author | nipkow |
Fri, 19 Dec 2003 04:28:45 +0100 | |
changeset 14302 | 6c24235e8d5d |
parent 14208 | 144f45277d5a |
child 14331 | 8dbbb7cf3637 |
permissions | -rw-r--r-- |
12396 | 1 |
(* Title: HOL/Finite_Set.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel |
|
4 |
License: GPL (GNU GENERAL PUBLIC LICENSE) |
|
5 |
*) |
|
6 |
||
7 |
header {* Finite sets *} |
|
8 |
||
9 |
theory Finite_Set = Divides + Power + Inductive + SetInterval: |
|
10 |
||
11 |
subsection {* Collection of finite sets *} |
|
12 |
||
13 |
consts Finites :: "'a set set" |
|
13737 | 14 |
syntax |
15 |
finite :: "'a set => bool" |
|
16 |
translations |
|
17 |
"finite A" == "A : Finites" |
|
12396 | 18 |
|
19 |
inductive Finites |
|
20 |
intros |
|
21 |
emptyI [simp, intro!]: "{} : Finites" |
|
22 |
insertI [simp, intro!]: "A : Finites ==> insert a A : Finites" |
|
23 |
||
24 |
axclass finite \<subseteq> type |
|
25 |
finite: "finite UNIV" |
|
26 |
||
13737 | 27 |
lemma ex_new_if_finite: -- "does not depend on def of finite at all" |
28 |
"\<lbrakk> ~finite(UNIV::'a set); finite A \<rbrakk> \<Longrightarrow> \<exists>a::'a. a ~: A" |
|
29 |
by(subgoal_tac "A ~= UNIV", blast, blast) |
|
30 |
||
12396 | 31 |
|
32 |
lemma finite_induct [case_names empty insert, induct set: Finites]: |
|
33 |
"finite F ==> |
|
34 |
P {} ==> (!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F" |
|
35 |
-- {* Discharging @{text "x \<notin> F"} entails extra work. *} |
|
36 |
proof - |
|
13421 | 37 |
assume "P {}" and |
38 |
insert: "!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" |
|
12396 | 39 |
assume "finite F" |
40 |
thus "P F" |
|
41 |
proof induct |
|
42 |
show "P {}" . |
|
43 |
fix F x assume F: "finite F" and P: "P F" |
|
44 |
show "P (insert x F)" |
|
45 |
proof cases |
|
46 |
assume "x \<in> F" |
|
47 |
hence "insert x F = F" by (rule insert_absorb) |
|
48 |
with P show ?thesis by (simp only:) |
|
49 |
next |
|
50 |
assume "x \<notin> F" |
|
51 |
from F this P show ?thesis by (rule insert) |
|
52 |
qed |
|
53 |
qed |
|
54 |
qed |
|
55 |
||
56 |
lemma finite_subset_induct [consumes 2, case_names empty insert]: |
|
57 |
"finite F ==> F \<subseteq> A ==> |
|
58 |
P {} ==> (!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==> |
|
59 |
P F" |
|
60 |
proof - |
|
13421 | 61 |
assume "P {}" and insert: |
62 |
"!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" |
|
12396 | 63 |
assume "finite F" |
64 |
thus "F \<subseteq> A ==> P F" |
|
65 |
proof induct |
|
66 |
show "P {}" . |
|
67 |
fix F x assume "finite F" and "x \<notin> F" |
|
68 |
and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" |
|
69 |
show "P (insert x F)" |
|
70 |
proof (rule insert) |
|
71 |
from i show "x \<in> A" by blast |
|
72 |
from i have "F \<subseteq> A" by blast |
|
73 |
with P show "P F" . |
|
74 |
qed |
|
75 |
qed |
|
76 |
qed |
|
77 |
||
78 |
lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" |
|
79 |
-- {* The union of two finite sets is finite. *} |
|
80 |
by (induct set: Finites) simp_all |
|
81 |
||
82 |
lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" |
|
83 |
-- {* Every subset of a finite set is finite. *} |
|
84 |
proof - |
|
85 |
assume "finite B" |
|
86 |
thus "!!A. A \<subseteq> B ==> finite A" |
|
87 |
proof induct |
|
88 |
case empty |
|
89 |
thus ?case by simp |
|
90 |
next |
|
91 |
case (insert F x A) |
|
92 |
have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" . |
|
93 |
show "finite A" |
|
94 |
proof cases |
|
95 |
assume x: "x \<in> A" |
|
96 |
with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff) |
|
97 |
with r have "finite (A - {x})" . |
|
98 |
hence "finite (insert x (A - {x}))" .. |
|
99 |
also have "insert x (A - {x}) = A" by (rule insert_Diff) |
|
100 |
finally show ?thesis . |
|
101 |
next |
|
102 |
show "A \<subseteq> F ==> ?thesis" . |
|
103 |
assume "x \<notin> A" |
|
104 |
with A show "A \<subseteq> F" by (simp add: subset_insert_iff) |
|
105 |
qed |
|
106 |
qed |
|
107 |
qed |
|
108 |
||
109 |
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" |
|
110 |
by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) |
|
111 |
||
112 |
lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" |
|
113 |
-- {* The converse obviously fails. *} |
|
114 |
by (blast intro: finite_subset) |
|
115 |
||
116 |
lemma finite_insert [simp]: "finite (insert a A) = finite A" |
|
117 |
apply (subst insert_is_Un) |
|
14208 | 118 |
apply (simp only: finite_Un, blast) |
12396 | 119 |
done |
120 |
||
121 |
lemma finite_empty_induct: |
|
122 |
"finite A ==> |
|
123 |
P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}" |
|
124 |
proof - |
|
125 |
assume "finite A" |
|
126 |
and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})" |
|
127 |
have "P (A - A)" |
|
128 |
proof - |
|
129 |
fix c b :: "'a set" |
|
130 |
presume c: "finite c" and b: "finite b" |
|
131 |
and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})" |
|
132 |
from c show "c \<subseteq> b ==> P (b - c)" |
|
133 |
proof induct |
|
134 |
case empty |
|
135 |
from P1 show ?case by simp |
|
136 |
next |
|
137 |
case (insert F x) |
|
138 |
have "P (b - F - {x})" |
|
139 |
proof (rule P2) |
|
140 |
from _ b show "finite (b - F)" by (rule finite_subset) blast |
|
141 |
from insert show "x \<in> b - F" by simp |
|
142 |
from insert show "P (b - F)" by simp |
|
143 |
qed |
|
144 |
also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric]) |
|
145 |
finally show ?case . |
|
146 |
qed |
|
147 |
next |
|
148 |
show "A \<subseteq> A" .. |
|
149 |
qed |
|
150 |
thus "P {}" by simp |
|
151 |
qed |
|
152 |
||
153 |
lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)" |
|
154 |
by (rule Diff_subset [THEN finite_subset]) |
|
155 |
||
156 |
lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" |
|
157 |
apply (subst Diff_insert) |
|
158 |
apply (case_tac "a : A - B") |
|
159 |
apply (rule finite_insert [symmetric, THEN trans]) |
|
14208 | 160 |
apply (subst insert_Diff, simp_all) |
12396 | 161 |
done |
162 |
||
163 |
||
13825 | 164 |
subsubsection {* Image and Inverse Image over Finite Sets *} |
165 |
||
166 |
lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" |
|
167 |
-- {* The image of a finite set is finite. *} |
|
168 |
by (induct set: Finites) simp_all |
|
169 |
||
170 |
lemma finite_range_imageI: |
|
171 |
"finite (range g) ==> finite (range (%x. f (g x)))" |
|
14208 | 172 |
apply (drule finite_imageI, simp) |
13825 | 173 |
done |
174 |
||
12396 | 175 |
lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" |
176 |
proof - |
|
177 |
have aux: "!!A. finite (A - {}) = finite A" by simp |
|
178 |
fix B :: "'a set" |
|
179 |
assume "finite B" |
|
180 |
thus "!!A. f`A = B ==> inj_on f A ==> finite A" |
|
181 |
apply induct |
|
182 |
apply simp |
|
183 |
apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})") |
|
184 |
apply clarify |
|
185 |
apply (simp (no_asm_use) add: inj_on_def) |
|
14208 | 186 |
apply (blast dest!: aux [THEN iffD1], atomize) |
12396 | 187 |
apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) |
14208 | 188 |
apply (frule subsetD [OF equalityD2 insertI1], clarify) |
12396 | 189 |
apply (rule_tac x = xa in bexI) |
190 |
apply (simp_all add: inj_on_image_set_diff) |
|
191 |
done |
|
192 |
qed (rule refl) |
|
193 |
||
194 |
||
13825 | 195 |
lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}" |
196 |
-- {* The inverse image of a singleton under an injective function |
|
197 |
is included in a singleton. *} |
|
198 |
apply (auto simp add: inj_on_def) |
|
199 |
apply (blast intro: the_equality [symmetric]) |
|
200 |
done |
|
201 |
||
202 |
lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" |
|
203 |
-- {* The inverse image of a finite set under an injective function |
|
204 |
is finite. *} |
|
205 |
apply (induct set: Finites, simp_all) |
|
206 |
apply (subst vimage_insert) |
|
207 |
apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton]) |
|
208 |
done |
|
209 |
||
210 |
||
12396 | 211 |
subsubsection {* The finite UNION of finite sets *} |
212 |
||
213 |
lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" |
|
214 |
by (induct set: Finites) simp_all |
|
215 |
||
216 |
text {* |
|
217 |
Strengthen RHS to |
|
218 |
@{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x ~= {}})"}? |
|
219 |
||
220 |
We'd need to prove |
|
221 |
@{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x ~= {}}"} |
|
222 |
by induction. *} |
|
223 |
||
224 |
lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" |
|
225 |
by (blast intro: finite_UN_I finite_subset) |
|
226 |
||
227 |
||
228 |
subsubsection {* Sigma of finite sets *} |
|
229 |
||
230 |
lemma finite_SigmaI [simp]: |
|
231 |
"finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" |
|
232 |
by (unfold Sigma_def) (blast intro!: finite_UN_I) |
|
233 |
||
234 |
lemma finite_Prod_UNIV: |
|
235 |
"finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)" |
|
236 |
apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)") |
|
237 |
apply (erule ssubst) |
|
14208 | 238 |
apply (erule finite_SigmaI, auto) |
12396 | 239 |
done |
240 |
||
241 |
instance unit :: finite |
|
242 |
proof |
|
243 |
have "finite {()}" by simp |
|
244 |
also have "{()} = UNIV" by auto |
|
245 |
finally show "finite (UNIV :: unit set)" . |
|
246 |
qed |
|
247 |
||
248 |
instance * :: (finite, finite) finite |
|
249 |
proof |
|
250 |
show "finite (UNIV :: ('a \<times> 'b) set)" |
|
251 |
proof (rule finite_Prod_UNIV) |
|
252 |
show "finite (UNIV :: 'a set)" by (rule finite) |
|
253 |
show "finite (UNIV :: 'b set)" by (rule finite) |
|
254 |
qed |
|
255 |
qed |
|
256 |
||
257 |
||
258 |
subsubsection {* The powerset of a finite set *} |
|
259 |
||
260 |
lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" |
|
261 |
proof |
|
262 |
assume "finite (Pow A)" |
|
263 |
with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast |
|
264 |
thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp |
|
265 |
next |
|
266 |
assume "finite A" |
|
267 |
thus "finite (Pow A)" |
|
268 |
by induct (simp_all add: finite_UnI finite_imageI Pow_insert) |
|
269 |
qed |
|
270 |
||
271 |
lemma finite_converse [iff]: "finite (r^-1) = finite r" |
|
272 |
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") |
|
273 |
apply simp |
|
274 |
apply (rule iffI) |
|
275 |
apply (erule finite_imageD [unfolded inj_on_def]) |
|
276 |
apply (simp split add: split_split) |
|
277 |
apply (erule finite_imageI) |
|
14208 | 278 |
apply (simp add: converse_def image_def, auto) |
12396 | 279 |
apply (rule bexI) |
280 |
prefer 2 apply assumption |
|
281 |
apply simp |
|
282 |
done |
|
283 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
284 |
lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..k(}" |
12396 | 285 |
by (induct k) (simp_all add: lessThan_Suc) |
286 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
287 |
lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}" |
12396 | 288 |
by (induct k) (simp_all add: atMost_Suc) |
289 |
||
13735 | 290 |
lemma finite_greaterThanLessThan [iff]: |
291 |
fixes l :: nat shows "finite {)l..u(}" |
|
292 |
by (simp add: greaterThanLessThan_def) |
|
293 |
||
294 |
lemma finite_atLeastLessThan [iff]: |
|
295 |
fixes l :: nat shows "finite {l..u(}" |
|
296 |
by (simp add: atLeastLessThan_def) |
|
297 |
||
298 |
lemma finite_greaterThanAtMost [iff]: |
|
299 |
fixes l :: nat shows "finite {)l..u}" |
|
300 |
by (simp add: greaterThanAtMost_def) |
|
301 |
||
