author | paulson |
Wed, 02 Apr 1997 15:36:32 +0200 | |
changeset 2875 | 6e3ccb94836c |
parent 2493 | bdeb5024353a |
child 2925 | b0ae2e13db93 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/CardinalArith.ML |
437 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
437 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Cardinal arithmetic -- WITHOUT the Axiom of Choice |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
7 |
|
846 | 8 |
Note: Could omit proving the algebraic laws for cardinal addition and |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
9 |
multiplication. On finite cardinals these operations coincide with |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
10 |
addition and multiplication of natural numbers; on infinite cardinals they |
846 | 11 |
coincide with union (maximum). Either way we get most laws for free. |
437 | 12 |
*) |
13 |
||
14 |
open CardinalArith; |
|
15 |
||
16 |
(*** Cardinal addition ***) |
|
17 |
||
18 |
(** Cardinal addition is commutative **) |
|
19 |
||
20 |
goalw CardinalArith.thy [eqpoll_def] "A+B eqpoll B+A"; |
|
21 |
by (rtac exI 1); |
|
22 |
by (res_inst_tac [("c", "case(Inr, Inl)"), ("d", "case(Inr, Inl)")] |
|
23 |
lam_bijective 1); |
|
2469 | 24 |
by (safe_tac (!claset addSEs [sumE])); |
25 |
by (ALLGOALS (Asm_simp_tac)); |
|
760 | 26 |
qed "sum_commute_eqpoll"; |
437 | 27 |
|
28 |
goalw CardinalArith.thy [cadd_def] "i |+| j = j |+| i"; |
|
29 |
by (rtac (sum_commute_eqpoll RS cardinal_cong) 1); |
|
760 | 30 |
qed "cadd_commute"; |
437 | 31 |
|
32 |
(** Cardinal addition is associative **) |
|
33 |
||
34 |
goalw CardinalArith.thy [eqpoll_def] "(A+B)+C eqpoll A+(B+C)"; |
|
35 |
by (rtac exI 1); |
|
1461 | 36 |
by (rtac sum_assoc_bij 1); |
760 | 37 |
qed "sum_assoc_eqpoll"; |
437 | 38 |
|
39 |
(*Unconditional version requires AC*) |
|
40 |
goalw CardinalArith.thy [cadd_def] |
|
1461 | 41 |
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
437 | 42 |
\ (i |+| j) |+| k = i |+| (j |+| k)"; |
43 |
by (rtac cardinal_cong 1); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
44 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS sum_eqpoll_cong RS |
1461 | 45 |
eqpoll_trans) 1); |
437 | 46 |
by (rtac (sum_assoc_eqpoll RS eqpoll_trans) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
47 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS |
1461 | 48 |
eqpoll_sym) 2); |
484 | 49 |
by (REPEAT (ares_tac [well_ord_radd] 1)); |
760 | 50 |
qed "well_ord_cadd_assoc"; |
437 | 51 |
|
52 |
(** 0 is the identity for addition **) |
|
53 |
||
54 |
goalw CardinalArith.thy [eqpoll_def] "0+A eqpoll A"; |
|
55 |
by (rtac exI 1); |
|
846 | 56 |
by (rtac bij_0_sum 1); |
760 | 57 |
qed "sum_0_eqpoll"; |
437 | 58 |
|
484 | 59 |
goalw CardinalArith.thy [cadd_def] "!!K. Card(K) ==> 0 |+| K = K"; |
2469 | 60 |
by (asm_simp_tac (!simpset addsimps [sum_0_eqpoll RS cardinal_cong, |
1461 | 61 |
Card_cardinal_eq]) 1); |
760 | 62 |
qed "cadd_0"; |
437 | 63 |
|
767 | 64 |
(** Addition by another cardinal **) |
65 |
||
66 |
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A+B"; |
|
67 |
by (res_inst_tac [("x", "lam x:A. Inl(x)")] exI 1); |
|
2469 | 68 |
by (asm_simp_tac (!simpset addsimps [lam_type]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
69 |
qed "sum_lepoll_self"; |
767 | 70 |
|
71 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
72 |
goalw CardinalArith.thy [cadd_def] |
|
73 |
"!!K. [| Card(K); Ord(L) |] ==> K le (K |+| L)"; |
|
74 |
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1); |
|
75 |
by (rtac sum_lepoll_self 3); |
|
76 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Card_is_Ord] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
77 |
qed "cadd_le_self"; |
767 | 78 |
|
79 |
(** Monotonicity of addition **) |
|
80 |
||
81 |
goalw CardinalArith.thy [lepoll_def] |
|
82 |
"!!A B C D. [| A lepoll C; B lepoll D |] ==> A + B lepoll C + D"; |
|
83 |
by (REPEAT (etac exE 1)); |
|
84 |
by (res_inst_tac [("x", "lam z:A+B. case(%w. Inl(f`w), %y. Inr(fa`y), z)")] |
|
85 |
exI 1); |
|
86 |
by (res_inst_tac |
|
87 |
[("d", "case(%w. Inl(converse(f)`w), %y. Inr(converse(fa)`y))")] |
|
88 |
lam_injective 1); |
|
846 | 89 |
by (typechk_tac ([inj_is_fun, case_type, InlI, InrI] @ ZF_typechecks)); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
90 |
by (etac sumE 1); |
2469 | 91 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [left_inverse]))); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
92 |
qed "sum_lepoll_mono"; |
767 | 93 |
|
94 |
goalw CardinalArith.thy [cadd_def] |
|
95 |
"!!K. [| K' le K; L' le L |] ==> (K' |+| L') le (K |+| L)"; |
|
2469 | 96 |
by (safe_tac (!claset addSDs [le_subset_iff RS iffD1])); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
97 |
by (rtac well_ord_lepoll_imp_Card_le 1); |
767 | 98 |
by (REPEAT (ares_tac [sum_lepoll_mono, subset_imp_lepoll] 2)); |
99 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
100 |
qed "cadd_le_mono"; |
767 | 101 |
|
437 | 102 |
(** Addition of finite cardinals is "ordinary" addition **) |
103 |
||
104 |
goalw CardinalArith.thy [eqpoll_def] "succ(A)+B eqpoll succ(A+B)"; |
|
105 |
by (rtac exI 1); |
|
106 |
by (res_inst_tac [("c", "%z.if(z=Inl(A),A+B,z)"), |
|
1461 | 107 |
("d", "%z.if(z=A+B,Inl(A),z)")] |
437 | 108 |
lam_bijective 1); |
109 |
by (ALLGOALS |
|
2469 | 110 |
(asm_simp_tac (!simpset addsimps [succI2, mem_imp_not_eq] |
1461 | 111 |
