| author | wenzelm | 
| Sat, 30 May 2015 21:28:01 +0200 | |
| changeset 60314 | 6e465f0d46d3 | 
| parent 59910 | 815de5506080 | 
| child 60352 | d46de31a50c4 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 58889 | 10 | section {* Rings *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Groups | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 17 | assumes distrib_right[algebra_simps]: "(a + b) * c = a * c + b * c" | 
| 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 18 | assumes distrib_left[algebra_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 21 | text{*For the @{text combine_numerals} simproc*}
 | |
| 22 | lemma combine_common_factor: | |
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 24 | by (simp add: distrib_right ac_simps) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 58195 | 31 | begin | 
| 32 | ||
| 33 | lemma mult_not_zero: | |
| 34 | "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" | |
| 35 | by auto | |
| 36 | ||
| 37 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 38 | |
| 58198 | 39 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 40 | ||
| 29904 | 41 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 42 | begin | 
| 14504 | 43 | |
| 25186 | 44 | subclass semiring_0 | 
| 28823 | 45 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | fix a :: 'a | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 47 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: distrib_right [symmetric]) | 
| 29667 | 48 | thus "0 * a = 0" by (simp only: add_left_cancel) | 
| 25152 | 49 | next | 
| 50 | fix a :: 'a | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 51 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: distrib_left [symmetric]) | 
| 29667 | 52 | thus "a * 0 = 0" by (simp only: add_left_cancel) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 53 | qed | 
| 14940 | 54 | |
| 25186 | 55 | end | 
| 25152 | 56 | |
| 22390 | 57 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 58 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 59 | begin | 
| 14504 | 60 | |
| 25152 | 61 | subclass semiring | 
| 28823 | 62 | proof | 
| 14738 | 63 | fix a b c :: 'a | 
| 64 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 65 | have "a * (b + c) = (b + c) * a" by (simp add: ac_simps) | 
| 14738 | 66 | also have "... = b * a + c * a" by (simp only: distrib) | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 67 | also have "... = a * b + a * c" by (simp add: ac_simps) | 
| 14738 | 68 | finally show "a * (b + c) = a * b + a * c" by blast | 
| 14504 | 69 | qed | 
| 70 | ||
| 25152 | 71 | end | 
| 14504 | 72 | |
| 25152 | 73 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 74 | begin | |
| 75 | ||
| 27516 | 76 | subclass semiring_0 .. | 
| 25152 | 77 | |
| 78 | end | |
| 14504 | 79 | |
| 29904 | 80 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 81 | begin | 
| 14940 | 82 | |
| 27516 | 83 | subclass semiring_0_cancel .. | 
| 14940 | 84 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 85 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 86 | |
| 25186 | 87 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 88 | |
| 22390 | 89 | class zero_neq_one = zero + one + | 
| 25062 | 90 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 91 | begin | 
| 92 | ||
| 93 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 94 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 95 | |
| 54225 | 96 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 97 | where | |
| 98 | "of_bool p = (if p then 1 else 0)" | |
| 99 | ||
| 100 | lemma of_bool_eq [simp, code]: | |
| 101 | "of_bool False = 0" | |
| 102 | "of_bool True = 1" | |
| 103 | by (simp_all add: of_bool_def) | |
| 104 | ||
| 105 | lemma of_bool_eq_iff: | |
| 106 | "of_bool p = of_bool q \<longleftrightarrow> p = q" | |
| 107 | by (simp add: of_bool_def) | |
| 108 | ||
| 55187 | 109 | lemma split_of_bool [split]: | 
| 110 | "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | |
| 111 | by (cases p) simp_all | |
| 112 | ||
| 113 | lemma split_of_bool_asm: | |
| 114 | "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | |
| 115 | by (cases p) simp_all | |
| 116 | ||
| 54225 | 117 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 118 | |
| 22390 | 119 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 120 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 124 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 125 | |
| 50420 | 126 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where | 
| 37767 | 127 | "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 130 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 131 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 132 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 133 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 134 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 137 | context comm_monoid_mult | 
| 25152 | 138 | begin | 
| 14738 | 139 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 140 | subclass dvd . | 
| 25152 | 141 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 142 | lemma dvd_refl [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 143 | "a dvd a" | 
| 28559 | 144 | proof | 
| 145 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 148 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 150 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | proof - | 
| 28559 | 152 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 153 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 154 | ultimately have "c = a * (v * w)" by (simp add: mult.assoc) | 
| 28559 | 155 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 156 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 157 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 158 | lemma one_dvd [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 159 | "1 dvd a" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 160 | by (auto intro!: dvdI) | 
| 28559 | 161 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 162 | lemma dvd_mult [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 163 | "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 164 | by (auto intro!: mult.left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 165 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 166 | lemma dvd_mult2 [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 167 | "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 168 | using dvd_mult [of a b c] by (simp add: ac_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 170 | lemma dvd_triv_right [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 171 | "a dvd b * a" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 172 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 173 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 174 | lemma dvd_triv_left [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 175 | "a dvd a * b" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 176 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 178 | lemma mult_dvd_mono: | 
| 30042 | 179 | assumes "a dvd b" | 
| 180 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | proof - | 
