| author | wenzelm | 
| Sat, 08 Sep 2018 13:22:23 +0200 | |
| changeset 68946 | 6dd1460f6920 | 
| parent 67051 | e7e54a0b9197 | 
| child 69597 | ff784d5a5bfb | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Number_Theory/Fib.thy | 
| 2 | Author: Lawrence C. Paulson | |
| 3 | Author: Jeremy Avigad | |
| 64317 | 4 | Author: Manuel Eberl | 
| 31719 | 5 | *) | 
| 6 | ||
| 60527 | 7 | section \<open>The fibonacci function\<close> | 
| 31719 | 8 | |
| 9 | theory Fib | |
| 64317 | 10 | imports Complex_Main | 
| 31719 | 11 | begin | 
| 12 | ||
| 13 | ||
| 60526 | 14 | subsection \<open>Fibonacci numbers\<close> | 
| 31719 | 15 | |
| 54713 | 16 | fun fib :: "nat \<Rightarrow> nat" | 
| 65393 | 17 | where | 
| 18 | fib0: "fib 0 = 0" | |
| 19 | | fib1: "fib (Suc 0) = 1" | |
| 20 | | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n" | |
| 60527 | 21 | |
| 31719 | 22 | |
| 60526 | 23 | subsection \<open>Basic Properties\<close> | 
| 31719 | 24 | |
| 65393 | 25 | lemma fib_1 [simp]: "fib 1 = 1" | 
| 54713 | 26 | by (metis One_nat_def fib1) | 
| 31719 | 27 | |
| 65393 | 28 | lemma fib_2 [simp]: "fib 2 = 1" | 
| 29 | using fib.simps(3) [of 0] by (simp add: numeral_2_eq_2) | |
| 31719 | 30 | |
| 54713 | 31 | lemma fib_plus_2: "fib (n + 2) = fib (n + 1) + fib n" | 
| 32 | by (metis Suc_eq_plus1 add_2_eq_Suc' fib.simps(3)) | |
| 31719 | 33 | |
| 65393 | 34 | lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n" | 
| 54713 | 35 | by (induct n rule: fib.induct) (auto simp add: field_simps) | 
| 31719 | 36 | |
| 54713 | 37 | lemma fib_neq_0_nat: "n > 0 \<Longrightarrow> fib n > 0" | 
| 65393 | 38 | by (induct n rule: fib.induct) auto | 
| 31719 | 39 | |
| 60527 | 40 | |
| 64317 | 41 | subsection \<open>More efficient code\<close> | 
| 42 | ||
| 43 | text \<open> | |
| 44 | The naive approach is very inefficient since the branching recursion leads to many | |
| 45 |   values of @{term fib} being computed multiple times. We can avoid this by ``remembering''
 | |
| 46 | the last two values in the sequence, yielding a tail-recursive version. | |
| 65393 | 47 | This is far from optimal (it takes roughly $O(n\cdot M(n))$ time where $M(n)$ is the | 
| 64317 | 48 | time required to multiply two $n$-bit integers), but much better than the naive version, | 
| 49 | which is exponential. | |
| 50 | \<close> | |
| 51 | ||
| 65393 | 52 | fun gen_fib :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 53 | where | |
| 54 | "gen_fib a b 0 = a" | |
| 55 | | "gen_fib a b (Suc 0) = b" | |
| 56 | | "gen_fib a b (Suc (Suc n)) = gen_fib b (a + b) (Suc n)" | |
| 64317 | 57 | |
| 58 | lemma gen_fib_recurrence: "gen_fib a b (Suc (Suc n)) = gen_fib a b n + gen_fib a b (Suc n)" | |
| 65393 | 59 | by (induct a b n rule: gen_fib.induct) simp_all | 
| 60 | ||
| 64317 | 61 | lemma gen_fib_fib: "gen_fib (fib n) (fib (Suc n)) m = fib (n + m)" | 