setloop eresolve_tac [sumE,succE]))); |
760 | 112 |
qed "sum_succ_eqpoll"; |
437 | 113 |
|
114 |
(*Pulling the succ(...) outside the |...| requires m, n: nat *) |
|
115 |
(*Unconditional version requires AC*) |
|
116 |
goalw CardinalArith.thy [cadd_def] |
|
117 |
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |+| n = |succ(m |+| n)|"; |
|
118 |
by (rtac (sum_succ_eqpoll RS cardinal_cong RS trans) 1); |
|
119 |
by (rtac (succ_eqpoll_cong RS cardinal_cong) 1); |
|
120 |
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1); |
|
121 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1)); |
|
760 | 122 |
qed "cadd_succ_lemma"; |
437 | 123 |
|
124 |
val [mnat,nnat] = goal CardinalArith.thy |
|
125 |
"[| m: nat; n: nat |] ==> m |+| n = m#+n"; |
|
126 |
by (cut_facts_tac [nnat] 1); |
|
127 |
by (nat_ind_tac "m" [mnat] 1); |
|
2469 | 128 |
by (asm_simp_tac (!simpset addsimps [nat_into_Card RS cadd_0]) 1); |
129 |
by (asm_simp_tac (!simpset addsimps [nat_into_Ord, cadd_succ_lemma, |
|
1461 | 130 |
nat_into_Card RS Card_cardinal_eq]) 1); |
760 | 131 |
qed "nat_cadd_eq_add"; |
437 | 132 |
|
133 |
||
134 |
(*** Cardinal multiplication ***) |
|
135 |
||
136 |
(** Cardinal multiplication is commutative **) |
|
137 |
||
138 |
(*Easier to prove the two directions separately*) |
|
139 |
goalw CardinalArith.thy [eqpoll_def] "A*B eqpoll B*A"; |
|
140 |
by (rtac exI 1); |
|
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
141 |
by (res_inst_tac [("c", "%<x,y>.<y,x>"), ("d", "%<x,y>.<y,x>")] |
437 | 142 |
lam_bijective 1); |
2469 | 143 |
by (safe_tac (!claset)); |
144 |
by (ALLGOALS (Asm_simp_tac)); |
|
760 | 145 |
qed "prod_commute_eqpoll"; |
437 | 146 |
|
147 |
goalw CardinalArith.thy [cmult_def] "i |*| j = j |*| i"; |
|
148 |
by (rtac (prod_commute_eqpoll RS cardinal_cong) 1); |
|
760 | 149 |
qed "cmult_commute"; |
437 | 150 |
|
151 |
(** Cardinal multiplication is associative **) |
|
152 |
||
153 |
goalw CardinalArith.thy [eqpoll_def] "(A*B)*C eqpoll A*(B*C)"; |
|
154 |
by (rtac exI 1); |
|
1461 | 155 |
by (rtac prod_assoc_bij 1); |
760 | 156 |
qed "prod_assoc_eqpoll"; |
437 | 157 |
|
158 |
(*Unconditional version requires AC*) |
|
159 |
goalw CardinalArith.thy [cmult_def] |
|
1461 | 160 |
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
437 | 161 |
\ (i |*| j) |*| k = i |*| (j |*| k)"; |
162 |
by (rtac cardinal_cong 1); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
163 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS |
1461 | 164 |
eqpoll_trans) 1); |
437 | 165 |
by (rtac (prod_assoc_eqpoll RS eqpoll_trans) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
166 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS prod_eqpoll_cong RS |
1461 | 167 |
eqpoll_sym) 2); |
484 | 168 |
by (REPEAT (ares_tac [well_ord_rmult] 1)); |
760 | 169 |
qed "well_ord_cmult_assoc"; |
437 | 170 |
|
171 |
(** Cardinal multiplication distributes over addition **) |
|
172 |
||
173 |
goalw CardinalArith.thy [eqpoll_def] "(A+B)*C eqpoll (A*C)+(B*C)"; |
|
174 |
by (rtac exI 1); |
|
1461 | 175 |
by (rtac sum_prod_distrib_bij 1); |
760 | 176 |
qed "sum_prod_distrib_eqpoll"; |
437 | 177 |
|
846 | 178 |
goalw CardinalArith.thy [cadd_def, cmult_def] |
1461 | 179 |
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
846 | 180 |
\ (i |+| j) |*| k = (i |*| k) |+| (j |*| k)"; |
181 |
by (rtac cardinal_cong 1); |
|
182 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS |
|
1461 | 183 |
eqpoll_trans) 1); |
846 | 184 |
by (rtac (sum_prod_distrib_eqpoll RS eqpoll_trans) 2); |
185 |
by (rtac ([well_ord_cardinal_eqpoll, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS |
|
1461 | 186 |
eqpoll_sym) 2); |
846 | 187 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd] 1)); |
188 |
qed "well_ord_cadd_cmult_distrib"; |
|
189 |
||
437 | 190 |
(** Multiplication by 0 yields 0 **) |
191 |
||
192 |
goalw CardinalArith.thy [eqpoll_def] "0*A eqpoll 0"; |
|
193 |
by (rtac exI 1); |
|
194 |
by (rtac lam_bijective 1); |
|
2469 | 195 |
by (safe_tac (!claset)); |
760 | 196 |
qed "prod_0_eqpoll"; |
437 | 197 |
|
198 |
goalw CardinalArith.thy [cmult_def] "0 |*| i = 0"; |
|
2469 | 199 |
by (asm_simp_tac (!simpset addsimps [prod_0_eqpoll RS cardinal_cong, |
1461 | 200 |
Card_0 RS Card_cardinal_eq]) 1); |
760 | 201 |
qed "cmult_0"; |
437 | 202 |
|
203 |
(** 1 is the identity for multiplication **) |
|
204 |
||
205 |
goalw CardinalArith.thy [eqpoll_def] "{x}*A eqpoll A"; |
|
206 |
by (rtac exI 1); |
|
846 | 207 |
by (resolve_tac [singleton_prod_bij RS bij_converse_bij] 1); |
760 | 208 |
qed "prod_singleton_eqpoll"; |
437 | 209 |
|
484 | 210 |
goalw CardinalArith.thy [cmult_def, succ_def] "!!K. Card(K) ==> 1 |*| K = K"; |
2469 | 211 |
by (asm_simp_tac (!simpset addsimps [prod_singleton_eqpoll RS cardinal_cong, |
1461 | 212 |
Card_cardinal_eq]) 1); |
760 | 213 |
qed "cmult_1"; |
437 | 214 |
|
767 | 215 |
(*** Some inequalities for multiplication ***) |
216 |
||
217 |
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A*A"; |
|
218 |
by (res_inst_tac [("x", "lam x:A. <x,x>")] exI 1); |
|
2469 | 219 |
by (simp_tac (!simpset addsimps [lam_type]) 1); |
767 | 220 |
qed "prod_square_lepoll"; |
221 |
||
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
222 |
(*Could probably weaken the premise to well_ord(K,r), or remove using AC*) |
767 | 223 |
goalw CardinalArith.thy [cmult_def] "!!K. Card(K) ==> K le K |*| K"; |
224 |
by (rtac le_trans 1); |