| 30042 | 183 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 184 | moreover from `c dvd d` obtain d' where "d = c * d'" .. | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 185 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: ac_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 186 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 187 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 188 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 189 | lemma dvd_mult_left: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 190 | "a * b dvd c \<Longrightarrow> a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 191 | by (simp add: dvd_def mult.assoc) blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 192 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 193 | lemma dvd_mult_right: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 194 | "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 195 | using dvd_mult_left [of b a c] by (simp add: ac_simps) | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 196 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 197 | end | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 198 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 199 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 200 | begin | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 201 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 202 | subclass semiring_1 .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 203 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 204 | lemma dvd_0_left_iff [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 205 | "0 dvd a \<longleftrightarrow> a = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 206 | by (auto intro: dvd_refl elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 207 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 208 | lemma dvd_0_right [iff]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 209 | "a dvd 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 210 | proof | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 211 | show "0 = a * 0" by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 212 | qed | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 213 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 214 | lemma dvd_0_left: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 215 | "0 dvd a \<Longrightarrow> a = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 216 | by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 217 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 218 | lemma dvd_add [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 219 | assumes "a dvd b" and "a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 220 | shows "a dvd (b + c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 221 | proof - | 
| 29925 | 222 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 223 | moreover from `a dvd c` obtain c' where "c = a * c'" .. | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 224 | ultimately have "b + c = a * (b' + c')" by (simp add: distrib_left) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 225 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 226 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 227 | |
| 25152 | 228 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 229 | |
| 29904 | 230 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 231 | + zero_neq_one + monoid_mult | |
| 25267 | 232 | begin | 
| 14940 | 233 | |
| 27516 | 234 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 235 | |
| 27516 | 236 | subclass semiring_1 .. | 
| 25267 | 237 | |
| 238 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 239 | |
| 29904 | 240 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add | 
| 241 | + zero_neq_one + comm_monoid_mult | |
| 25267 | 242 | begin | 
| 14738 | 243 | |
| 27516 | 244 | subclass semiring_1_cancel .. | 
| 245 | subclass comm_semiring_0_cancel .. | |
| 246 | subclass comm_semiring_1 .. | |
| 25267 | 247 | |
| 248 | end | |
| 25152 | 249 | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 250 | class comm_semiring_1_diff_distrib = comm_semiring_1_cancel + | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 251 | assumes right_diff_distrib' [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 252 | begin | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 253 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 254 | lemma left_diff_distrib' [algebra_simps]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 255 | "(b - c) * a = b * a - c * a" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 256 | by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 257 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 258 | lemma dvd_add_times_triv_left_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 259 | "a dvd c * a + b \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 260 | proof - | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 261 | have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 262 | proof | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 263 | assume ?Q then show ?P by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 264 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 265 | assume ?P | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 266 | then obtain d where "a * c + b = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 267 | then have "a * c + b - a * c = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 268 | then have "b = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 269 | then have "b = a * (d - c)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 270 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 271 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 272 | then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 273 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 274 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 275 | lemma dvd_add_times_triv_right_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 276 | "a dvd b + c * a \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 277 | using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 278 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 279 | lemma dvd_add_triv_left_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 280 | "a dvd a + b \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 281 | using dvd_add_times_triv_left_iff [of a 1 b] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 282 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 283 | lemma dvd_add_triv_right_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 284 | "a dvd b + a \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 285 | using dvd_add_times_triv_right_iff [of a b 1] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 286 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 287 | lemma dvd_add_right_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 288 | assumes "a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 289 | shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 290 | proof | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 291 | assume ?P then obtain d where "b + c = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 292 | moreover from `a dvd b` obtain e where "b = a * e" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 293 | ultimately have "a * e + c = a * d" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 294 | then have "a * e + c - a * e = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 295 | then have "c = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 296 | then have "c = a * (d - e)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 297 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 298 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 299 | assume ?Q with assms show ?P by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 300 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 301 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 302 | lemma dvd_add_left_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 303 | assumes "a dvd c" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 304 | shows "a dvd b + c \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 305 | using assms dvd_add_right_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 306 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 307 | end | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 308 | |
| 22390 | 309 | class ring = semiring + ab_group_add | 
| 25267 | 310 | begin | 
| 25152 | 311 | |
| 27516 | 312 | subclass semiring_0_cancel .. | 
| 25152 | 313 | |
| 314 | text {* Distribution rules *}
 | |
| 315 | ||
| 316 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 317 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 318 | |
| 319 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 320 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 321 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 322 | text{*Extract signs from products*}
 | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 323 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 324 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 325 | |
| 25152 | 326 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 327 | by simp | 
| 25152 | 328 | |
| 329 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 330 | by simp | 
| 331 | ||
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 332 | lemma right_diff_distrib [algebra_simps]: | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 333 | "a * (b - c) = a * b - a * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 334 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 335 | |
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 336 | lemma left_diff_distrib [algebra_simps]: | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 337 | "(a - b) * c = a * c - b * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 338 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 339 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 340 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 341 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 342 | |
| 25230 | 343 | lemma eq_add_iff1: | 
| 344 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 345 | by (simp add: algebra_simps) | 
| 25230 | 346 | |
| 347 | lemma eq_add_iff2: | |
| 348 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 349 | by (simp add: algebra_simps) | 
| 25230 | 350 | |
| 25152 | 351 | end | 
| 352 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 353 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 354 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 355 | |
| 22390 | 356 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 357 | begin | 
| 14738 | 358 | |
| 27516 | 359 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 360 | subclass comm_semiring_0_cancel .. | 
| 25267 | 361 | |
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 362 | lemma square_diff_square_factored: | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 363 | "x * x - y * y = (x + y) * (x - y)" | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 364 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 365 | |
| 25267 | 366 | end | 
| 14738 | 367 | |
| 22390 | 368 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 369 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 370 | |
| 27516 | 371 | subclass semiring_1_cancel .. | 
| 25267 | 372 | |
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 373 | lemma square_diff_one_factored: | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 374 | "x * x - 1 = (x + 1) * (x - 1)" | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 375 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 376 | |
| 25267 | 377 | end | 
| 25152 | 378 | |
| 22390 | 379 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 25267 | 380 | begin | 
| 14738 | 381 | |
| 27516 | 382 | subclass ring_1 .. | 
| 383 | subclass comm_semiring_1_cancel .. | |
| 25267 | 384 | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 385 | subclass comm_semiring_1_diff_distrib | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 386 | by unfold_locales (simp add: algebra_simps) | 
| 58647 | 387 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 388 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 389 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 390 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 391 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 392 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 393 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 394 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 395 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 396 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 397 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 398 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 399 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 400 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 401 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 402 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 403 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 404 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 405 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 406 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 407 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 408 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 409 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 410 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 411 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 412 | lemma dvd_diff [simp]: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 413 | "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 414 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 415 | |
| 25267 | 416 | end | 
| 25152 | 417 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 418 | class semiring_no_zero_divisors = semiring_0 + | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 419 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 25230 | 420 | begin | 
| 421 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 422 | lemma divisors_zero: | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 423 | assumes "a * b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 424 | shows "a = 0 \<or> b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 425 | proof (rule classical) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 426 | assume "\<not> (a = 0 \<or> b = 0)" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 427 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 428 | with no_zero_divisors have "a * b \<noteq> 0" by blast | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 429 | with assms show ?thesis by simp | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 430 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 431 | |
| 25230 | 432 | lemma mult_eq_0_iff [simp]: | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 433 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | 
| 25230 | 434 | proof (cases "a = 0 \<or> b = 0") | 
| 435 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 436 | then show ?thesis using no_zero_divisors by simp | |
| 437 | next | |
| 438 | case True then show ?thesis by auto | |
| 439 | qed | |
| 440 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 441 | end | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 442 | |
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 443 | class ring_no_zero_divisors = ring + semiring_no_zero_divisors | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 444 | begin | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 445 | |
| 26193 | 446 | text{*Cancellation of equalities with a common factor*}
 | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 447 | lemma mult_cancel_right [simp]: | 
| 26193 | 448 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 449 | proof - | |
| 450 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 35216 | 451 | by (simp add: algebra_simps) | 
| 452 | thus ?thesis by (simp add: disj_commute) | |
| 26193 | 453 | qed | 
| 454 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 455 | lemma mult_cancel_left [simp]: | 
| 26193 | 456 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 457 | proof - | |
| 458 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 35216 | 459 | by (simp add: algebra_simps) | 
| 460 | thus ?thesis by simp | |
| 26193 | 461 | qed | 
| 462 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 463 | lemma mult_left_cancel: | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 464 | "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 465 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 466 | |
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 467 | lemma mult_right_cancel: | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 468 | "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 469 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 470 | |
