induct_tac exh var i state =
|
|
109 |
let
|
|
110 |
val (_, _, Bi, _) = dest_state (state, i)
|
|
111 |
val {sign, ...} = rep_thm state
|
|
112 |
val tn = find_tname var Bi
|
|
113 |
val rule =
|
|
114 |
if exh then #exhaustion (datatype_info_sg sign tn)
|
|
115 |
else #induct (datatype_info_sg sign tn)
|
|
116 |
val (Const("op :",_) $ Var(ixn,_) $ _) =
|
6112
|
117 |
(case prems_of rule of
|
|
118 |
[] => error "induction is not available for this datatype"
|
|
119 |
| major::_ => FOLogic.dest_Trueprop major)
|
6065
|
120 |
val ind_vname = Syntax.string_of_vname ixn
|
|
121 |
val vname' = (*delete leading question mark*)
|
|
122 |
String.substring (ind_vname, 1, size ind_vname-1)
|
|
123 |
in
|
|
124 |
eres_inst_tac [(vname',var)] rule i state
|
|
125 |
end;
|
|
126 |
|
|
127 |
val exhaust_tac = exhaust_induct_tac true;
|
|
128 |
val induct_tac = exhaust_induct_tac false;
|
|
129 |
|
6070
|
130 |
|
|
131 |
|
|
132 |
(**** declare non-datatype as datatype ****)
|
|
133 |
|
|
134 |
fun rep_datatype_i elim induct case_eqns recursor_eqns thy =
|
|
135 |
let
|
|
136 |
val sign = sign_of thy;
|
|
137 |
|
|
138 |
(*analyze the LHS of a case equation to get a constructor*)
|
|
139 |
fun const_of (Const("op =", _) $ (_ $ c) $ _) = c
|
|
140 |
| const_of eqn = error ("Ill-formed case equation: " ^
|
|
141 |
Sign.string_of_term sign eqn);
|
|
142 |
|
|
143 |
val constructors =
|
|
144 |
map (head_of o const_of o FOLogic.dest_Trueprop o
|
|
145 |
#prop o rep_thm) case_eqns;
|
|
146 |
|
6112
|
147 |
val Const ("op :", _) $ _ $ data =
|
6070
|
148 |
FOLogic.dest_Trueprop (hd (prems_of elim));
|
|
149 |
|
6112
|
150 |
val Const(big_rec_name, _) = head_of data;
|
|
151 |
|
6070
|
152 |
val simps = case_eqns @ recursor_eqns;
|
|
153 |
|
|
154 |
val dt_info =
|
|
155 |
{inductive = true,
|
|
156 |
constructors = constructors,
|
|
157 |
rec_rewrites = recursor_eqns,
|
|
158 |
case_rewrites = case_eqns,
|
|
159 |
induct = induct,
|
|
160 |
mutual_induct = TrueI, (*No need for mutual induction*)
|
|
161 |
exhaustion = elim};
|
|
162 |
|
|
163 |
val con_info =
|
|
164 |
{big_rec_name = big_rec_name,
|
|
165 |
constructors = constructors,
|
|
166 |
(*let primrec handle definition by cases*)
|
6141
|
167 |
free_iffs = [], (*thus we expect the necessary freeness rewrites
|
|
168 |
to be in the simpset already, as is the case for
|
|
169 |
Nat and disjoint sum*)
|
6070
|
170 |
rec_rewrites = (case recursor_eqns of
|
|
171 |
[] => case_eqns | _ => recursor_eqns)};
|
|
172 |
|
|
173 |
(*associate with each constructor the datatype name and rewrites*)
|
|
174 |
val con_pairs = map (fn c => (#1 (dest_Const c), con_info)) constructors
|
|
175 |
|
|
176 |
in
|
|
177 |
thy |> Theory.add_path (Sign.base_name big_rec_name)
|
8438
|
178 |
|> (#1 o PureThy.add_thmss [(("simps", simps), [Simplifier.simp_add_global])])
|
6070
|
179 |
|> DatatypesData.put
|
|
180 |
(Symtab.update
|
|
181 |
((big_rec_name, dt_info), DatatypesData.get thy))
|
|
182 |
|> ConstructorsData.put
|
|
183 |
(foldr Symtab.update (con_pairs, ConstructorsData.get thy))
|
|
184 |
|> Theory.parent_path
|
|
185 |
end
|
6970
|
186 |
handle exn => (writeln "Failure in rep_datatype"; raise exn);
|
6070
|
187 |
|
6065
|
188 |
end;
|
|
189 |
|
|
190 |
|
6070
|
191 |
val exhaust_tac = DatatypeTactics.exhaust_tac;
|
|
192 |
val induct_tac = DatatypeTactics.induct_tac;
|