|
225 |
by (rtac well_ord_lepoll_imp_Card_le 2); |
|
226 |
by (rtac prod_square_lepoll 3); |
|
227 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord] 2)); |
|
2469 | 228 |
by (asm_simp_tac (!simpset addsimps [le_refl, Card_is_Ord, Card_cardinal_eq]) 1); |
767 | 229 |
qed "cmult_square_le"; |
230 |
||
231 |
(** Multiplication by a non-zero cardinal **) |
|
232 |
||
233 |
goalw CardinalArith.thy [lepoll_def, inj_def] "!!b. b: B ==> A lepoll A*B"; |
|
234 |
by (res_inst_tac [("x", "lam x:A. <x,b>")] exI 1); |
|
2469 | 235 |
by (asm_simp_tac (!simpset addsimps [lam_type]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
236 |
qed "prod_lepoll_self"; |
767 | 237 |
|
238 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
239 |
goalw CardinalArith.thy [cmult_def] |
|
240 |
"!!K. [| Card(K); Ord(L); 0<L |] ==> K le (K |*| L)"; |
|
241 |
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1); |
|
242 |
by (rtac prod_lepoll_self 3); |
|
243 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord, ltD] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
244 |
qed "cmult_le_self"; |
767 | 245 |
|
246 |
(** Monotonicity of multiplication **) |
|
247 |
||
248 |
goalw CardinalArith.thy [lepoll_def] |
|
249 |
"!!A B C D. [| A lepoll C; B lepoll D |] ==> A * B lepoll C * D"; |
|
250 |
by (REPEAT (etac exE 1)); |
|
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
251 |
by (res_inst_tac [("x", "lam <w,y>:A*B. <f`w, fa`y>")] exI 1); |
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
252 |
by (res_inst_tac [("d", "%<w,y>.<converse(f)`w, converse(fa)`y>")] |
1461 | 253 |
lam_injective 1); |
767 | 254 |
by (typechk_tac (inj_is_fun::ZF_typechecks)); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
255 |
by (etac SigmaE 1); |
2469 | 256 |
by (asm_simp_tac (!simpset addsimps [left_inverse]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
257 |
qed "prod_lepoll_mono"; |
767 | 258 |
|
259 |
goalw CardinalArith.thy [cmult_def] |
|
260 |
"!!K. [| K' le K; L' le L |] ==> (K' |*| L') le (K |*| L)"; |
|
2469 | 261 |
by (safe_tac (!claset addSDs [le_subset_iff RS iffD1])); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
262 |
by (rtac well_ord_lepoll_imp_Card_le 1); |
767 | 263 |
by (REPEAT (ares_tac [prod_lepoll_mono, subset_imp_lepoll] 2)); |
264 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
265 |
qed "cmult_le_mono"; |
767 | 266 |
|
267 |
(*** Multiplication of finite cardinals is "ordinary" multiplication ***) |
|
437 | 268 |
|
269 |
goalw CardinalArith.thy [eqpoll_def] "succ(A)*B eqpoll B + A*B"; |
|
270 |
by (rtac exI 1); |
|
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
271 |
by (res_inst_tac [("c", "%<x,y>. if(x=A, Inl(y), Inr(<x,y>))"), |
1461 | 272 |
("d", "case(%y. <A,y>, %z.z)")] |
437 | 273 |
lam_bijective 1); |
2469 | 274 |
by (safe_tac (!claset addSEs [sumE])); |
437 | 275 |
by (ALLGOALS |
2469 | 276 |
(asm_simp_tac (!simpset addsimps [succI2, if_type, mem_imp_not_eq]))); |
760 | 277 |
qed "prod_succ_eqpoll"; |
437 | 278 |
|
279 |
(*Unconditional version requires AC*) |
|
280 |
goalw CardinalArith.thy [cmult_def, cadd_def] |
|
281 |
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |*| n = n |+| (m |*| n)"; |
|
282 |
by (rtac (prod_succ_eqpoll RS cardinal_cong RS trans) 1); |
|
283 |
by (rtac (cardinal_cong RS sym) 1); |
|
284 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong) 1); |
|
285 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
760 | 286 |
qed "cmult_succ_lemma"; |
437 | 287 |
|
288 |
val [mnat,nnat] = goal CardinalArith.thy |
|
289 |
"[| m: nat; n: nat |] ==> m |*| n = m#*n"; |
|
290 |
by (cut_facts_tac [nnat] 1); |
|
291 |
by (nat_ind_tac "m" [mnat] 1); |
|
2469 | 292 |
by (asm_simp_tac (!simpset addsimps [cmult_0]) 1); |
293 |
by (asm_simp_tac (!simpset addsimps [nat_into_Ord, cmult_succ_lemma, |
|
1461 | 294 |
nat_cadd_eq_add]) 1); |
760 | 295 |
qed "nat_cmult_eq_mult"; |
437 | 296 |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
297 |
goal CardinalArith.thy "!!m n. Card(n) ==> 2 |*| n = n |+| n"; |
767 | 298 |
by (asm_simp_tac |
2469 | 299 |
(!simpset addsimps [Ord_0, Ord_succ, cmult_0, cmult_succ_lemma, Card_is_Ord, |
1461 | 300 |
read_instantiate [("j","0")] cadd_commute, cadd_0]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
301 |
qed "cmult_2"; |
767 | 302 |
|
437 | 303 |
|
304 |
(*** Infinite Cardinals are Limit Ordinals ***) |
|
305 |
||
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
306 |
(*This proof is modelled upon one assuming nat<=A, with injection |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
307 |
lam z:cons(u,A). if(z=u, 0, if(z : nat, succ(z), z)) and inverse |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
308 |
%y. if(y:nat, nat_case(u,%z.z,y), y). If f: inj(nat,A) then |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
309 |
range(f) behaves like the natural numbers.*) |
516 | 310 |
goalw CardinalArith.thy [lepoll_def] |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
311 |
"!!i. nat lepoll A ==> cons(u,A) lepoll A"; |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
312 |
by (etac exE 1); |
516 | 313 |
by (res_inst_tac [("x", |
1461 | 314 |
"lam z:cons(u,A). if(z=u, f`0, \ |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
315 |
\ if(z: range(f), f`succ(converse(f)`z), z))")] exI 1); |
1461 | 316 |
by (res_inst_tac [("d", "%y. if(y: range(f), \ |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