| 25230 | 471 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 472 | |
| 23544 | 473 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 474 | begin | 
| 475 | ||
| 36970 | 476 | lemma square_eq_1_iff: | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 477 | "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 478 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 479 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 480 | by (simp add: algebra_simps) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 481 | hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 482 | by simp | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 483 | thus ?thesis | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 484 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 485 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 486 | |
| 26274 | 487 | lemma mult_cancel_right1 [simp]: | 
| 488 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 489 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 490 | |
| 491 | lemma mult_cancel_right2 [simp]: | |
| 492 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 493 | by (insert mult_cancel_right [of a c 1], simp) | 
| 26274 | 494 | |
| 495 | lemma mult_cancel_left1 [simp]: | |
| 496 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 497 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 498 | |
| 499 | lemma mult_cancel_left2 [simp]: | |
| 500 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 501 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 502 | |
| 503 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 504 | |
| 59910 
815de5506080
semidom contains distributive minus, by convention
 haftmann parents: 
59865diff
changeset | 505 | class semidom = comm_semiring_1_diff_distrib + semiring_no_zero_divisors | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 506 | |
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 507 | class idom = comm_ring_1 + semiring_no_zero_divisors | 
| 25186 | 508 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 509 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 510 | subclass semidom .. | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 511 | |
| 27516 | 512 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 513 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 514 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 515 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 516 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 517 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 518 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 519 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 520 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 521 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 522 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 523 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 524 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 525 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 526 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 527 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 528 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 529 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 530 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 531 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 532 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 533 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 534 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 535 | proof | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 536 | assume "a * a = b * b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 537 | then have "(a - b) * (a + b) = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 538 | by (simp add: algebra_simps) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 539 | then show "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 540 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 541 | next | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 542 | assume "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 543 | then show "a * a = b * b" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 544 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 545 | |
| 25186 | 546 | end | 
| 25152 | 547 | |
| 35302 | 548 | text {*
 | 
| 549 | The theory of partially ordered rings is taken from the books: | |
| 550 |   \begin{itemize}
 | |
| 551 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 552 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 553 |   \end{itemize}
 | |
| 554 | Most of the used notions can also be looked up in | |
| 555 |   \begin{itemize}
 | |
| 54703 | 556 |   \item @{url "http://www.mathworld.com"} by Eric Weisstein et. al.
 | 
| 35302 | 557 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 558 |   \end{itemize}
 | |
| 559 | *} | |
| 560 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 561 | class ordered_semiring = semiring + comm_monoid_add + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 562 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 563 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 564 | begin | 
| 565 | ||
| 566 | lemma mult_mono: | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 567 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 568 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 569 | apply (erule mult_left_mono, assumption) | |
| 570 | done | |
| 571 | ||
| 572 | lemma mult_mono': | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 573 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 574 | apply (rule mult_mono) | 
| 575 | apply (fast intro: order_trans)+ | |
| 576 | done | |
| 577 | ||
| 578 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 579 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 580 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 25267 | 581 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 582 | |
| 27516 | 583 | subclass semiring_0_cancel .. | 
| 23521 | 584 | |
| 56536 | 585 | lemma mult_nonneg_nonneg[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 586 | using mult_left_mono [of 0 b a] by simp | 
| 25230 | 587 | |
| 588 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 589 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 590 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 591 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 592 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 593 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 594 | text {* Legacy - use @{text mult_nonpos_nonneg} *}
 | 
| 25230 | 595 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 596 | by (drule mult_right_mono [of b 0], auto) | 
| 25230 | 597 | |
| 26234 | 598 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 599 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 600 | |
| 601 | end | |
| 602 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 603 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 604 | begin | 
| 25230 | 605 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 606 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 607 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 608 | subclass ordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 609 | |
| 25230 | 610 | lemma mult_left_less_imp_less: | 
| 611 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 612 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 25230 | 613 | |
| 614 | lemma mult_right_less_imp_less: | |
| 615 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 616 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 617 | |
| 25186 | 618 | end | 
