src/ZF/Tools/induct_tacs.ML
author wenzelm
Tue, 04 Apr 2000 18:08:08 +0200 (2000-04-04)
changeset 8666 6c21e6f91804
parent 8438 b8389b4fca9c
child 12109 bd6eb9194a5d
permissions -rw-r--r--
case_tac / induct_tac: optional rule;
(*  Title:      ZF/Tools/induct_tacs.ML
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge

Induction and exhaustion tactics for Isabelle/ZF

The theory information needed to support them (and to support primrec)

Also, a function to install other sets as if they were datatypes
*)


signature DATATYPE_TACTICS =
sig
  val induct_tac : string -> int -> tactic
  val exhaust_tac : string -> int -> tactic
  val rep_datatype_i : thm -> thm -> thm list -> thm list -> theory -> theory
end;



(** Datatype information, e.g. associated theorems **)

type datatype_info =
  {inductive: bool,		(*true if inductive, not coinductive*)
   constructors : term list,    (*the constructors, as Consts*)
   rec_rewrites : thm list,     (*recursor equations*)
   case_rewrites : thm list,    (*case equations*)
   induct : thm,
   mutual_induct : thm,
   exhaustion : thm};

structure DatatypesArgs =
  struct
  val name = "ZF/datatypes";
  type T = datatype_info Symtab.table;

  val empty = Symtab.empty;
  val copy = I;
  val prep_ext = I;
  val merge: T * T -> T = Symtab.merge (K true);

  fun print sg tab =
    Pretty.writeln (Pretty.strs ("datatypes:" ::
      map #1 (Sign.cond_extern_table sg Sign.typeK tab)));
  end;

structure DatatypesData = TheoryDataFun(DatatypesArgs);


(** Constructor information: needed to map constructors to datatypes **)

type constructor_info =
  {big_rec_name : string,     (*name of the mutually recursive set*)
   constructors : term list,  (*the constructors, as Consts*)
   free_iffs    : thm list,   (*freeness simprules*)
   rec_rewrites : thm list};  (*recursor equations*)


structure ConstructorsArgs =
struct
  val name = "ZF/constructors"
  type T = constructor_info Symtab.table

  val empty = Symtab.empty
  val copy = I;
  val prep_ext = I
  val merge: T * T -> T = Symtab.merge (K true)

  fun print sg tab = ()   (*nothing extra to print*)
end;

structure ConstructorsData = TheoryDataFun(ConstructorsArgs);

val setup_datatypes = [DatatypesData.init, ConstructorsData.init];



structure DatatypeTactics : DATATYPE_TACTICS =
struct

fun datatype_info_sg sign name =
  (case Symtab.lookup (DatatypesData.get_sg sign, name) of
    Some info => info
  | None => error ("Unknown datatype " ^ quote name));


(*Given a variable, find the inductive set associated it in the assumptions*)
fun find_tname var Bi =
  let fun mk_pair (Const("op :",_) $ Free (v,_) $ A) = 
             (v, #1 (dest_Const (head_of A)))
	| mk_pair _ = raise Match
      val pairs = mapfilter (try (mk_pair o FOLogic.dest_Trueprop))
	  (#2 (strip_context Bi))
  in case assoc (pairs, var) of
       None => error ("Cannot determine datatype of " ^ quote var)
     | Some t => t
  end;

(** generic exhaustion and induction tactic for datatypes 
    Differences from HOL: 
      (1) no checking if the induction var occurs in premises, since it always
          appears in one of them, and it's hard to check for other occurrences
      (2) exhaustion works for VARIABLES in the premises, not general terms
**)

fun exhaust_induct_tac exh var i state =
  let
    val (_, _, Bi, _) = dest_state (state, i)
    val {sign, ...} = rep_thm state
    val tn = find_tname var Bi
    val rule = 
	if exh then #exhaustion (datatype_info_sg sign tn)
	       else #induct  (datatype_info_sg sign tn)
    val (Const("op :",_) $ Var(ixn,_) $ _) = 
        (case prems_of rule of
	     [] => error "induction is not available for this datatype"
	   | major::_ => FOLogic.dest_Trueprop major)
    val ind_vname = Syntax.string_of_vname ixn
    val vname' = (*delete leading question mark*)
	String.substring (ind_vname, 1, size ind_vname-1)
  in
    eres_inst_tac [(vname',var)] rule i state
  end;

val exhaust_tac = exhaust_induct_tac true;
val induct_tac = exhaust_induct_tac false;



(**** declare non-datatype as datatype ****)

fun rep_datatype_i elim induct case_eqns recursor_eqns thy =
  let
    val sign = sign_of thy;

    (*analyze the LHS of a case equation to get a constructor*)
    fun const_of (Const("op =", _) $ (_ $ c) $ _) = c
      | const_of eqn = error ("Ill-formed case equation: " ^
			      Sign.string_of_term sign eqn);

    val constructors =
	map (head_of o const_of o FOLogic.dest_Trueprop o
	     #prop o rep_thm) case_eqns;

    val Const ("op :", _) $ _ $ data =
	FOLogic.dest_Trueprop (hd (prems_of elim));	
    
    val Const(big_rec_name, _) = head_of data;

    val simps = case_eqns @ recursor_eqns;

    val dt_info =
	  {inductive = true,
	   constructors = constructors,
	   rec_rewrites = recursor_eqns,
	   case_rewrites = case_eqns,
	   induct = induct,
	   mutual_induct = TrueI,  (*No need for mutual induction*)
	   exhaustion = elim};

    val con_info =
	  {big_rec_name = big_rec_name,
	   constructors = constructors,
	      (*let primrec handle definition by cases*)
	   free_iffs = [],  (*thus we expect the necessary freeness rewrites
			      to be in the simpset already, as is the case for
			      Nat and disjoint sum*)
	   rec_rewrites = (case recursor_eqns of
			       [] => case_eqns | _ => recursor_eqns)};

    (*associate with each constructor the datatype name and rewrites*)
    val con_pairs = map (fn c => (#1 (dest_Const c), con_info)) constructors

  in
      thy |> Theory.add_path (Sign.base_name big_rec_name)
	  |> (#1 o PureThy.add_thmss [(("simps", simps), [Simplifier.simp_add_global])])
	  |> DatatypesData.put 
	      (Symtab.update
	       ((big_rec_name, dt_info), DatatypesData.get thy)) 
	  |> ConstructorsData.put
	       (foldr Symtab.update (con_pairs, ConstructorsData.get thy))
	  |> Theory.parent_path
  end
  handle exn => (writeln "Failure in rep_datatype"; raise exn);

end;


val exhaust_tac = DatatypeTactics.exhaust_tac;
val induct_tac  = DatatypeTactics.induct_tac;