317 |
\ nat_case(u, %z.f`z, converse(f)`y), y)")] |
516 | 318 |
lam_injective 1); |
2469 | 319 |
by (fast_tac (!claset addSIs [if_type, nat_0I, nat_succI, apply_type] |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
320 |
addIs [inj_is_fun, inj_converse_fun]) 1); |
516 | 321 |
by (asm_simp_tac |
2469 | 322 |
(!simpset addsimps [inj_is_fun RS apply_rangeI, |
1461 | 323 |
inj_converse_fun RS apply_rangeI, |
324 |
inj_converse_fun RS apply_funtype, |
|
325 |
left_inverse, right_inverse, nat_0I, nat_succI, |
|
326 |
nat_case_0, nat_case_succ] |
|
516 | 327 |
setloop split_tac [expand_if]) 1); |
760 | 328 |
qed "nat_cons_lepoll"; |
516 | 329 |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
330 |
goal CardinalArith.thy "!!i. nat lepoll A ==> cons(u,A) eqpoll A"; |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
331 |
by (etac (nat_cons_lepoll RS eqpollI) 1); |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
332 |
by (rtac (subset_consI RS subset_imp_lepoll) 1); |
760 | 333 |
qed "nat_cons_eqpoll"; |
437 | 334 |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
335 |
(*Specialized version required below*) |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
336 |
goalw CardinalArith.thy [succ_def] "!!i. nat <= A ==> succ(A) eqpoll A"; |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
337 |
by (eresolve_tac [subset_imp_lepoll RS nat_cons_eqpoll] 1); |
760 | 338 |
qed "nat_succ_eqpoll"; |
437 | 339 |
|
488 | 340 |
goalw CardinalArith.thy [InfCard_def] "InfCard(nat)"; |
2469 | 341 |
by (fast_tac (!claset addIs [Card_nat, le_refl, Card_is_Ord]) 1); |
760 | 342 |
qed "InfCard_nat"; |
488 | 343 |
|
484 | 344 |
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Card(K)"; |
437 | 345 |
by (etac conjunct1 1); |
760 | 346 |
qed "InfCard_is_Card"; |
437 | 347 |
|
523 | 348 |
goalw CardinalArith.thy [InfCard_def] |
349 |
"!!K L. [| InfCard(K); Card(L) |] ==> InfCard(K Un L)"; |
|
2469 | 350 |
by (asm_simp_tac (!simpset addsimps [Card_Un, Un_upper1_le RSN (2,le_trans), |
1461 | 351 |
Card_is_Ord]) 1); |
760 | 352 |
qed "InfCard_Un"; |
523 | 353 |
|
437 | 354 |
(*Kunen's Lemma 10.11*) |
484 | 355 |
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Limit(K)"; |
437 | 356 |
by (etac conjE 1); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
357 |
by (forward_tac [Card_is_Ord] 1); |
437 | 358 |
by (rtac (ltI RS non_succ_LimitI) 1); |
359 |
by (etac ([asm_rl, nat_0I] MRS (le_imp_subset RS subsetD)) 1); |
|
2469 | 360 |
by (safe_tac (!claset addSDs [Limit_nat RS Limit_le_succD])); |
437 | 361 |
by (rewtac Card_def); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
362 |
by (dtac trans 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
363 |
by (etac (le_imp_subset RS nat_succ_eqpoll RS cardinal_cong) 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
364 |
by (etac (Ord_succD RS Ord_cardinal_le RS lt_trans2 RS lt_irrefl) 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
365 |
by (REPEAT (ares_tac [le_eqI, Ord_cardinal] 1)); |
760 | 366 |
qed "InfCard_is_Limit"; |
437 | 367 |
|
368 |
||
369 |
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***) |
|
370 |
||
371 |
(*A general fact about ordermap*) |
|
372 |
goalw Cardinal.thy [eqpoll_def] |
|
373 |
"!!A. [| well_ord(A,r); x:A |] ==> ordermap(A,r)`x eqpoll pred(A,x,r)"; |
|
374 |
by (rtac exI 1); |
|
2469 | 375 |
by (asm_simp_tac (!simpset addsimps [ordermap_eq_image, well_ord_is_wf]) 1); |
467 | 376 |
by (etac (ordermap_bij RS bij_is_inj RS restrict_bij RS bij_converse_bij) 1); |
437 | 377 |
by (rtac pred_subset 1); |
760 | 378 |
qed "ordermap_eqpoll_pred"; |
437 | 379 |
|
380 |
(** Establishing the well-ordering **) |
|
381 |
||
382 |
goalw CardinalArith.thy [inj_def] |
|
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
383 |
"!!K. Ord(K) ==> (lam <x,y>:K*K. <x Un y, x, y>) : inj(K*K, K*K*K)"; |
2469 | 384 |
by (fast_tac (!claset addss (!simpset) |
1461 | 385 |
addIs [lam_type, Un_least_lt RS ltD, ltI]) 1); |
760 | 386 |
qed "csquare_lam_inj"; |
437 | 387 |
|
388 |
goalw CardinalArith.thy [csquare_rel_def] |
|
484 | 389 |
"!!K. Ord(K) ==> well_ord(K*K, csquare_rel(K))"; |
437 | 390 |
by (rtac (csquare_lam_inj RS well_ord_rvimage) 1); |
391 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
760 | 392 |
qed "well_ord_csquare"; |
437 | 393 |
|
394 |
(** Characterising initial segments of the well-ordering **) |
|
395 |
||
396 |
goalw CardinalArith.thy [csquare_rel_def] |
|
484 | 397 |
"!!K. [| x<K; y<K; z<K |] ==> \ |
398 |
\ <<x,y>, <z,z>> : csquare_rel(K) --> x le z & y le z"; |
|
437 | 399 |
by (REPEAT (etac ltE 1)); |
2469 | 400 |
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
437 | 401 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
2469 | 402 |
by (safe_tac (!claset addSEs [mem_irrefl] |
437 | 403 |
addSIs [Un_upper1_le, Un_upper2_le])); |
2469 | 404 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [lt_def, succI2, Ord_succ]))); |
800
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
405 |
val csquareD_lemma = result(); |
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
406 |
|
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
407 |
bind_thm ("csquareD", csquareD_lemma RS mp); |
437 | 408 |
|
409 |
goalw CardinalArith.thy [pred_def] |
|
484 | 410 |
"!!K. z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)"; |
2469 | 411 |