302 |
lemma finite_atLeastAtMost [iff]: |
|
303 |
fixes l :: nat shows "finite {l..u}" |
|
304 |
by (simp add: atLeastAtMost_def) |
|
305 |
||
12396 | 306 |
lemma bounded_nat_set_is_finite: |
307 |
"(ALL i:N. i < (n::nat)) ==> finite N" |
|
308 |
-- {* A bounded set of natural numbers is finite. *} |
|
309 |
apply (rule finite_subset) |
|
14208 | 310 |
apply (rule_tac [2] finite_lessThan, auto) |
12396 | 311 |
done |
312 |
||
313 |
||
314 |
subsubsection {* Finiteness of transitive closure *} |
|
315 |
||
316 |
text {* (Thanks to Sidi Ehmety) *} |
|
317 |
||
318 |
lemma finite_Field: "finite r ==> finite (Field r)" |
|
319 |
-- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *} |
|
320 |
apply (induct set: Finites) |
|
321 |
apply (auto simp add: Field_def Domain_insert Range_insert) |
|
322 |
done |
|
323 |
||
324 |
lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" |
|
325 |
apply clarify |
|
326 |
apply (erule trancl_induct) |
|
327 |
apply (auto simp add: Field_def) |
|
328 |
done |
|
329 |
||
330 |
lemma finite_trancl: "finite (r^+) = finite r" |
|
331 |
apply auto |
|
332 |
prefer 2 |
|
333 |
apply (rule trancl_subset_Field2 [THEN finite_subset]) |
|
334 |
apply (rule finite_SigmaI) |
|
335 |
prefer 3 |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
13595
diff
changeset
|
336 |
apply (blast intro: r_into_trancl' finite_subset) |
12396 | 337 |
apply (auto simp add: finite_Field) |
338 |
done |
|
339 |
||
340 |
||
341 |
subsection {* Finite cardinality *} |
|
342 |
||
343 |
text {* |
|
344 |
This definition, although traditional, is ugly to work with: @{text |
|
345 |
"card A == LEAST n. EX f. A = {f i | i. i < n}"}. Therefore we have |
|
346 |
switched to an inductive one: |
|
347 |
*} |
|
348 |
||
349 |
consts cardR :: "('a set \<times> nat) set" |
|
350 |
||
351 |
inductive cardR |
|
352 |
intros |
|
353 |
EmptyI: "({}, 0) : cardR" |
|
354 |
InsertI: "(A, n) : cardR ==> a \<notin> A ==> (insert a A, Suc n) : cardR" |
|
355 |
||
356 |
constdefs |
|
357 |
card :: "'a set => nat" |
|
358 |
"card A == THE n. (A, n) : cardR" |
|
359 |
||
360 |
inductive_cases cardR_emptyE: "({}, n) : cardR" |
|
361 |
inductive_cases cardR_insertE: "(insert a A,n) : cardR" |
|
362 |
||
363 |
lemma cardR_SucD: "(A, n) : cardR ==> a : A --> (EX m. n = Suc m)" |
|
364 |
by (induct set: cardR) simp_all |
|
365 |
||
366 |
lemma cardR_determ_aux1: |
|
367 |
"(A, m): cardR ==> (!!n a. m = Suc n ==> a:A ==> (A - {a}, n) : cardR)" |
|
14208 | 368 |
apply (induct set: cardR, auto) |
369 |
apply (simp add: insert_Diff_if, auto) |
|
12396 | 370 |
apply (drule cardR_SucD) |
371 |
apply (blast intro!: cardR.intros) |
|
372 |
done |
|
373 |
||
374 |
lemma cardR_determ_aux2: "(insert a A, Suc m) : cardR ==> a \<notin> A ==> (A, m) : cardR" |
|
375 |
by (drule cardR_determ_aux1) auto |
|
376 |
||
377 |
lemma cardR_determ: "(A, m): cardR ==> (!!n. (A, n) : cardR ==> n = m)" |
|
378 |
apply (induct set: cardR) |
|
379 |
apply (safe elim!: cardR_emptyE cardR_insertE) |
|
380 |
apply (rename_tac B b m) |
|
381 |
apply (case_tac "a = b") |
|
382 |
apply (subgoal_tac "A = B") |
|
14208 | 383 |
prefer 2 apply (blast elim: equalityE, blast) |
12396 | 384 |
apply (subgoal_tac "EX C. A = insert b C & B = insert a C") |
385 |
prefer 2 |
|
386 |
apply (rule_tac x = "A Int B" in exI) |
|
387 |
apply (blast elim: equalityE) |
|
388 |
apply (frule_tac A = B in cardR_SucD) |
|
389 |
apply (blast intro!: cardR.intros dest!: cardR_determ_aux2) |
|
390 |
done |
|
391 |
||
392 |
lemma cardR_imp_finite: "(A, n) : cardR ==> finite A" |
|
393 |
by (induct set: cardR) simp_all |
|
394 |
||
395 |
lemma finite_imp_cardR: "finite A ==> EX n. (A, n) : cardR" |
|
396 |
by (induct set: Finites) (auto intro!: cardR.intros) |
|
397 |
||
398 |
lemma card_equality: "(A,n) : cardR ==> card A = n" |
|
399 |
by (unfold card_def) (blast intro: cardR_determ) |
|
400 |
||
401 |
lemma card_empty [simp]: "card {} = 0" |
|
402 |
by (unfold card_def) (blast intro!: cardR.intros elim!: cardR_emptyE) |
|
403 |
||
404 |
lemma card_insert_disjoint [simp]: |
|
405 |
"finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)" |
|
406 |
proof - |
|
407 |
assume x: "x \<notin> A" |
|
408 |
hence aux: "!!n. ((insert x A, n) : cardR) = (EX m. (A, m) : cardR & n = Suc m)" |
|
409 |
apply (auto intro!: cardR.intros) |
|
410 |
apply (rule_tac A1 = A in finite_imp_cardR [THEN exE]) |
|
411 |
apply (force dest: cardR_imp_finite) |
|
412 |
apply (blast intro!: cardR.intros intro: cardR_determ) |
|
413 |
done |
|
414 |
assume "finite A" |
|
415 |
thus ?thesis |
|
416 |
apply (simp add: card_def aux) |
|
417 |
apply (rule the_equality) |
|
418 |
apply (auto intro: finite_imp_cardR |
|
419 |
cong: conj_cong simp: card_def [symmetric] card_equality) |
|
420 |
done |
|
421 |
qed |
|
422 |
||
423 |
lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})" |
|
424 |
apply auto |
|
14208 | 425 |
apply (drule_tac a = x in mk_disjoint_insert, clarify) |
426 |
apply (rotate_tac -1, auto) |
|
12396 | 427 |
done |
428 |
||
429 |
lemma card_insert_if: |
|
430 |
"finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" |
|
431 |
by (simp add: insert_absorb) |
|
432 |
||
433 |
lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A" |
|
14302 | 434 |
apply(rule_tac t = A in insert_Diff [THEN subst], assumption) |
435 |
apply(simp del:insert_Diff_single) |
|
436 |
done |
|
12396 | 437 |
|
438 |
lemma card_Diff_singleton: |
|
439 |
"finite A ==> x: A ==> card (A - {x}) = card A - 1" |
|
440 |
by (simp add: card_Suc_Diff1 [symmetric]) |
|
441 |
||
442 |
lemma card_Diff_singleton_if: |
|
443 |
"finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)" |
|
444 |
by (simp add: card_Diff_singleton) |