| 65393 | 62 | by (induct m rule: fib.induct) (simp_all del: gen_fib.simps(3) add: gen_fib_recurrence) | 
| 64317 | 63 | |
| 64 | lemma fib_conv_gen_fib: "fib n = gen_fib 0 1 n" | |
| 65 | using gen_fib_fib[of 0 n] by simp | |
| 66 | ||
| 67 | declare fib_conv_gen_fib [code] | |
| 68 | ||
| 69 | ||
| 60526 | 70 | subsection \<open>A Few Elementary Results\<close> | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 71 | |
| 60526 | 72 | text \<open> | 
| 65393 | 73 | \<^medskip> Concrete Mathematics, page 278: Cassini's identity. The proof is | 
| 31719 | 74 | much easier using integers, not natural numbers! | 
| 60526 | 75 | \<close> | 
| 31719 | 76 | |
| 54713 | 77 | lemma fib_Cassini_int: "int (fib (Suc (Suc n)) * fib n) - int((fib (Suc n))\<^sup>2) = - ((-1)^n)" | 
| 65393 | 78 | by (induct n rule: fib.induct) (auto simp add: field_simps power2_eq_square power_add) | 
| 31719 | 79 | |
| 54713 | 80 | lemma fib_Cassini_nat: | 
| 60527 | 81 | "fib (Suc (Suc n)) * fib n = | 
| 82 | (if even n then (fib (Suc n))\<^sup>2 - 1 else (fib (Suc n))\<^sup>2 + 1)" | |
| 65393 | 83 | using fib_Cassini_int [of n] by (auto simp del: of_nat_mult of_nat_power) | 
| 31719 | 84 | |
| 85 | ||
| 60526 | 86 | subsection \<open>Law 6.111 of Concrete Mathematics\<close> | 
| 31719 | 87 | |
| 65393 | 88 | lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))" | 
| 54713 | 89 | apply (induct n rule: fib.induct) | 
| 67051 | 90 | apply (simp_all add: coprime_iff_gcd_eq_1 algebra_simps) | 
| 91 | apply (simp add: add.assoc [symmetric]) | |
| 44872 | 92 | done | 
| 31719 | 93 | |
| 67051 | 94 | lemma gcd_fib_add: | 
| 95 | "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" | |
| 96 | proof (cases m) | |
| 97 | case 0 | |
| 98 | then show ?thesis | |
| 99 | by simp | |
| 100 | next | |
| 101 | case (Suc q) | |
| 102 | from coprime_fib_Suc_nat [of q] | |
| 103 | have "coprime (fib (Suc q)) (fib q)" | |
| 104 | by (simp add: ac_simps) | |
| 105 | have "gcd (fib q) (fib (Suc q)) = Suc 0" | |
| 106 | using coprime_fib_Suc_nat [of q] by simp | |
| 107 | then have *: "gcd (fib n * fib q) (fib n * fib (Suc q)) = fib n" | |
| 108 | by (simp add: gcd_mult_distrib_nat [symmetric]) | |
| 109 | moreover have "gcd (fib (Suc q)) (fib n * fib q + fib (Suc n) * fib (Suc q)) = | |
| 110 | gcd (fib (Suc q)) (fib n * fib q)" | |
| 111 | using gcd_add_mult [of "fib (Suc q)"] by (simp add: ac_simps) | |
| 112 | moreover have "gcd (fib (Suc q)) (fib n * fib (Suc q)) = fib (Suc q)" | |
| 113 | by simp | |
| 114 | ultimately show ?thesis | |
| 115 | using Suc \<open>coprime (fib (Suc q)) (fib q)\<close> | |
| 116 | by (auto simp add: fib_add algebra_simps gcd_mult_right_right_cancel) | |
| 117 | qed | |
| 31719 | 118 | |
| 60527 | 119 | lemma gcd_fib_diff: "m \<le> n \<Longrightarrow> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 54713 | 120 | by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) | 
| 31719 | 121 | |