by (safe_tac (claset_of"ZF" addSEs [SigmaE])); (*avoids using succCI,...*) |
437 | 412 |
by (rtac (csquareD RS conjE) 1); |
413 |
by (rewtac lt_def); |
|
414 |
by (assume_tac 4); |
|
2469 | 415 |
by (ALLGOALS Fast_tac); |
760 | 416 |
qed "pred_csquare_subset"; |
437 | 417 |
|
418 |
goalw CardinalArith.thy [csquare_rel_def] |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
419 |
"!!K. [| x<z; y<z; z<K |] ==> <<x,y>, <z,z>> : csquare_rel(K)"; |
484 | 420 |
by (subgoals_tac ["x<K", "y<K"] 1); |
437 | 421 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans] 2)); |
422 |
by (REPEAT (etac ltE 1)); |
|
2469 | 423 |
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
2493 | 424 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
760 | 425 |
qed "csquare_ltI"; |
437 | 426 |
|
427 |
(*Part of the traditional proof. UNUSED since it's harder to prove & apply *) |
|
428 |
goalw CardinalArith.thy [csquare_rel_def] |
|
484 | 429 |
"!!K. [| x le z; y le z; z<K |] ==> \ |
430 |
\ <<x,y>, <z,z>> : csquare_rel(K) | x=z & y=z"; |
|
431 |
by (subgoals_tac ["x<K", "y<K"] 1); |
|
437 | 432 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans1] 2)); |
433 |
by (REPEAT (etac ltE 1)); |
|
2469 | 434 |
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
437 | 435 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
436 |
by (REPEAT_FIRST (etac succE)); |
|
437 |
by (ALLGOALS |
|
2469 | 438 |
(asm_simp_tac (!simpset addsimps [subset_Un_iff RS iff_sym, |
1461 | 439 |
subset_Un_iff2 RS iff_sym, OrdmemD]))); |
760 | 440 |
qed "csquare_or_eqI"; |
437 | 441 |
|
442 |
(** The cardinality of initial segments **) |
|
443 |
||
444 |
goal CardinalArith.thy |
|
846 | 445 |
"!!K. [| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \ |
1461 | 446 |
\ ordermap(K*K, csquare_rel(K)) ` <x,y> < \ |
484 | 447 |
\ ordermap(K*K, csquare_rel(K)) ` <z,z>"; |
448 |
by (subgoals_tac ["z<K", "well_ord(K*K, csquare_rel(K))"] 1); |
|
846 | 449 |
by (etac (Limit_is_Ord RS well_ord_csquare) 2); |
2469 | 450 |
by (fast_tac (!claset addSIs [Un_least_lt, Limit_has_succ]) 2); |
870 | 451 |
by (rtac (csquare_ltI RS ordermap_mono RS ltI) 1); |
437 | 452 |
by (etac well_ord_is_wf 4); |
453 |
by (ALLGOALS |
|
2469 | 454 |
(fast_tac (!claset addSIs [Un_upper1_le, Un_upper2_le, Ord_ordermap] |
437 | 455 |
addSEs [ltE]))); |
870 | 456 |
qed "ordermap_z_lt"; |
437 | 457 |
|
484 | 458 |
(*Kunen: "each <x,y>: K*K has no more than z*z predecessors..." (page 29) *) |
437 | 459 |
goalw CardinalArith.thy [cmult_def] |
846 | 460 |
"!!K. [| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \ |
484 | 461 |
\ | ordermap(K*K, csquare_rel(K)) ` <x,y> | le |succ(z)| |*| |succ(z)|"; |
767 | 462 |
by (rtac (well_ord_rmult RS well_ord_lepoll_imp_Card_le) 1); |
437 | 463 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_Memrel] 1)); |
484 | 464 |
by (subgoals_tac ["z<K"] 1); |
2469 | 465 |
by (fast_tac (!claset addSIs [Un_least_lt, Limit_has_succ]) 2); |
1609 | 466 |
by (rtac (ordermap_z_lt RS leI RS le_imp_lepoll RS lepoll_trans) 1); |
437 | 467 |
by (REPEAT_SOME assume_tac); |
468 |
by (rtac (ordermap_eqpoll_pred RS eqpoll_imp_lepoll RS lepoll_trans) 1); |
|
846 | 469 |
by (etac (Limit_is_Ord RS well_ord_csquare) 1); |
2469 | 470 |
by (fast_tac (!claset addIs [ltD]) 1); |
437 | 471 |
by (rtac (pred_csquare_subset RS subset_imp_lepoll RS lepoll_trans) 1 THEN |
472 |
assume_tac 1); |
|
473 |
by (REPEAT_FIRST (etac ltE)); |
|
474 |
by (rtac (prod_eqpoll_cong RS eqpoll_sym RS eqpoll_imp_lepoll) 1); |
|
475 |
by (REPEAT_FIRST (etac (Ord_succ RS Ord_cardinal_eqpoll))); |
|
760 | 476 |
qed "ordermap_csquare_le"; |
437 | 477 |
|
484 | 478 |
(*Kunen: "... so the order type <= K" *) |
437 | 479 |
goal CardinalArith.thy |
484 | 480 |
"!!K. [| InfCard(K); ALL y:K. InfCard(y) --> y |*| y = y |] ==> \ |
481 |
\ ordertype(K*K, csquare_rel(K)) le K"; |
|
437 | 482 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1); |
483 |
by (rtac all_lt_imp_le 1); |
|
484 |
by (assume_tac 1); |
|
485 |
by (etac (well_ord_csquare RS Ord_ordertype) 1); |
|
486 |
by (rtac Card_lt_imp_lt 1); |
|
487 |
by (etac InfCard_is_Card 3); |
|
488 |
by (etac ltE 2 THEN assume_tac 2); |
|
2469 | 489 |
by (asm_full_simp_tac (!simpset addsimps [ordertype_unfold]) 1); |
490 |
by (safe_tac (!claset addSEs [ltE])); |
|
437 | 491 |
by (subgoals_tac ["Ord(xb)", "Ord(y)"] 1); |
492 |
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 2)); |
|
846 | 493 |
by (rtac (InfCard_is_Limit RS ordermap_csquare_le RS lt_trans1) 1 THEN |
437 | 494 |
REPEAT (ares_tac [refl] 1 ORELSE etac ltI 1)); |
495 |
by (res_inst_tac [("i","xb Un y"), ("j","nat")] Ord_linear2 1 THEN |
|
496 |
REPEAT (ares_tac [Ord_Un, Ord_nat] 1)); |
|
497 |
(*the finite case: xb Un y < nat *) |
|
498 |
by (res_inst_tac [("j", "nat")] lt_trans2 1); |
|
2469 | 499 |
by (asm_full_simp_tac (!simpset addsimps [InfCard_def]) 2); |
437 | 500 |
by (asm_full_simp_tac |
2469 | 501 |
(!simpset addsimps [lt_def, nat_cmult_eq_mult, nat_succI, mult_type, |
1461 | 502 |
nat_into_Card RS Card_cardinal_eq, Ord_nat]) 1); |
846 | 503 |
(*case nat le (xb Un y) *) |
437 | 504 |
by (asm_full_simp_tac |
2469 | 505 |
(!simpset addsimps [le_imp_subset RS nat_succ_eqpoll RS cardinal_cong, |
1461 | 506 |
le_succ_iff, InfCard_def, Card_cardinal, Un_least_lt, |
507 |
Ord_Un, ltI, nat_le_cardinal, |
|
508 |
Ord_cardinal_le RS lt_trans1 RS ltD]) 1); |
|
760 | 509 |