|
445 |
||
446 |
lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" |
|
447 |
by (simp add: card_insert_if card_Suc_Diff1) |
|
448 |
||
449 |
lemma card_insert_le: "finite A ==> card A <= card (insert x A)" |
|
450 |
by (simp add: card_insert_if) |
|
451 |
||
452 |
lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" |
|
14208 | 453 |
apply (induct set: Finites, simp, clarify) |
12396 | 454 |
apply (subgoal_tac "finite A & A - {x} <= F") |
14208 | 455 |
prefer 2 apply (blast intro: finite_subset, atomize) |
12396 | 456 |
apply (drule_tac x = "A - {x}" in spec) |
457 |
apply (simp add: card_Diff_singleton_if split add: split_if_asm) |
|
14208 | 458 |
apply (case_tac "card A", auto) |
12396 | 459 |
done |
460 |
||
461 |
lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" |
|
462 |
apply (simp add: psubset_def linorder_not_le [symmetric]) |
|
463 |
apply (blast dest: card_seteq) |
|
464 |
done |
|
465 |
||
466 |
lemma card_mono: "finite B ==> A <= B ==> card A <= card B" |
|
14208 | 467 |
apply (case_tac "A = B", simp) |
12396 | 468 |
apply (simp add: linorder_not_less [symmetric]) |
469 |
apply (blast dest: card_seteq intro: order_less_imp_le) |
|
470 |
done |
|
471 |
||
472 |
lemma card_Un_Int: "finite A ==> finite B |
|
473 |
==> card A + card B = card (A Un B) + card (A Int B)" |
|
14208 | 474 |
apply (induct set: Finites, simp) |
12396 | 475 |
apply (simp add: insert_absorb Int_insert_left) |
476 |
done |
|
477 |
||
478 |
lemma card_Un_disjoint: "finite A ==> finite B |
|
479 |
==> A Int B = {} ==> card (A Un B) = card A + card B" |
|
480 |
by (simp add: card_Un_Int) |
|
481 |
||
482 |
lemma card_Diff_subset: |
|
483 |
"finite A ==> B <= A ==> card A - card B = card (A - B)" |
|
484 |
apply (subgoal_tac "(A - B) Un B = A") |
|
485 |
prefer 2 apply blast |
|
486 |
apply (rule add_right_cancel [THEN iffD1]) |
|
487 |
apply (rule card_Un_disjoint [THEN subst]) |
|
488 |
apply (erule_tac [4] ssubst) |
|
489 |
prefer 3 apply blast |
|
490 |
apply (simp_all add: add_commute not_less_iff_le |
|
491 |
add_diff_inverse card_mono finite_subset) |
|
492 |
done |
|
493 |
||
494 |
lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" |
|
495 |
apply (rule Suc_less_SucD) |
|
496 |
apply (simp add: card_Suc_Diff1) |
|
497 |
done |
|
498 |
||
499 |
lemma card_Diff2_less: |
|
500 |
"finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" |
|
501 |
apply (case_tac "x = y") |
|
502 |
apply (simp add: card_Diff1_less) |
|
503 |
apply (rule less_trans) |
|
504 |
prefer 2 apply (auto intro!: card_Diff1_less) |
|
505 |
done |
|
506 |
||
507 |
lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" |
|
508 |
apply (case_tac "x : A") |
|
509 |
apply (simp_all add: card_Diff1_less less_imp_le) |
|
510 |
done |
|
511 |
||
512 |
lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" |
|
14208 | 513 |
by (erule psubsetI, blast) |
12396 | 514 |
|
515 |
||
516 |
subsubsection {* Cardinality of image *} |
|
517 |
||
518 |
lemma card_image_le: "finite A ==> card (f ` A) <= card A" |
|
14208 | 519 |
apply (induct set: Finites, simp) |
12396 | 520 |
apply (simp add: le_SucI finite_imageI card_insert_if) |
521 |
done |
|
522 |
||
523 |
lemma card_image: "finite A ==> inj_on f A ==> card (f ` A) = card A" |
|
14208 | 524 |
apply (induct set: Finites, simp_all, atomize) |
12396 | 525 |
apply safe |
14208 | 526 |
apply (unfold inj_on_def, blast) |
12396 | 527 |
apply (subst card_insert_disjoint) |
14208 | 528 |
apply (erule finite_imageI, blast, blast) |
12396 | 529 |
done |
530 |
||
531 |
lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" |
|
532 |
by (simp add: card_seteq card_image) |
|
533 |
||
534 |
||
535 |
subsubsection {* Cardinality of the Powerset *} |
|
536 |
||
537 |
lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) |
|
538 |
apply (induct set: Finites) |
|
539 |
apply (simp_all add: Pow_insert) |
|
14208 | 540 |
apply (subst card_Un_disjoint, blast) |
541 |
apply (blast intro: finite_imageI, blast) |
|
12396 | 542 |
apply (subgoal_tac "inj_on (insert x) (Pow F)") |
543 |
apply (simp add: card_image Pow_insert) |
|
544 |
apply (unfold inj_on_def) |
|
545 |
apply (blast elim!: equalityE) |
|
546 |
done |
|
547 |
||
548 |
text {* |
|
549 |
\medskip Relates to equivalence classes. Based on a theorem of |
|
550 |
F. Kammüller's. The @{prop "finite C"} premise is redundant. |
|
551 |
*} |
|
552 |
||
553 |
lemma dvd_partition: |
|
554 |
"finite C ==> finite (Union C) ==> |
|
555 |
ALL c : C. k dvd card c ==> |
|
556 |
(ALL c1: C. ALL c2: C. c1 ~= c2 --> c1 Int c2 = {}) ==> |
|
557 |
k dvd card (Union C)" |
|
14208 | 558 |
apply (induct set: Finites, simp_all, clarify) |
12396 | 559 |
apply (subst card_Un_disjoint) |
560 |
apply (auto simp add: dvd_add disjoint_eq_subset_Compl) |
|
561 |
done |
|
562 |
||
563 |
||
564 |
subsection {* A fold functional for finite sets *} |
|
565 |
||
566 |
text {* |
|
567 |
For @{text n} non-negative we have @{text "fold f e {x1, ..., xn} = |
|
568 |
f x1 (... (f xn e))"} where @{text f} is at least left-commutative. |
|
569 |
*} |
|
570 |
||
571 |
consts |
|
572 |
foldSet :: "('b => 'a => 'a) => 'a => ('b set \<times> 'a) set" |
|
573 |
||
574 |
inductive "foldSet f e" |
|
575 |
intros |
|
576 |
emptyI [intro]: "({}, e) : foldSet f e" |
|
577 |
insertI [intro]: "x \<notin> A ==> (A, y) : foldSet f e ==> (insert x A, f x y) : foldSet f e" |
|
578 |
||
579 |
inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f e" |
|
580 |
||
581 |
constdefs |
|
582 |
fold :: "('b => 'a => 'a) => 'a => 'b set => 'a" |
|
583 |
"fold f e A == THE x. (A, x) : foldSet f e" |
|
584 |
||
585 |
lemma Diff1_foldSet: "(A - {x}, y) : foldSet f e ==> x: A ==> (A, f x y) : foldSet f e" |