| 25152 | 619 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 620 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 621 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 622 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 623 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 624 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 625 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 626 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 627 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 628 | by (simp add: add_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 629 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 630 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 631 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 632 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 633 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 634 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 635 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 636 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 637 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 638 | |
| 27516 | 639 | subclass semiring_0_cancel .. | 
| 14940 | 640 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 641 | subclass linordered_semiring | 
| 28823 | 642 | proof | 
| 23550 | 643 | fix a b c :: 'a | 
| 644 | assume A: "a \<le> b" "0 \<le> c" | |
| 645 | from A show "c * a \<le> c * b" | |
| 25186 | 646 | unfolding le_less | 
| 647 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 648 | from A show "a * c \<le> b * c" | 
| 25152 | 649 | unfolding le_less | 
| 25186 | 650 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 651 | qed | 
| 652 | ||
| 25230 | 653 | lemma mult_left_le_imp_le: | 
| 654 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 655 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 25230 | 656 | |
| 657 | lemma mult_right_le_imp_le: | |
| 658 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 659 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 660 | |
| 56544 | 661 | lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 662 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 663 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 664 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 665 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 666 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 667 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 668 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 669 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 670 | text {* Legacy - use @{text mult_neg_pos} *}
 | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 671 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 672 | by (drule mult_strict_right_mono [of b 0], auto) | 
| 25230 | 673 | |
| 674 | lemma zero_less_mult_pos: | |
| 675 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 676 | apply (cases "b\<le>0") | 
| 25230 | 677 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 678 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 679 | apply (auto dest: less_not_sym) | 
| 680 | done | |
| 681 | ||
| 682 | lemma zero_less_mult_pos2: | |
| 683 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 684 | apply (cases "b\<le>0") | 
| 25230 | 685 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 686 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 687 | apply (auto dest: less_not_sym) | 
| 688 | done | |
| 689 | ||
| 26193 | 690 | text{*Strict monotonicity in both arguments*}
 | 
| 691 | lemma mult_strict_mono: | |
| 692 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 693 | shows "a * c < b * d" | |
| 694 | using assms apply (cases "c=0") | |
| 56544 | 695 | apply (simp) | 
| 26193 | 696 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 697 | apply (force simp add: le_less) | 
| 26193 | 698 | apply (erule mult_strict_left_mono, assumption) | 
| 699 | done | |
| 700 | ||
| 701 | text{*This weaker variant has more natural premises*}
 | |
| 702 | lemma mult_strict_mono': | |
| 703 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 704 | shows "a * c < b * d" | |
| 29667 | 705 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 706 | |
| 707 | lemma mult_less_le_imp_less: | |
| 708 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 709 | shows "a * c < b * d" | |
| 710 | using assms apply (subgoal_tac "a * c < b * c") | |
| 711 | apply (erule less_le_trans) | |
| 712 | apply (erule mult_left_mono) | |
| 713 | apply simp | |
| 714 | apply (erule mult_strict_right_mono) | |
| 715 | apply assumption | |
| 716 | done | |
| 717 | ||
| 718 | lemma mult_le_less_imp_less: | |
| 719 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 720 | shows "a * c < b * d" | |
| 721 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 722 | apply (erule le_less_trans) | |
| 723 | apply (erule mult_strict_left_mono) | |
| 724 | apply simp | |
| 725 | apply (erule mult_right_mono) | |
| 726 | apply simp | |
| 727 | done | |
| 728 | ||
| 25230 | 729 | end | 
| 730 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 731 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 732 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 733 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 734 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 735 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 736 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 737 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 738 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 739 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 740 | from assms have "u * x + v * y < u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 741 | by (cases "u = 0") | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 742 | (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 743 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 744 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 745 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 746 | end | 
| 33319 | 747 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 748 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 749 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 750 | begin | 
| 25152 | 751 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 752 | subclass ordered_semiring | 
| 28823 | 753 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 754 | fix a b c :: 'a | 
| 23550 | 755 | assume "a \<le> b" "0 \<le> c" | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 756 | thus "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 757 | thus "a * c \<le> b * c" by (simp only: mult.commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 758 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 759 | |
| 25267 | 760 | end | 
| 761 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 762 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 763 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 764 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 765 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 766 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 767 | subclass ordered_cancel_semiring .. | 
| 25267 | 768 | |
| 769 | end | |
| 770 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 771 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 772 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 773 | begin | 
| 774 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 775 | subclass linordered_semiring_strict | 
| 28823 | 776 | proof | 
| 23550 | 777 | fix a b c :: 'a | 
| 778 | assume "a < b" "0 < c" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 779 | thus "c * a < c * b" by (rule comm_mult_strict_left_mono) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 780 | thus "a * c < b * c" by (simp only: mult.commute) | 
| 23550 | 781 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 782 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 783 | subclass ordered_cancel_comm_semiring | 
| 28823 | 784 | proof | 
| 23550 | 785 | fix a b c :: 'a | 
| 786 | assume "a \<le> b" "0 \<le> c" | |
| 787 | thus "c * a \<le> c * b" | |
| 25186 | 788 | unfolding le_less | 
| 26193 | 789 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 790 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 791 | |
| 25267 | 792 | end | 