| 60527 | 122 | lemma gcd_fib_mod: "0 < m \<Longrightarrow> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | 
| 31719 | 123 | proof (induct n rule: less_induct) | 
| 124 | case (less n) | |
| 125 | show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 126 | proof (cases "m < n") | |
| 44872 | 127 | case True | 
| 128 | then have "m \<le> n" by auto | |
| 65393 | 129 | with \<open>0 < m\<close> have "0 < n" by auto | 
| 130 | with \<open>0 < m\<close> \<open>m < n\<close> have *: "n - m < n" by auto | |
| 31719 | 131 | have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))" | 
| 65393 | 132 | by (simp add: mod_if [of n]) (use \<open>m < n\<close> in auto) | 
| 44872 | 133 | also have "\<dots> = gcd (fib m) (fib (n - m))" | 
| 65393 | 134 | by (simp add: less.hyps * \<open>0 < m\<close>) | 
| 44872 | 135 | also have "\<dots> = gcd (fib m) (fib n)" | 
| 60526 | 136 | by (simp add: gcd_fib_diff \<open>m \<le> n\<close>) | 
| 31719 | 137 | finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" . | 
| 138 | next | |
| 44872 | 139 | case False | 
| 140 | then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 141 | by (cases "m = n") auto | |
| 31719 | 142 | qed | 
| 143 | qed | |
| 144 | ||
| 65393 | 145 | lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" \<comment> \<open>Law 6.111\<close> | 
| 62348 | 146 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat gcd.commute gcd_fib_mod) | 
| 31719 | 147 | |
| 64267 | 148 | theorem fib_mult_eq_sum_nat: "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
 | 
| 54713 | 149 | by (induct n rule: nat.induct) (auto simp add: field_simps) | 
| 31719 | 150 | |
| 60527 | 151 | |
| 64317 | 152 | subsection \<open>Closed form\<close> | 
| 153 | ||
| 154 | lemma fib_closed_form: | |
| 65393 | 155 | fixes \<phi> \<psi> :: real | 
| 156 | defines "\<phi> \<equiv> (1 + sqrt 5) / 2" | |
| 157 | and "\<psi> \<equiv> (1 - sqrt 5) / 2" | |
| 158 | shows "of_nat (fib n) = (\<phi> ^ n - \<psi> ^ n) / sqrt 5" | |
| 159 | proof (induct n rule: fib.induct) | |
| 64317 | 160 | fix n :: nat | 
| 161 | assume IH1: "of_nat (fib n) = (\<phi> ^ n - \<psi> ^ n) / sqrt 5" | |
| 162 | assume IH2: "of_nat (fib (Suc n)) = (\<phi> ^ Suc n - \<psi> ^ Suc n) / sqrt 5" | |
| 163 | have "of_nat (fib (Suc (Suc n))) = of_nat (fib (Suc n)) + of_nat (fib n)" by simp | |
| 65393 | 164 | also have "\<dots> = (\<phi>^n * (\<phi> + 1) - \<psi>^n * (\<psi> + 1)) / sqrt 5" | 
| 64317 | 165 | by (simp add: IH1 IH2 field_simps) | 
| 166 | also have "\<phi> + 1 = \<phi>\<^sup>2" by (simp add: \<phi>_def field_simps power2_eq_square) | |
| 167 | also have "\<psi> + 1 = \<psi>\<^sup>2" by (simp add: \<psi>_def field_simps power2_eq_square) | |
| 65393 | 168 | also have "\<phi>^n * \<phi>\<^sup>2 - \<psi>^n * \<psi>\<^sup>2 = \<phi> ^ Suc (Suc n) - \<psi> ^ Suc (Suc n)" | 
| 64317 | 169 | by (simp add: power2_eq_square) | 