|
14208 | 586 |
by (erule insert_Diff [THEN subst], rule foldSet.intros, auto) |
12396 | 587 |
|
588 |
lemma foldSet_imp_finite [simp]: "(A, x) : foldSet f e ==> finite A" |
|
589 |
by (induct set: foldSet) auto |
|
590 |
||
591 |
lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f e" |
|
592 |
by (induct set: Finites) auto |
|
593 |
||
594 |
||
595 |
subsubsection {* Left-commutative operations *} |
|
596 |
||
597 |
locale LC = |
|
598 |
fixes f :: "'b => 'a => 'a" (infixl "\<cdot>" 70) |
|
599 |
assumes left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" |
|
600 |
||
601 |
lemma (in LC) foldSet_determ_aux: |
|
602 |
"ALL A x. card A < n --> (A, x) : foldSet f e --> |
|
603 |
(ALL y. (A, y) : foldSet f e --> y = x)" |
|
604 |
apply (induct n) |
|
605 |
apply (auto simp add: less_Suc_eq) |
|
14208 | 606 |
apply (erule foldSet.cases, blast) |
607 |
apply (erule foldSet.cases, blast, clarify) |
|
12396 | 608 |
txt {* force simplification of @{text "card A < card (insert ...)"}. *} |
609 |
apply (erule rev_mp) |
|
610 |
apply (simp add: less_Suc_eq_le) |
|
611 |
apply (rule impI) |
|
612 |
apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb") |
|
613 |
apply (subgoal_tac "Aa = Ab") |
|
14208 | 614 |
prefer 2 apply (blast elim!: equalityE, blast) |
12396 | 615 |
txt {* case @{prop "xa \<notin> xb"}. *} |
616 |
apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab") |
|
14208 | 617 |
prefer 2 apply (blast elim!: equalityE, clarify) |
12396 | 618 |
apply (subgoal_tac "Aa = insert xb Ab - {xa}") |
619 |
prefer 2 apply blast |
|
620 |
apply (subgoal_tac "card Aa <= card Ab") |
|
621 |
prefer 2 |
|
622 |
apply (rule Suc_le_mono [THEN subst]) |
|
623 |
apply (simp add: card_Suc_Diff1) |
|
624 |
apply (rule_tac A1 = "Aa - {xb}" and f1 = f in finite_imp_foldSet [THEN exE]) |
|
625 |
apply (blast intro: foldSet_imp_finite finite_Diff) |
|
626 |
apply (frule (1) Diff1_foldSet) |
|
627 |
apply (subgoal_tac "ya = f xb x") |
|
628 |
prefer 2 apply (blast del: equalityCE) |
|
629 |
apply (subgoal_tac "(Ab - {xa}, x) : foldSet f e") |
|
630 |
prefer 2 apply simp |
|
631 |
apply (subgoal_tac "yb = f xa x") |
|
632 |
prefer 2 apply (blast del: equalityCE dest: Diff1_foldSet) |
|
633 |
apply (simp (no_asm_simp) add: left_commute) |
|
634 |
done |
|
635 |
||
636 |
lemma (in LC) foldSet_determ: "(A, x) : foldSet f e ==> (A, y) : foldSet f e ==> y = x" |
|
637 |
by (blast intro: foldSet_determ_aux [rule_format]) |
|
638 |
||
639 |
lemma (in LC) fold_equality: "(A, y) : foldSet f e ==> fold f e A = y" |
|
640 |
by (unfold fold_def) (blast intro: foldSet_determ) |
|
641 |
||
642 |
lemma fold_empty [simp]: "fold f e {} = e" |
|
643 |
by (unfold fold_def) blast |
|
644 |
||
645 |
lemma (in LC) fold_insert_aux: "x \<notin> A ==> |
|
646 |
((insert x A, v) : foldSet f e) = |
|
647 |
(EX y. (A, y) : foldSet f e & v = f x y)" |
|
648 |
apply auto |
|
649 |
apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE]) |
|
650 |
apply (fastsimp dest: foldSet_imp_finite) |
|
651 |
apply (blast intro: foldSet_determ) |
|
652 |
done |
|
653 |
||
654 |
lemma (in LC) fold_insert: |
|
655 |
"finite A ==> x \<notin> A ==> fold f e (insert x A) = f x (fold f e A)" |
|
656 |
apply (unfold fold_def) |
|
657 |
apply (simp add: fold_insert_aux) |
|
658 |
apply (rule the_equality) |
|
659 |
apply (auto intro: finite_imp_foldSet |
|
660 |
cong add: conj_cong simp add: fold_def [symmetric] fold_equality) |
|
661 |
done |
|
662 |
||
663 |
lemma (in LC) fold_commute: "finite A ==> (!!e. f x (fold f e A) = fold f (f x e) A)" |
|
14208 | 664 |
apply (induct set: Finites, simp) |
12396 | 665 |
apply (simp add: left_commute fold_insert) |
666 |
done |
|
667 |
||
668 |
lemma (in LC) fold_nest_Un_Int: |
|
669 |
"finite A ==> finite B |
|
670 |
==> fold f (fold f e B) A = fold f (fold f e (A Int B)) (A Un B)" |
|
14208 | 671 |
apply (induct set: Finites, simp) |
12396 | 672 |
apply (simp add: fold_insert fold_commute Int_insert_left insert_absorb) |
673 |
done |
|
674 |
||
675 |
lemma (in LC) fold_nest_Un_disjoint: |
|
676 |
"finite A ==> finite B ==> A Int B = {} |
|
677 |
==> fold f e (A Un B) = fold f (fold f e B) A" |
|
678 |
by (simp add: fold_nest_Un_Int) |
|
679 |
||
680 |
declare foldSet_imp_finite [simp del] |
|
681 |
empty_foldSetE [rule del] foldSet.intros [rule del] |
|
682 |
-- {* Delete rules to do with @{text foldSet} relation. *} |
|
683 |
||
684 |
||
685 |
||
686 |
subsubsection {* Commutative monoids *} |
|
687 |
||
688 |
text {* |
|
689 |
We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"} |
|
690 |
instead of @{text "'b => 'a => 'a"}. |
|
691 |
*} |
|
692 |
||
693 |
locale ACe = |
|
694 |
fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) |
|
695 |
and e :: 'a |
|
696 |
assumes ident [simp]: "x \<cdot> e = x" |
|
697 |
and commute: "x \<cdot> y = y \<cdot> x" |
|
698 |
and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" |
|
699 |
||
700 |
lemma (in ACe) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" |
|
701 |
proof - |
|
702 |
have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute) |
|
703 |
also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc) |
|
704 |
also have "z \<cdot> x = x \<cdot> z" by (simp only: commute) |
|
705 |
finally show ?thesis . |
|
706 |
qed |
|
707 |
||
12718 | 708 |
lemmas (in ACe) AC = assoc commute left_commute |
12396 | 709 |
|
12693 | 710 |
lemma (in ACe) left_ident [simp]: "e \<cdot> x = x" |
12396 | 711 |
proof - |
712 |
have "x \<cdot> e = x" by (rule ident) |
|
713 |
thus ?thesis by (subst commute) |
|
714 |
qed |
|
715 |
||
716 |
lemma (in ACe) fold_Un_Int: |
|
717 |
"finite A ==> finite B ==> |
|
718 |
fold f e A \<cdot> fold f e B = fold f e (A Un B) \<cdot> fold f e (A Int B)" |