| 25230 | 793 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 794 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 795 | begin | 
| 25230 | 796 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 797 | subclass ordered_ab_group_add .. | 
| 14270 | 798 | |
| 25230 | 799 | lemma less_add_iff1: | 
| 800 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 801 | by (simp add: algebra_simps) | 
| 25230 | 802 | |
| 803 | lemma less_add_iff2: | |
| 804 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 805 | by (simp add: algebra_simps) | 
| 25230 | 806 | |
| 807 | lemma le_add_iff1: | |
| 808 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 809 | by (simp add: algebra_simps) | 
| 25230 | 810 | |
| 811 | lemma le_add_iff2: | |
| 812 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 813 | by (simp add: algebra_simps) | 
| 25230 | 814 | |
| 815 | lemma mult_left_mono_neg: | |
| 816 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 817 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 818 | apply simp_all | 
| 25230 | 819 | done | 
| 820 | ||
| 821 | lemma mult_right_mono_neg: | |
| 822 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 823 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 824 | apply simp_all | 
| 25230 | 825 | done | 
| 826 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 827 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 828 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 829 | |
| 830 | lemma split_mult_pos_le: | |
| 831 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 56536 | 832 | by (auto simp add: mult_nonpos_nonpos) | 
| 25186 | 833 | |
| 834 | end | |
| 14270 | 835 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 836 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 837 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 838 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 839 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 840 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 841 | subclass ordered_ab_group_add_abs | 
| 28823 | 842 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 843 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 844 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 845 | by (auto simp add: abs_if not_le not_less algebra_simps simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | 
| 35216 | 846 | qed (auto simp add: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 847 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 848 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 849 | using linear [of 0 a] | 
| 56536 | 850 | by (auto simp add: mult_nonpos_nonpos) | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 851 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 852 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 853 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 854 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 855 | end | 
| 23521 | 856 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 857 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 858 | + ordered_ab_group_add + abs_if | 
| 25230 | 859 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 860 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 861 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 862 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 863 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 864 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 865 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 866 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 867 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 868 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 869 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 870 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 871 | |
| 25917 | 872 | subclass ring_no_zero_divisors | 
| 28823 | 873 | proof | 
| 25917 | 874 | fix a b | 
| 875 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 876 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 877 | have "a * b < 0 \<or> 0 < a * b" | |
| 878 | proof (cases "a < 0") | |
| 879 | case True note A' = this | |
| 880 | show ?thesis proof (cases "b < 0") | |
| 881 | case True with A' | |
| 882 | show ?thesis by (auto dest: mult_neg_neg) | |
| 883 | next | |
| 884 | case False with B have "0 < b" by auto | |
| 885 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 886 | qed | |
| 887 | next | |
| 888 | case False with A have A': "0 < a" by auto | |
| 889 | show ?thesis proof (cases "b < 0") | |
| 890 | case True with A' | |
| 891 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 892 | next | |
| 893 | case False with B have "0 < b" by auto | |
| 56544 | 894 | with A' show ?thesis by auto | 
| 25917 | 895 | qed | 
| 896 | qed | |
| 897 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 898 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 899 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 900 | lemma zero_less_mult_iff: "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 901 | by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) | 
| 56544 | 902 | (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 903 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 904 | lemma zero_le_mult_iff: "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 905 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 906 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 907 | lemma mult_less_0_iff: | 
| 25917 | 908 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 909 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 910 | apply force | |
| 25917 | 911 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 912 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 913 | lemma mult_le_0_iff: | 
| 25917 | 914 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 915 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 35216 | 916 | apply force | 
| 25917 | 917 | done | 
| 918 | ||
| 26193 | 919 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 920 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 921 | ||
| 922 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 923 | an assumption, but effectively four when the comparison is a goal.*} | |
| 924 | ||
| 925 | lemma mult_less_cancel_right_disj: | |
| 926 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 927 | apply (cases "c = 0") | |
| 928 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 929 | mult_strict_right_mono_neg) | |
| 930 | apply (auto simp add: not_less | |
| 931 | not_le [symmetric, of "a*c"] | |
| 932 | not_le [symmetric, of a]) | |
| 933 | apply (erule_tac [!] notE) | |
| 934 | apply (auto simp add: less_imp_le mult_right_mono | |
| 935 | mult_right_mono_neg) | |
| 936 | done | |
| 937 | ||
| 938 | lemma mult_less_cancel_left_disj: | |
| 939 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 940 | apply (cases "c = 0") | |
| 941 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 942 | mult_strict_left_mono_neg) | |
| 943 | apply (auto simp add: not_less | |
| 944 | not_le [symmetric, of "c*a"] | |
| 945 | not_le [symmetric, of a]) | |
| 946 | apply (erule_tac [!] notE) | |
| 947 | apply (auto simp add: less_imp_le mult_left_mono | |
| 948 | mult_left_mono_neg) | |
| 949 | done | |
| 950 | ||
| 951 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 952 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 953 | ||
| 954 | lemma mult_less_cancel_right: | |
| 955 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 956 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 957 | ||
| 958 | lemma mult_less_cancel_left: | |
| 959 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 960 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 961 | ||
| 962 | lemma mult_le_cancel_right: | |
| 963 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 964 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 965 | |
| 966 | lemma mult_le_cancel_left: | |
