doc-src/TutorialI/Overview/Isar.thy
author huffman
Thu, 19 Feb 2009 12:03:31 -0800
changeset 29994 6ca6b6bd6e15
parent 16417 9bc16273c2d4
permissions -rw-r--r--
add formalization of a type of integers mod 2 to Library
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 13249
diff changeset
     1
theory Isar imports Sets begin
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     2
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     3
section{*A Taste of Structured Proofs in Isar*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     4
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     5
lemma [intro?]: "mono f \<Longrightarrow> x \<in> f (lfp f) \<Longrightarrow> x \<in> lfp f"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     6
  by(simp only: lfp_unfold [symmetric])
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     7
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     8
lemma "lfp(\<lambda>T. A \<union> M\<inverse> `` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     9
      (is "lfp ?F = ?toA")
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    10
proof
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    11
  show "lfp ?F \<subseteq> ?toA"
12815
wenzelm
parents: 11238
diff changeset
    12
  by (blast intro!: lfp_lowerbound intro: rtrancl_trans)
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 12815
diff changeset
    13
next
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    14
  show "?toA \<subseteq> lfp ?F"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    15
  proof
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    16
    fix s assume "s \<in> ?toA"
11238
1d789889c922 *** empty log message ***
nipkow
parents: 11235
diff changeset
    17
    then obtain t where stM: "(s,t) \<in> M\<^sup>*" and tA: "t \<in> A"
1d789889c922 *** empty log message ***
nipkow
parents: 11235
diff changeset
    18
         by blast
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    19
    from stM show "s \<in> lfp ?F"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    20
    proof (rule converse_rtrancl_induct)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    21
      from tA have "t \<in> ?F (lfp ?F)" by blast
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    22
      with mono_ef show "t \<in> lfp ?F" ..
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 12815
diff changeset
    23
    next
11238
1d789889c922 *** empty log message ***
nipkow
parents: 11235
diff changeset
    24
      fix s s' assume "(s,s') \<in> M" and "(s',t) \<in> M\<^sup>*"
1d789889c922 *** empty log message ***
nipkow
parents: 11235
diff changeset
    25
                  and "s' \<in> lfp ?F"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    26
      then have "s \<in> ?F (lfp ?F)" by blast
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    27
      with mono_ef show "s \<in> lfp ?F" ..
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    28
    qed
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    29
  qed
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    30
qed
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    31
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    32
end
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    33