|
14208 | 719 |
apply (induct set: Finites, simp) |
13400 | 720 |
apply (simp add: AC insert_absorb Int_insert_left |
13421 | 721 |
LC.fold_insert [OF LC.intro]) |
12396 | 722 |
done |
723 |
||
724 |
lemma (in ACe) fold_Un_disjoint: |
|
725 |
"finite A ==> finite B ==> A Int B = {} ==> |
|
726 |
fold f e (A Un B) = fold f e A \<cdot> fold f e B" |
|
727 |
by (simp add: fold_Un_Int) |
|
728 |
||
729 |
lemma (in ACe) fold_Un_disjoint2: |
|
730 |
"finite A ==> finite B ==> A Int B = {} ==> |
|
731 |
fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B" |
|
732 |
proof - |
|
733 |
assume b: "finite B" |
|
734 |
assume "finite A" |
|
735 |
thus "A Int B = {} ==> |
|
736 |
fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B" |
|
737 |
proof induct |
|
738 |
case empty |
|
739 |
thus ?case by simp |
|
740 |
next |
|
741 |
case (insert F x) |
|
13571 | 742 |
have "fold (f o g) e (insert x F \<union> B) = fold (f o g) e (insert x (F \<union> B))" |
12396 | 743 |
by simp |
13571 | 744 |
also have "... = (f o g) x (fold (f o g) e (F \<union> B))" |
13400 | 745 |
by (rule LC.fold_insert [OF LC.intro]) |
13421 | 746 |
(insert b insert, auto simp add: left_commute) |
13571 | 747 |
also from insert have "fold (f o g) e (F \<union> B) = |
748 |
fold (f o g) e F \<cdot> fold (f o g) e B" by blast |
|
749 |
also have "(f o g) x ... = (f o g) x (fold (f o g) e F) \<cdot> fold (f o g) e B" |
|
12396 | 750 |
by (simp add: AC) |
13571 | 751 |
also have "(f o g) x (fold (f o g) e F) = fold (f o g) e (insert x F)" |
13400 | 752 |
by (rule LC.fold_insert [OF LC.intro, symmetric]) (insert b insert, |
13421 | 753 |
auto simp add: left_commute) |
12396 | 754 |
finally show ?case . |
755 |
qed |
|
756 |
qed |
|
757 |
||
758 |
||
759 |
subsection {* Generalized summation over a set *} |
|
760 |
||
761 |
constdefs |
|
762 |
setsum :: "('a => 'b) => 'a set => 'b::plus_ac0" |
|
763 |
"setsum f A == if finite A then fold (op + o f) 0 A else 0" |
|
764 |
||
765 |
syntax |
|
766 |
"_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0" ("\<Sum>_:_. _" [0, 51, 10] 10) |
|
767 |
syntax (xsymbols) |
|
768 |
"_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0" ("\<Sum>_\<in>_. _" [0, 51, 10] 10) |
|
769 |
translations |
|
770 |
"\<Sum>i:A. b" == "setsum (%i. b) A" -- {* Beware of argument permutation! *} |
|
771 |
||
772 |
||
773 |
lemma setsum_empty [simp]: "setsum f {} = 0" |
|
774 |
by (simp add: setsum_def) |
|
775 |
||
776 |
lemma setsum_insert [simp]: |
|
777 |
"finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" |
|
13365 | 778 |
by (simp add: setsum_def |
13421 | 779 |
LC.fold_insert [OF LC.intro] plus_ac0_left_commute) |
12396 | 780 |
|
781 |
lemma setsum_0: "setsum (\<lambda>i. 0) A = 0" |
|
782 |
apply (case_tac "finite A") |
|
783 |
prefer 2 apply (simp add: setsum_def) |
|
14208 | 784 |
apply (erule finite_induct, auto) |
12396 | 785 |
done |
786 |
||
787 |
lemma setsum_eq_0_iff [simp]: |
|
788 |
"finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" |
|
789 |
by (induct set: Finites) auto |
|
790 |
||
791 |
lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" |
|
792 |
apply (case_tac "finite A") |
|
793 |
prefer 2 apply (simp add: setsum_def) |
|
794 |
apply (erule rev_mp) |
|
14208 | 795 |
apply (erule finite_induct, auto) |
12396 | 796 |
done |
797 |
||
798 |
lemma card_eq_setsum: "finite A ==> card A = setsum (\<lambda>x. 1) A" |
|
799 |
-- {* Could allow many @{text "card"} proofs to be simplified. *} |
|
800 |
by (induct set: Finites) auto |
|
801 |
||
802 |
lemma setsum_Un_Int: "finite A ==> finite B |
|
803 |
==> setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" |
|
804 |
-- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} |
|
14208 | 805 |
apply (induct set: Finites, simp) |
12396 | 806 |
apply (simp add: plus_ac0 Int_insert_left insert_absorb) |
807 |
done |
|
808 |
||
809 |
lemma setsum_Un_disjoint: "finite A ==> finite B |
|
810 |
==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B" |
|
14208 | 811 |
apply (subst setsum_Un_Int [symmetric], auto) |
12396 | 812 |
done |
813 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
814 |
lemma setsum_UN_disjoint: |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
815 |
fixes f :: "'a => 'b::plus_ac0" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
816 |
shows |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
817 |
"finite I ==> (ALL i:I. finite (A i)) ==> |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
818 |
(ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==> |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12718
diff
changeset
|
819 |
setsum f (UNION I A) = setsum (\<lambda>i. setsum f (A i)) I" |
14208 | 820 |
apply (induct set: Finites, simp, atomize) |
12396 | 821 |
apply (subgoal_tac "ALL i:F. x \<noteq> i") |
822 |
prefer 2 apply blast |
|
823 |
apply (subgoal_tac "A x Int UNION F A = {}") |
|
824 |
prefer 2 apply blast |
|
825 |
apply (simp add: setsum_Un_disjoint) |
|
826 |
done |
|
827 |
||
828 |
lemma setsum_addf: "setsum (\<lambda>x. f x + g x) A = (setsum f A + setsum g A)" |
|
829 |
apply (case_tac "finite A") |
|
830 |
prefer 2 apply (simp add: setsum_def) |
|
14208 | 831 |
apply (erule finite_induct, auto) |
12396 | 832 |
apply (simp add: plus_ac0) |
833 |
done |
|
834 |
||
835 |
lemma setsum_Un: "finite A ==> finite B ==> |
|
836 |
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" |
|
837 |
-- {* For the natural numbers, we have subtraction. *} |
|
14208 | 838 |
apply (subst setsum_Un_Int [symmetric], auto) |
12396 | 839 |
done |
840 |
||
841 |
lemma setsum_diff1: "(setsum f (A - {a}) :: nat) = |
|
842 |
(if a:A then setsum f A - f a else setsum f A)" |