| 967 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 968 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 969 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 970 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 971 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 972 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 973 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 974 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 975 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 976 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 977 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 978 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 979 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 980 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 981 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 982 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 983 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 984 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 985 | |
| 25917 | 986 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 987 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 988 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 989 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 990 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 991 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 992 | mult_neg_pos mult_neg_neg | 
| 25230 | 993 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 994 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 995 | begin | 
| 25230 | 996 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 997 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 998 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 999 | |
| 25267 | 1000 | end | 
| 25230 | 1001 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 1002 | class linordered_semidom = semidom + linordered_comm_semiring_strict + | 
| 25230 | 1003 | assumes zero_less_one [simp]: "0 < 1" | 
| 1004 | begin | |
| 1005 | ||
| 1006 | lemma pos_add_strict: | |
| 1007 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1008 | using add_strict_mono [of 0 a b c] by simp | 
| 25230 | 1009 | |
| 26193 | 1010 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 29667 | 1011 | by (rule zero_less_one [THEN less_imp_le]) | 
| 26193 | 1012 | |
| 1013 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 29667 | 1014 | by (simp add: not_le) | 
| 26193 | 1015 | |
| 1016 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 29667 | 1017 | by (simp add: not_less) | 
| 26193 | 1018 | |
| 1019 | lemma less_1_mult: | |
| 1020 | assumes "1 < m" and "1 < n" | |
| 1021 | shows "1 < m * n" | |
| 1022 | using assms mult_strict_mono [of 1 m 1 n] | |
| 1023 | by (simp add: less_trans [OF zero_less_one]) | |
| 1024 | ||
| 59000 | 1025 | lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a" | 
| 1026 | using mult_left_mono[of c 1 a] by simp | |
| 1027 | ||
| 1028 | lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1" | |
| 1029 | using mult_mono[of a 1 b 1] by simp | |
| 1030 | ||
| 25230 | 1031 | end | 
| 1032 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1033 | class linordered_idom = comm_ring_1 + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1034 | linordered_comm_semiring_strict + ordered_ab_group_add + | 
| 25230 | 1035 | abs_if + sgn_if | 
| 25917 | 1036 | begin | 
| 1037 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1038 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1039 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1040 | subclass ordered_comm_ring .. | 
| 27516 | 1041 | subclass idom .. | 
| 25917 | 1042 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1043 | subclass linordered_semidom | 
| 28823 | 1044 | proof | 
| 26193 | 1045 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 1046 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 1047 | qed | 
| 1048 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1049 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 1050 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 1051 | using assms by (rule neqE) | |
| 1052 | ||
| 26274 | 1053 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 1054 | ||
| 1055 | lemma mult_le_cancel_right1: | |
| 1056 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1057 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 1058 | |
| 1059 | lemma mult_le_cancel_right2: | |
| 1060 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1061 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 1062 | |
| 1063 | lemma mult_le_cancel_left1: | |
| 1064 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1065 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 1066 | |
| 1067 | lemma mult_le_cancel_left2: | |
| 1068 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1069 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 1070 | |
| 1071 | lemma mult_less_cancel_right1: | |
| 1072 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1073 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 1074 | |
| 1075 | lemma mult_less_cancel_right2: | |
| 1076 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1077 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 1078 | |
| 1079 | lemma mult_less_cancel_left1: | |
| 1080 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1081 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 1082 | |
| 1083 | lemma mult_less_cancel_left2: | |
| 1084 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1085 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 1086 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1087 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1088 | "sgn (sgn a) = sgn a" | 
| 29700 | 1089 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1090 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1091 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1092 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1093 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1094 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1095 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1096 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1097 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1098 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1099 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1100 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1101 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1102 | |
| 29940 | 1103 | lemma sgn_pos [simp]: | 
| 1104 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1105 | unfolding sgn_1_pos . | |
| 1106 | ||
| 1107 | lemma sgn_neg [simp]: | |
| 1108 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1109 | unfolding sgn_1_neg . | |
| 1110 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1111 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1112 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1113 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1114 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1115 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 29700 | 1116 | unfolding sgn_if abs_if by auto | 
| 1117 | ||
| 29940 | 1118 | lemma sgn_greater [simp]: | 
| 1119 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1120 | unfolding sgn_if by auto | |
| 1121 | ||
| 1122 | lemma sgn_less [simp]: | |
| 1123 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1124 | unfolding sgn_if by auto | |
| 1125 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1126 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 1127 | by (simp add: abs_if) | 
| 1128 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1129 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 1130 | by (simp add: abs_if) | 
| 29653 | 1131 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1132 | lemma dvd_if_abs_eq: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1133 | "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1134 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1135 | |
| 55912 | 1136 | text {* The following lemmas can be proven in more general structures, but
 | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1137 | are dangerous as simp rules in absence of @{thm neg_equal_zero}, 
 | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1138 | @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}. *}
 | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1139 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1140 | lemma equation_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1141 | "1 = - a \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1142 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1143 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1144 | lemma minus_equation_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1145 | "- a = 1 \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1146 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1147 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1148 | lemma le_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1149 | "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1150 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1151 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1152 | lemma minus_le_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1153 | "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1154 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1155 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1156 | lemma less_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1157 | "1 < - b \<longleftrightarrow> b < - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1158 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1159 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1160 | lemma minus_less_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1161 | "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1162 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1163 | |
| 25917 | 1164 | end | 
| 25230 | 1165 | |
| 26274 | 1166 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1167 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1168 | lemmas mult_compare_simps = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1169 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1170 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1171 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1172 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1173 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1174 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1175 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1176 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1177 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1178 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1179 | text {* Reasoning about inequalities with division *}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1180 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1181 | context linordered_semidom | 
| 25193 | 1182 | begin | 
| 1183 | ||
| 1184 | lemma less_add_one: "a < a + 1" | |
| 14293 | 1185 | proof - | 
| 25193 | 1186 | have "a + 0 < a + 1" | 
| 23482 | 1187 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1188 | thus ?thesis by simp | 
| 1189 | qed | |
| 1190 | ||
| 25193 | 1191 | lemma zero_less_two: "0 < 1 + 1" | 
| 29667 | 1192 | by (blast intro: less_trans zero_less_one less_add_one) | 
| 25193 | 1193 | |
| 1194 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1195 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1196 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1197 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1198 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1199 | lemma mult_right_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1200 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 1201 | by (rule mult_left_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1202 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1203 | lemma mult_left_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1204 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1205 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1206 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1207 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1208 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1209 | text {* Absolute Value *}
 | 
| 14293 | 1210 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1211 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1212 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1213 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1214 | lemma mult_sgn_abs: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1215 | "sgn x * \<bar>x\<bar> = x" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1216 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1217 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1218 | lemma abs_one [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1219 | "\<bar>1\<bar> = 1" | 
| 44921 | 1220 | by (simp add: abs_if) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1221 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1222 | end | 
| 24491 | 1223 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1224 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1225 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1226 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1227 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1228 | context linordered_idom | 
| 30961 | 1229 | begin | 
| 1230 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1231 | subclass ordered_ring_abs proof | 
| 35216 | 1232 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 1233 | |
| 1234 | lemma abs_mult: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1235 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 30961 | 1236 | by (rule abs_eq_mult) auto | 
| 1237 | ||
| 1238 | lemma abs_mult_self: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1239 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 30961 | 1240 | by (simp add: abs_if) | 
| 1241 | ||
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1242 | lemma abs_mult_less: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1243 | "\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1244 | proof - | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1245 | assume ac: "\<bar>a\<bar> < c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1246 | hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1247 | assume "\<bar>b\<bar> < d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1248 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1249 | qed | 
| 14293 | 1250 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1251 | lemma abs_less_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1252 | "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1253 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 1254 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1255 | lemma abs_mult_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1256 | "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1257 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1258 | |
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1259 | lemma abs_diff_less_iff: | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1260 | "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1261 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1262 | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 1263 | lemma abs_diff_le_iff: | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 1264 | "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 1265 | by (auto simp add: diff_le_eq ac_simps abs_le_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 1266 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1267 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1268 | |
| 59557 | 1269 | hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib | 
| 1270 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1271 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1272 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 1273 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1274 | end |