qed "ordertype_csquare_le"; |
437 | 510 |
|
511 |
(*Main result: Kunen's Theorem 10.12*) |
|
484 | 512 |
goal CardinalArith.thy "!!K. InfCard(K) ==> K |*| K = K"; |
437 | 513 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1); |
514 |
by (etac rev_mp 1); |
|
484 | 515 |
by (trans_ind_tac "K" [] 1); |
437 | 516 |
by (rtac impI 1); |
517 |
by (rtac le_anti_sym 1); |
|
518 |
by (etac (InfCard_is_Card RS cmult_square_le) 2); |
|
519 |
by (rtac (ordertype_csquare_le RSN (2, le_trans)) 1); |
|
520 |
by (assume_tac 2); |
|
521 |
by (assume_tac 2); |
|
522 |
by (asm_simp_tac |
|
2469 | 523 |
(!simpset addsimps [cmult_def, Ord_cardinal_le, |
1461 | 524 |
well_ord_csquare RS ordermap_bij RS |
525 |
bij_imp_eqpoll RS cardinal_cong, |
|
437 | 526 |
well_ord_csquare RS Ord_ordertype]) 1); |
760 | 527 |
qed "InfCard_csquare_eq"; |
484 | 528 |
|
767 | 529 |
(*Corollary for arbitrary well-ordered sets (all sets, assuming AC)*) |
484 | 530 |
goal CardinalArith.thy |
531 |
"!!A. [| well_ord(A,r); InfCard(|A|) |] ==> A*A eqpoll A"; |
|
532 |
by (resolve_tac [prod_eqpoll_cong RS eqpoll_trans] 1); |
|
533 |
by (REPEAT (etac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1)); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
534 |
by (rtac well_ord_cardinal_eqE 1); |
484 | 535 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_rmult, well_ord_Memrel] 1)); |
2469 | 536 |
by (asm_simp_tac (!simpset addsimps [symmetric cmult_def, InfCard_csquare_eq]) 1); |
760 | 537 |
qed "well_ord_InfCard_square_eq"; |
484 | 538 |
|
767 | 539 |
(** Toward's Kunen's Corollary 10.13 (1) **) |
540 |
||
541 |
goal CardinalArith.thy "!!K. [| InfCard(K); L le K; 0<L |] ==> K |*| L = K"; |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
542 |
by (rtac le_anti_sym 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
543 |
by (etac ltE 2 THEN |
767 | 544 |
REPEAT (ares_tac [cmult_le_self, InfCard_is_Card] 2)); |
545 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1); |
|
546 |
by (resolve_tac [cmult_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1)); |
|
2469 | 547 |
by (asm_simp_tac (!simpset addsimps [InfCard_csquare_eq]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
548 |
qed "InfCard_le_cmult_eq"; |
767 | 549 |
|
550 |
(*Corollary 10.13 (1), for cardinal multiplication*) |
|
551 |
goal CardinalArith.thy |
|
552 |
"!!K. [| InfCard(K); InfCard(L) |] ==> K |*| L = K Un L"; |
|
553 |
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1); |
|
554 |
by (typechk_tac [InfCard_is_Card, Card_is_Ord]); |
|
555 |
by (resolve_tac [cmult_commute RS ssubst] 1); |
|
556 |
by (resolve_tac [Un_commute RS ssubst] 1); |
|
557 |
by (ALLGOALS |
|
558 |
(asm_simp_tac |
|
2469 | 559 |
(!simpset addsimps [InfCard_is_Limit RS Limit_has_0, InfCard_le_cmult_eq, |
1461 | 560 |
subset_Un_iff2 RS iffD1, le_imp_subset]))); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
561 |
qed "InfCard_cmult_eq"; |
767 | 562 |
|
563 |
(*This proof appear to be the simplest!*) |
|
564 |
goal CardinalArith.thy "!!K. InfCard(K) ==> K |+| K = K"; |
|
565 |
by (asm_simp_tac |
|
2469 | 566 |
(!simpset addsimps [cmult_2 RS sym, InfCard_is_Card, cmult_commute]) 1); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
567 |
by (rtac InfCard_le_cmult_eq 1); |
767 | 568 |
by (typechk_tac [Ord_0, le_refl, leI]); |
569 |
by (typechk_tac [InfCard_is_Limit, Limit_has_0, Limit_has_succ]); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
570 |
qed "InfCard_cdouble_eq"; |
767 | 571 |
|
572 |
(*Corollary 10.13 (1), for cardinal addition*) |
|
573 |
goal CardinalArith.thy "!!K. [| InfCard(K); L le K |] ==> K |+| L = K"; |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
574 |
by (rtac le_anti_sym 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
575 |
by (etac ltE 2 THEN |
767 | 576 |
REPEAT (ares_tac [cadd_le_self, InfCard_is_Card] 2)); |
577 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1); |
|
578 |
by (resolve_tac [cadd_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1)); |
|
2469 | 579 |
by (asm_simp_tac (!simpset addsimps [InfCard_cdouble_eq]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
580 |
qed "InfCard_le_cadd_eq"; |
767 | 581 |
|
582 |
goal CardinalArith.thy |
|
583 |
"!!K. [| InfCard(K); InfCard(L) |] ==> K |+| L = K Un L"; |
|
584 |
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1); |
|
585 |
by (typechk_tac [InfCard_is_Card, Card_is_Ord]); |
|
586 |
by (resolve_tac [cadd_commute RS ssubst] 1); |
|
587 |
by (resolve_tac [Un_commute RS ssubst] 1); |
|
588 |
by (ALLGOALS |
|
589 |
(asm_simp_tac |
|
2469 | 590 |
(!simpset addsimps [InfCard_le_cadd_eq, |
1461 | 591 |
subset_Un_iff2 RS iffD1, le_imp_subset]))); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
592 |
qed "InfCard_cadd_eq"; |
767 | 593 |
|
594 |
(*The other part, Corollary 10.13 (2), refers to the cardinality of the set |
|
595 |
of all n-tuples of elements of K. A better version for the Isabelle theory |
|
596 |
might be InfCard(K) ==> |list(K)| = K. |
|
597 |
*) |
|
484 | 598 |
|
599 |
(*** For every cardinal number there exists a greater one |
|
600 |
[Kunen's Theorem 10.16, which would be trivial using AC] ***) |
|
601 |
||
602 |
goalw CardinalArith.thy [jump_cardinal_def] "Ord(jump_cardinal(K))"; |
|
603 |
by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); |
|
2469 | 604 |
by (fast_tac (!claset addSIs [Ord_ordertype]) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