|
843 |
apply (case_tac "finite A") |
|
844 |
prefer 2 apply (simp add: setsum_def) |
|
845 |
apply (erule finite_induct) |
|
846 |
apply (auto simp add: insert_Diff_if) |
|
14208 | 847 |
apply (drule_tac a = a in mk_disjoint_insert, auto) |
12396 | 848 |
done |
849 |
||
850 |
lemma setsum_cong: |
|
851 |
"A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" |
|
852 |
apply (case_tac "finite B") |
|
14208 | 853 |
prefer 2 apply (simp add: setsum_def, simp) |
12396 | 854 |
apply (subgoal_tac "ALL C. C <= B --> (ALL x:C. f x = g x) --> setsum f C = setsum g C") |
855 |
apply simp |
|
14208 | 856 |
apply (erule finite_induct, simp) |
857 |
apply (simp add: subset_insert_iff, clarify) |
|
12396 | 858 |
apply (subgoal_tac "finite C") |
859 |
prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) |
|
860 |
apply (subgoal_tac "C = insert x (C - {x})") |
|
861 |
prefer 2 apply blast |
|
862 |
apply (erule ssubst) |
|
863 |
apply (drule spec) |
|
864 |
apply (erule (1) notE impE) |
|
14302 | 865 |
apply (simp add: Ball_def del:insert_Diff_single) |
12396 | 866 |
done |
867 |
||
13490
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
868 |
subsubsection{* Min and Max of finite linearly ordered sets *} |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
869 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
870 |
text{* Seemed easier to define directly than via fold. *} |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
871 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
872 |
lemma ex_Max: fixes S :: "('a::linorder)set" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
873 |
assumes fin: "finite S" shows "S \<noteq> {} \<Longrightarrow> \<exists>m\<in>S. \<forall>s \<in> S. s \<le> m" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
874 |
using fin |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
875 |
proof (induct) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
876 |
case empty thus ?case by simp |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
877 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
878 |
case (insert S x) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
879 |
show ?case |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
880 |
proof (cases) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
881 |
assume "S = {}" thus ?thesis by simp |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
882 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
883 |
assume nonempty: "S \<noteq> {}" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
884 |
then obtain m where m: "m\<in>S" "\<forall>s\<in>S. s \<le> m" using insert by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
885 |
show ?thesis |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
886 |
proof (cases) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
887 |
assume "x \<le> m" thus ?thesis using m by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
888 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
889 |
assume "\<not> x \<le> m" thus ?thesis using m |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
890 |
by(simp add:linorder_not_le order_less_le)(blast intro: order_trans) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
891 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
892 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
893 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
894 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
895 |
lemma ex_Min: fixes S :: "('a::linorder)set" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
896 |
assumes fin: "finite S" shows "S \<noteq> {} \<Longrightarrow> \<exists>m\<in>S. \<forall>s \<in> S. m \<le> s" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
897 |
using fin |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
898 |
proof (induct) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
899 |
case empty thus ?case by simp |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
900 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
901 |
case (insert S x) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
902 |
show ?case |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
903 |
proof (cases) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
904 |
assume "S = {}" thus ?thesis by simp |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
905 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
906 |
assume nonempty: "S \<noteq> {}" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
907 |
then obtain m where m: "m\<in>S" "\<forall>s\<in>S. m \<le> s" using insert by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
908 |
show ?thesis |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
909 |
proof (cases) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
910 |
assume "m \<le> x" thus ?thesis using m by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
911 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
912 |
assume "\<not> m \<le> x" thus ?thesis using m |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
913 |
by(simp add:linorder_not_le order_less_le)(blast intro: order_trans) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
914 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
915 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
916 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
917 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
918 |
constdefs |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
919 |
Min :: "('a::linorder)set \<Rightarrow> 'a" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
920 |
"Min S \<equiv> THE m. m \<in> S \<and> (\<forall>s \<in> S. m \<le> s)" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