| 170 | finally show "of_nat (fib (Suc (Suc n))) = (\<phi> ^ Suc (Suc n) - \<psi> ^ Suc (Suc n)) / sqrt 5" . | |
| 171 | qed (simp_all add: \<phi>_def \<psi>_def field_simps) | |
| 172 | ||
| 173 | lemma fib_closed_form': | |
| 65393 | 174 | fixes \<phi> \<psi> :: real | 
| 175 | defines "\<phi> \<equiv> (1 + sqrt 5) / 2" | |
| 176 | and "\<psi> \<equiv> (1 - sqrt 5) / 2" | |
| 64317 | 177 | assumes "n > 0" | 
| 65393 | 178 | shows "fib n = round (\<phi> ^ n / sqrt 5)" | 
| 64317 | 179 | proof (rule sym, rule round_unique') | 
| 180 | have "\<bar>\<phi> ^ n / sqrt 5 - of_int (int (fib n))\<bar> = \<bar>\<psi>\<bar> ^ n / sqrt 5" | |
| 181 | by (simp add: fib_closed_form[folded \<phi>_def \<psi>_def] field_simps power_abs) | |
| 182 |   also {
 | |
| 183 | from assms have "\<bar>\<psi>\<bar>^n \<le> \<bar>\<psi>\<bar>^1" | |
| 184 | by (intro power_decreasing) (simp_all add: algebra_simps real_le_lsqrt) | |
| 65393 | 185 | also have "\<dots> < sqrt 5 / 2" by (simp add: \<psi>_def field_simps) | 
| 64317 | 186 | finally have "\<bar>\<psi>\<bar>^n / sqrt 5 < 1/2" by (simp add: field_simps) | 
| 187 | } | |
| 188 | finally show "\<bar>\<phi> ^ n / sqrt 5 - of_int (int (fib n))\<bar> < 1/2" . | |
| 189 | qed | |
| 190 | ||
| 191 | lemma fib_asymptotics: | |
| 65393 | 192 | fixes \<phi> :: real | 
| 193 | defines "\<phi> \<equiv> (1 + sqrt 5) / 2" | |
| 194 | shows "(\<lambda>n. real (fib n) / (\<phi> ^ n / sqrt 5)) \<longlonglongrightarrow> 1" | |
| 64317 | 195 | proof - | 
| 65393 | 196 | define \<psi> :: real where "\<psi> \<equiv> (1 - sqrt 5) / 2" | 
| 64317 | 197 | have "\<phi> > 1" by (simp add: \<phi>_def) | 
| 65393 | 198 | then have *: "\<phi> \<noteq> 0" by auto | 
| 64317 | 199 | have "(\<lambda>n. (\<psi> / \<phi>) ^ n) \<longlonglongrightarrow> 0" | 
| 200 | by (rule LIMSEQ_power_zero) (simp_all add: \<phi>_def \<psi>_def field_simps add_pos_pos) | |
| 65393 | 201 | then have "(\<lambda>n. 1 - (\<psi> / \<phi>) ^ n) \<longlonglongrightarrow> 1 - 0" | 
| 202 | by (intro tendsto_diff tendsto_const) | |
| 203 | with * show ?thesis | |
| 64317 | 204 | by (simp add: divide_simps fib_closed_form [folded \<phi>_def \<psi>_def]) | 
| 205 | qed | |
| 206 | ||
| 207 | ||
| 208 | subsection \<open>Divide-and-Conquer recurrence\<close> | |
| 209 | ||
| 210 | text \<open> | |
| 65393 | 211 | The following divide-and-conquer recurrence allows for a more efficient computation | 
| 212 | of Fibonacci numbers; however, it requires memoisation of values to be reasonably | |
| 64317 | 213 | efficient, cutting the number of values to be computed to logarithmically many instead of | 
| 65393 | 214 | linearly many. The vast majority of the computation time is then actually spent on the | 
| 64317 | 215 | multiplication, since the output number is exponential in the input number. | 
| 216 | \<close> | |
| 217 | ||
| 218 | lemma fib_rec_odd: | |
| 65393 | 219 | fixes \<phi> \<psi> :: real | 