605 |
by (rewtac Transset_def); |
1075
848bf2e18dff
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
989
diff
changeset
|
606 |
by (safe_tac subset_cs); |
2469 | 607 |
by (asm_full_simp_tac (!simpset addsimps [ordertype_pred_unfold]) 1); |
608 |
by (safe_tac (!claset)); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
609 |
by (rtac UN_I 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
610 |
by (rtac ReplaceI 2); |
2469 | 611 |
by (ALLGOALS (fast_tac (!claset addSEs [well_ord_subset, predE]))); |
760 | 612 |
qed "Ord_jump_cardinal"; |
484 | 613 |
|
614 |
(*Allows selective unfolding. Less work than deriving intro/elim rules*) |
|
615 |
goalw CardinalArith.thy [jump_cardinal_def] |
|
616 |
"i : jump_cardinal(K) <-> \ |
|
617 |
\ (EX r X. r <= K*K & X <= K & well_ord(X,r) & i = ordertype(X,r))"; |
|
1461 | 618 |
by (fast_tac subset_cs 1); (*It's vital to avoid reasoning about <=*) |
760 | 619 |
qed "jump_cardinal_iff"; |
484 | 620 |
|
621 |
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*) |
|
622 |
goal CardinalArith.thy "!!K. Ord(K) ==> K < jump_cardinal(K)"; |
|
623 |
by (resolve_tac [Ord_jump_cardinal RSN (2,ltI)] 1); |
|
624 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1); |
|
625 |
by (REPEAT_FIRST (ares_tac [exI, conjI, well_ord_Memrel])); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
626 |
by (rtac subset_refl 2); |
2469 | 627 |
by (asm_simp_tac (!simpset addsimps [Memrel_def, subset_iff]) 1); |
628 |
by (asm_simp_tac (!simpset addsimps [ordertype_Memrel]) 1); |
|
760 | 629 |
qed "K_lt_jump_cardinal"; |
484 | 630 |
|
631 |
(*The proof by contradiction: the bijection f yields a wellordering of X |
|
632 |
whose ordertype is jump_cardinal(K). *) |
|
633 |
goal CardinalArith.thy |
|
1461 | 634 |
"!!K. [| well_ord(X,r); r <= K * K; X <= K; \ |
635 |
\ f : bij(ordertype(X,r), jump_cardinal(K)) \ |
|
636 |
\ |] ==> jump_cardinal(K) : jump_cardinal(K)"; |
|
484 | 637 |
by (subgoal_tac "f O ordermap(X,r): bij(X, jump_cardinal(K))" 1); |
638 |
by (REPEAT (ares_tac [comp_bij, ordermap_bij] 2)); |
|
639 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1); |
|
640 |
by (REPEAT_FIRST (resolve_tac [exI, conjI])); |
|
641 |
by (rtac ([rvimage_type, Sigma_mono] MRS subset_trans) 1); |
|
642 |
by (REPEAT (assume_tac 1)); |
|
643 |
by (etac (bij_is_inj RS well_ord_rvimage) 1); |
|
644 |
by (rtac (Ord_jump_cardinal RS well_ord_Memrel) 1); |
|
645 |
by (asm_simp_tac |
|
2469 | 646 |
(!simpset addsimps [well_ord_Memrel RSN (2, bij_ordertype_vimage), |
1461 | 647 |
ordertype_Memrel, Ord_jump_cardinal]) 1); |
760 | 648 |
qed "Card_jump_cardinal_lemma"; |
484 | 649 |
|
650 |
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*) |
|
651 |
goal CardinalArith.thy "Card(jump_cardinal(K))"; |
|
652 |
by (rtac (Ord_jump_cardinal RS CardI) 1); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
653 |
by (rewtac eqpoll_def); |
2469 | 654 |
by (safe_tac (!claset addSDs [ltD, jump_cardinal_iff RS iffD1])); |
484 | 655 |
by (REPEAT (ares_tac [Card_jump_cardinal_lemma RS mem_irrefl] 1)); |
760 | 656 |
qed "Card_jump_cardinal"; |
484 | 657 |
|
658 |
(*** Basic properties of successor cardinals ***) |
|
659 |
||
660 |
goalw CardinalArith.thy [csucc_def] |
|
661 |
"!!K. Ord(K) ==> Card(csucc(K)) & K < csucc(K)"; |
|
662 |
by (rtac LeastI 1); |
|
663 |
by (REPEAT (ares_tac [conjI, Card_jump_cardinal, K_lt_jump_cardinal, |
|
1461 | 664 |
Ord_jump_cardinal] 1)); |
760 | 665 |
qed "csucc_basic"; |
484 | 666 |
|
800
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
667 |
bind_thm ("Card_csucc", csucc_basic RS conjunct1); |
484 | 668 |
|
800
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
669 |
bind_thm ("lt_csucc", csucc_basic RS conjunct2); |
484 | 670 |
|
517 | 671 |
goal CardinalArith.thy "!!K. Ord(K) ==> 0 < csucc(K)"; |
672 |
by (resolve_tac [[Ord_0_le, lt_csucc] MRS lt_trans1] 1); |
|
673 |
by (REPEAT (assume_tac 1)); |
|
760 | 674 |
qed "Ord_0_lt_csucc"; |
517 | 675 |
|
484 | 676 |
goalw CardinalArith.thy [csucc_def] |
677 |
"!!K L. [| Card(L); K<L |] ==> csucc(K) le L"; |
|
678 |
by (rtac Least_le 1); |
|
679 |
by (REPEAT (ares_tac [conjI, Card_is_Ord] 1)); |
|
760 | 680 |
qed "csucc_le"; |
484 | 681 |
|
682 |
goal CardinalArith.thy |
|
683 |
"!!K. [| Ord(i); Card(K) |] ==> i < csucc(K) <-> |i| le K"; |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
684 |
by (rtac iffI 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
685 |
by (rtac Card_lt_imp_lt 2); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
686 |
by (etac lt_trans1 2); |
484 | 687 |
by (REPEAT (ares_tac [lt_csucc, Card_csucc, Card_is_Ord] 2)); |
688 |
by (resolve_tac [notI RS not_lt_imp_le] 1); |
|
689 |
by (resolve_tac [Card_cardinal RS csucc_le RS lt_trans1 RS lt_irrefl] 1); |
|
690 |
by (assume_tac 1); |
|
691 |
by (resolve_tac [Ord_cardinal_le RS lt_trans1] 1); |
|
692 |
by (REPEAT (ares_tac [Ord_cardinal] 1 |
|
693 |
ORELSE eresolve_tac [ltE, Card_is_Ord] 1)); |
|
760 | 694 |
qed "lt_csucc_iff"; |
484 | 695 |
|
696 |
goal CardinalArith.thy |
|
697 |
"!!K' K. [| Card(K'); Card(K) |] ==> K' < csucc(K) <-> K' le K"; |
|
698 |
by (asm_simp_tac |
|
2469 | 699 |
(!simpset addsimps [lt_csucc_iff, Card_cardinal_eq, Card_is_Ord]) 1); |
760 | 700 |
qed "Card_lt_csucc_iff"; |
488 | 701 |
|
702 |
goalw CardinalArith.thy [InfCard_def] |
|
703 |
"!!K. InfCard(K) ==> InfCard(csucc(K))"; |
|
2469 | 704 |