921 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
922 |
Max :: "('a::linorder)set \<Rightarrow> 'a" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
923 |
"Max S \<equiv> THE m. m \<in> S \<and> (\<forall>s \<in> S. s \<le> m)" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
924 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
925 |
lemma Min[simp]: assumes a: "finite S" "S \<noteq> {}" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
926 |
shows "Min S \<in> S \<and> (\<forall>s \<in> S. Min S \<le> s)" (is "?P(Min S)") |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
927 |
proof (unfold Min_def, rule theI') |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
928 |
show "\<exists>!m. ?P m" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
929 |
proof (rule ex_ex1I) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
930 |
show "\<exists>m. ?P m" using ex_Min[OF a] by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
931 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
932 |
fix m1 m2 assume "?P m1" "?P m2" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
933 |
thus "m1 = m2" by (blast dest:order_antisym) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
934 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
935 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
936 |
|
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
937 |
lemma Max[simp]: assumes a: "finite S" "S \<noteq> {}" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
938 |
shows "Max S \<in> S \<and> (\<forall>s \<in> S. s \<le> Max S)" (is "?P(Max S)") |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
939 |
proof (unfold Max_def, rule theI') |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
940 |
show "\<exists>!m. ?P m" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
941 |
proof (rule ex_ex1I) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
942 |
show "\<exists>m. ?P m" using ex_Max[OF a] by blast |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
943 |
next |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
944 |
fix m1 m2 assume "?P m1" "?P m2" |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
945 |
thus "m1 = m2" by (blast dest:order_antisym) |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
946 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
947 |
qed |
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
nipkow
parents:
13421
diff
changeset
|
948 |
|
12396 | 949 |
|
950 |
text {* |
|
951 |
\medskip Basic theorem about @{text "choose"}. By Florian |
|
952 |
Kammüller, tidied by LCP. |
|
953 |
*} |
|
954 |
||
955 |
lemma card_s_0_eq_empty: |
|
956 |
"finite A ==> card {B. B \<subseteq> A & card B = 0} = 1" |
|
957 |
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) |
|
958 |
apply (simp cong add: rev_conj_cong) |
|
959 |
done |
|
960 |
||
961 |
lemma choose_deconstruct: "finite M ==> x \<notin> M |
|
962 |
==> {s. s <= insert x M & card(s) = Suc k} |
|
963 |
= {s. s <= M & card(s) = Suc k} Un |
|
964 |
{s. EX t. t <= M & card(t) = k & s = insert x t}" |
|
965 |
apply safe |
|
966 |
apply (auto intro: finite_subset [THEN card_insert_disjoint]) |
|
967 |
apply (drule_tac x = "xa - {x}" in spec) |
|
14208 | 968 |
apply (subgoal_tac "x ~: xa", auto) |
12396 | 969 |
apply (erule rev_mp, subst card_Diff_singleton) |
970 |
apply (auto intro: finite_subset) |
|
971 |
done |
|
972 |
||
973 |
lemma card_inj_on_le: |
|
13595 | 974 |
"[|inj_on f A; f ` A \<subseteq> B; finite A; finite B |] ==> card A <= card B" |
12396 | 975 |
by (auto intro: card_mono simp add: card_image [symmetric]) |
976 |
||
13595 | 977 |
lemma card_bij_eq: |
978 |
"[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; |
|
979 |
finite A; finite B |] ==> card A = card B" |
|
12396 | 980 |
by (auto intro: le_anti_sym card_inj_on_le) |
981 |
||
13595 | 982 |
text{*There are as many subsets of @{term A} having cardinality @{term k} |
983 |
as there are sets obtained from the former by inserting a fixed element |
|
984 |
@{term x} into each.*} |
|
985 |
lemma constr_bij: |
|
986 |
"[|finite A; x \<notin> A|] ==> |
|
987 |
card {B. EX C. C <= A & card(C) = k & B = insert x C} = |
|
12396 | 988 |
card {B. B <= A & card(B) = k}" |
989 |
apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) |
|
13595 | 990 |
apply (auto elim!: equalityE simp add: inj_on_def) |
991 |
apply (subst Diff_insert0, auto) |
|
992 |
txt {* finiteness of the two sets *} |
|
993 |
apply (rule_tac [2] B = "Pow (A)" in finite_subset) |
|
994 |
apply (rule_tac B = "Pow (insert x A)" in finite_subset) |
|
995 |
apply fast+ |
|
12396 | 996 |
done |
997 |
||
998 |
text {* |
|
999 |
Main theorem: combinatorial statement about number of subsets of a set. |
|
1000 |
*} |
|
1001 |
||
1002 |
lemma n_sub_lemma: |
|
1003 |
"!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
1004 |
apply (induct k) |
|
14208 | 1005 |
apply (simp add: card_s_0_eq_empty, atomize) |
12396 | 1006 |
apply (rotate_tac -1, erule finite_induct) |
13421 | 1007 |
apply (simp_all (no_asm_simp) cong add: conj_cong |
1008 |
add: card_s_0_eq_empty choose_deconstruct) |
|
12396 | 1009 |
apply (subst card_Un_disjoint) |
1010 |
prefer 4 apply (force simp add: constr_bij) |
|
1011 |
prefer 3 apply force |
|
1012 |
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] |
|
1013 |
finite_subset [of _ "Pow (insert x F)", standard]) |
|
1014 |
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) |
|
1015 |
done |
|
1016 |
||
13421 | 1017 |
theorem n_subsets: |
1018 |
"finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
12396 | 1019 |
by (simp add: n_sub_lemma) |
1020 |
||
1021 |
end |