| 220 | defines "\<phi> \<equiv> (1 + sqrt 5) / 2" | |
| 221 | and "\<psi> \<equiv> (1 - sqrt 5) / 2" | |
| 222 | shows "fib (Suc (2 * n)) = fib n^2 + fib (Suc n)^2" | |
| 64317 | 223 | proof - | 
| 224 | have "of_nat (fib n^2 + fib (Suc n)^2) = ((\<phi> ^ n - \<psi> ^ n)\<^sup>2 + (\<phi> * \<phi> ^ n - \<psi> * \<psi> ^ n)\<^sup>2)/5" | |
| 225 | by (simp add: fib_closed_form[folded \<phi>_def \<psi>_def] field_simps power2_eq_square) | |
| 65393 | 226 | also | 
| 227 | let ?A = "\<phi>^(2 * n) + \<psi>^(2 * n) - 2*(\<phi> * \<psi>)^n + \<phi>^(2 * n + 2) + \<psi>^(2 * n + 2) - 2*(\<phi> * \<psi>)^(n + 1)" | |
| 228 | have "(\<phi> ^ n - \<psi> ^ n)\<^sup>2 + (\<phi> * \<phi> ^ n - \<psi> * \<psi> ^ n)\<^sup>2 = ?A" | |
| 229 | by (simp add: power2_eq_square algebra_simps power_mult power_mult_distrib) | |
| 230 | also have "\<phi> * \<psi> = -1" | |
| 231 | by (simp add: \<phi>_def \<psi>_def field_simps) | |
| 232 | then have "?A = \<phi>^(2 * n + 1) * (\<phi> + inverse \<phi>) + \<psi>^(2 * n + 1) * (\<psi> + inverse \<psi>)" | |
| 64317 | 233 | by (auto simp: field_simps power2_eq_square) | 
| 65393 | 234 | also have "1 + sqrt 5 > 0" | 
| 235 | by (auto intro: add_pos_pos) | |
| 236 | then have "\<phi> + inverse \<phi> = sqrt 5" | |
| 237 | by (simp add: \<phi>_def field_simps) | |
| 238 | also have "\<psi> + inverse \<psi> = -sqrt 5" | |
| 239 | by (simp add: \<psi>_def field_simps) | |
| 240 | also have "(\<phi> ^ (2 * n + 1) * sqrt 5 + \<psi> ^ (2 * n + 1) * - sqrt 5) / 5 = | |
| 241 | (\<phi> ^ (2 * n + 1) - \<psi> ^ (2 * n + 1)) * (sqrt 5 / 5)" | |
| 242 | by (simp add: field_simps) | |
| 243 | also have "sqrt 5 / 5 = inverse (sqrt 5)" | |
| 244 | by (simp add: field_simps) | |
| 245 | also have "(\<phi> ^ (2 * n + 1) - \<psi> ^ (2 * n + 1)) * \<dots> = of_nat (fib (Suc (2 * n)))" | |
| 64317 | 246 | by (simp add: fib_closed_form[folded \<phi>_def \<psi>_def] divide_inverse) | 
| 65393 | 247 | finally show ?thesis | 
| 248 | by (simp only: of_nat_eq_iff) | |
| 64317 | 249 | qed | 
| 250 | ||
| 65393 | 251 | lemma fib_rec_even: "fib (2 * n) = (fib (n - 1) + fib (n + 1)) * fib n" | 
| 252 | proof (induct n) | |
| 253 | case 0 | |
| 254 | then show ?case by simp | |
| 255 | next | |
| 64317 | 256 | case (Suc n) | 
| 257 | let ?rfib = "\<lambda>x. real (fib x)" | |
| 65393 | 258 | have "2 * (Suc n) = Suc (Suc (2 * n))" by simp | 
| 259 | also have "real (fib \<dots>) = ?rfib n^2 + ?rfib (Suc n)^2 + (?rfib (n - 1) + ?rfib (n + 1)) * ?rfib n" | |
| 64317 | 260 | by (simp add: fib_rec_odd Suc) | 
| 261 | also have "(?rfib (n - 1) + ?rfib (n + 1)) * ?rfib n = (2 * ?rfib (n + 1) - ?rfib n) * ?rfib n" | |
| 262 | by (cases n) simp_all | |
| 65393 | 263 | also have "?rfib n^2 + ?rfib (Suc n)^2 + \<dots> = (?rfib (Suc n) + 2 * ?rfib n) * ?rfib (Suc n)" | 
| 64317 | 264 | by (simp add: algebra_simps power2_eq_square) | 
| 65393 | 265 | also have "\<dots> = real ((fib (Suc n - 1) + fib (Suc n + 1)) * fib (Suc n))" by simp | 