by (asm_simp_tac (!simpset addsimps [Card_csucc, Card_is_Ord, |
1461 | 705 |
lt_csucc RS leI RSN (2,le_trans)]) 1); |
760 | 706 |
qed "InfCard_csucc"; |
517 | 707 |
|
1609 | 708 |
|
709 |
(*** Finite sets ***) |
|
710 |
||
711 |
goal CardinalArith.thy |
|
712 |
"!!n. n: nat ==> ALL A. A eqpoll n --> A : Fin(A)"; |
|
1622 | 713 |
by (etac nat_induct 1); |
2469 | 714 |
by (simp_tac (!simpset addsimps (eqpoll_0_iff::Fin.intrs)) 1); |
715 |
by (step_tac (!claset) 1); |
|
1609 | 716 |
by (subgoal_tac "EX u. u:A" 1); |
1622 | 717 |
by (etac exE 1); |
1609 | 718 |
by (resolve_tac [Diff_sing_eqpoll RS revcut_rl] 1); |
719 |
by (assume_tac 2); |
|
720 |
by (assume_tac 1); |
|
721 |
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1); |
|
722 |
by (assume_tac 1); |
|
723 |
by (resolve_tac [Fin.consI] 1); |
|
2469 | 724 |
by (Fast_tac 1); |
725 |
by (fast_tac (!claset addIs [subset_consI RS Fin_mono RS subsetD]) 1); |
|
1609 | 726 |
(*Now for the lemma assumed above*) |
1622 | 727 |
by (rewtac eqpoll_def); |
2469 | 728 |
by (best_tac (!claset addSEs [bij_converse_bij RS bij_is_fun RS apply_type]) 1); |
1609 | 729 |
val lemma = result(); |
730 |
||
731 |
goalw CardinalArith.thy [Finite_def] "!!A. Finite(A) ==> A : Fin(A)"; |
|
2469 | 732 |
by (fast_tac (!claset addIs [lemma RS spec RS mp]) 1); |
1609 | 733 |
qed "Finite_into_Fin"; |
734 |
||
735 |
goal CardinalArith.thy "!!A. A : Fin(U) ==> Finite(A)"; |
|
2469 | 736 |
by (fast_tac (!claset addSIs [Finite_0, Finite_cons] addEs [Fin.induct]) 1); |
1609 | 737 |
qed "Fin_into_Finite"; |
738 |
||
739 |
goal CardinalArith.thy "Finite(A) <-> A : Fin(A)"; |
|
2469 | 740 |
by (fast_tac (!claset addIs [Finite_into_Fin] addEs [Fin_into_Finite]) 1); |
1609 | 741 |
qed "Finite_Fin_iff"; |
742 |
||
743 |
goal CardinalArith.thy |
|
744 |
"!!A. [| Finite(A); Finite(B) |] ==> Finite(A Un B)"; |
|
2469 | 745 |
by (fast_tac (!claset addSIs [Fin_into_Finite, Fin_UnI] |
1609 | 746 |
addSDs [Finite_into_Fin] |
1622 | 747 |
addSEs [Un_upper1 RS Fin_mono RS subsetD, |
748 |
Un_upper2 RS Fin_mono RS subsetD]) 1); |
|
1609 | 749 |
qed "Finite_Un"; |
750 |
||
751 |
||
752 |
(** Removing elements from a finite set decreases its cardinality **) |
|
753 |
||
754 |
goal CardinalArith.thy |
|
755 |
"!!A. A: Fin(U) ==> x~:A --> ~ cons(x,A) lepoll A"; |
|
1622 | 756 |
by (etac Fin_induct 1); |
2469 | 757 |
by (simp_tac (!simpset addsimps [lepoll_0_iff]) 1); |
1609 | 758 |
by (subgoal_tac "cons(x,cons(xa,y)) = cons(xa,cons(x,y))" 1); |
2469 | 759 |
by (Asm_simp_tac 1); |
760 |
by (fast_tac (!claset addSDs [cons_lepoll_consD]) 1); |
|
2493 | 761 |
by (Fast_tac 1); |
1609 | 762 |
qed "Fin_imp_not_cons_lepoll"; |
763 |
||
764 |
goal CardinalArith.thy |
|
765 |
"!!a A. [| Finite(A); a~:A |] ==> |cons(a,A)| = succ(|A|)"; |
|
1622 | 766 |
by (rewtac cardinal_def); |
767 |
by (rtac Least_equality 1); |
|
1609 | 768 |
by (fold_tac [cardinal_def]); |
2469 | 769 |
by (simp_tac (!simpset addsimps [succ_def]) 1); |
770 |
by (fast_tac (!claset addIs [cons_eqpoll_cong, well_ord_cardinal_eqpoll] |
|
1609 | 771 |
addSEs [mem_irrefl] |
772 |
addSDs [Finite_imp_well_ord]) 1); |
|
2469 | 773 |
by (fast_tac (!claset addIs [Ord_succ, Card_cardinal, Card_is_Ord]) 1); |
1622 | 774 |
by (rtac notI 1); |
1609 | 775 |
by (resolve_tac [Finite_into_Fin RS Fin_imp_not_cons_lepoll RS mp RS notE] 1); |
776 |
by (assume_tac 1); |
|
777 |
by (assume_tac 1); |
|
778 |
by (eresolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS lepoll_trans] 1); |
|
779 |
by (eresolve_tac [le_imp_lepoll RS lepoll_trans] 1); |
|
2469 | 780 |
by (fast_tac (!claset addIs [well_ord_cardinal_eqpoll RS eqpoll_imp_lepoll] |
1609 | 781 |
addSDs [Finite_imp_well_ord]) 1); |
782 |
qed "Finite_imp_cardinal_cons"; |
|
783 |
||
784 |
||
1622 | 785 |
goal CardinalArith.thy "!!a A. [| Finite(A); a:A |] ==> succ(|A-{a}|) = |A|"; |
1609 | 786 |
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1); |
787 |
by (assume_tac 1); |
|
2469 | 788 |
by (asm_simp_tac (!simpset addsimps [Finite_imp_cardinal_cons, |
1622 | 789 |
Diff_subset RS subset_Finite]) 1); |
2469 | 790 |
by (asm_simp_tac (!simpset addsimps [cons_Diff]) 1); |
1622 | 791 |
qed "Finite_imp_succ_cardinal_Diff"; |
792 |
||
793 |
goal CardinalArith.thy "!!a A. [| Finite(A); a:A |] ==> |A-{a}| < |A|"; |
|
794 |
by (rtac succ_leE 1); |
|
2469 | 795 |
by (asm_simp_tac (!simpset addsimps [Finite_imp_succ_cardinal_Diff, |
1622 | 796 |
Ord_cardinal RS le_refl]) 1); |
1609 | 797 |
qed "Finite_imp_cardinal_Diff"; |
798 |
||
799 |
||
800 |
(** Thanks to Krzysztof Grabczewski **) |
|
801 |
||
802 |
val nat_implies_well_ord = nat_into_Ord RS well_ord_Memrel; |
|
803 |
||
804 |
goal CardinalArith.thy "!!m n. [| m:nat; n:nat |] ==> m + n eqpoll m #+ n"; |
|
805 |
by (rtac eqpoll_trans 1); |
|
806 |
by (eresolve_tac [nat_implies_well_ord RS ( |
|
807 |
nat_implies_well_ord RSN (2, |
|
808 |
well_ord_radd RS well_ord_cardinal_eqpoll)) RS eqpoll_sym] 1 |
|
809 |
THEN (assume_tac 1)); |
|
810 |
by (eresolve_tac [nat_cadd_eq_add RS subst] 1 THEN (assume_tac 1)); |
|
2469 | 811 |
by (asm_full_simp_tac (!simpset addsimps [cadd_def, eqpoll_refl]) 1); |
1609 | 812 |
qed "nat_sum_eqpoll_sum"; |
813 |
||
814 |
goal Nat.thy "!!m. [| m le n; n:nat |] ==> m:nat"; |
|
2469 | 815 |
by (fast_tac (!claset addSDs [nat_succI RS (Ord_nat RSN (2, OrdmemD))] |
1609 | 816 |
addSEs [ltE]) 1); |
817 |
qed "le_in_nat"; |
|
818 |