| 64317 | 266 | finally show ?case by (simp only: of_nat_eq_iff) | 
| 65393 | 267 | qed | 
| 64317 | 268 | |
| 65393 | 269 | lemma fib_rec_even': "fib (2 * n) = (2 * fib (n - 1) + fib n) * fib n" | 
| 64317 | 270 | by (subst fib_rec_even, cases n) simp_all | 
| 271 | ||
| 272 | lemma fib_rec: | |
| 65393 | 273 | "fib n = | 
| 274 | (if n = 0 then 0 else if n = 1 then 1 | |
| 275 | else if even n then let n' = n div 2; fn = fib n' in (2 * fib (n' - 1) + fn) * fn | |
| 276 | else let n' = n div 2 in fib n' ^ 2 + fib (Suc n') ^ 2)" | |
| 64317 | 277 | by (auto elim: evenE oddE simp: fib_rec_odd fib_rec_even' Let_def) | 
| 278 | ||
| 279 | ||
| 60526 | 280 | subsection \<open>Fibonacci and Binomial Coefficients\<close> | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 281 | |
| 64267 | 282 | lemma sum_drop_zero: "(\<Sum>k = 0..Suc n. if 0<k then (f (k - 1)) else 0) = (\<Sum>j = 0..n. f j)" | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 283 | by (induct n) auto | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 284 | |
| 64267 | 285 | lemma sum_choose_drop_zero: | 
| 65393 | 286 | "(\<Sum>k = 0..Suc n. if k = 0 then 0 else (Suc n - k) choose (k - 1)) = | 
| 287 | (\<Sum>j = 0..n. (n-j) choose j)" | |
| 64267 | 288 | by (rule trans [OF sum.cong sum_drop_zero]) auto | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 289 | |
| 60527 | 290 | lemma ne_diagonal_fib: "(\<Sum>k = 0..n. (n-k) choose k) = fib (Suc n)" | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 291 | proof (induct n rule: fib.induct) | 
| 60527 | 292 | case 1 | 
| 293 | show ?case by simp | |
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 294 | next | 
| 60527 | 295 | case 2 | 
| 296 | show ?case by simp | |
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 297 | next | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 298 | case (3 n) | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 299 | have "(\<Sum>k = 0..Suc n. Suc (Suc n) - k choose k) = | 
| 65393 | 300 | (\<Sum>k = 0..Suc n. (Suc n - k choose k) + (if k = 0 then 0 else (Suc n - k choose (k - 1))))" | 
| 64267 | 301 | by (rule sum.cong) (simp_all add: choose_reduce_nat) | 
| 65393 | 302 | also have "\<dots> = | 
| 303 | (\<Sum>k = 0..Suc n. Suc n - k choose k) + | |
| 304 | (\<Sum>k = 0..Suc n. if k=0 then 0 else (Suc n - k choose (k - 1)))" | |
| 64267 | 305 | by (simp add: sum.distrib) | 
| 65393 | 306 | also have "\<dots> = (\<Sum>k = 0..Suc n. Suc n - k choose k) + (\<Sum>j = 0..n. n - j choose j)" | 
| 64267 | 307 | by (metis sum_choose_drop_zero) | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 308 | finally show ?case using 3 | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 309 | by simp | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 310 | qed | 
| 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 311 | |
| 31719 | 312 | end |