| author | Fabian Huch <huch@in.tum.de> | 
| Fri, 28 Jun 2024 17:13:25 +0200 | |
| changeset 80424 | 6ed82923d51d | 
| parent 80034 | 95b4fb2b5359 | 
| child 80521 | 5c691b178e08 | 
| permissions | -rw-r--r-- | 
| 42067 | 1 | (* Title: HOL/Probability/Information.thy | 
| 2 | Author: Johannes Hölzl, TU München | |
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 5 | ||
| 61808 | 6 | section \<open>Information theory\<close> | 
| 42067 | 7 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 8 | theory Information | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 9 | imports | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 10 | Independent_Family | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 11 | begin | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 12 | |
| 56994 | 13 | subsection "Information theory" | 
| 38656 | 14 | |
| 40859 | 15 | locale information_space = prob_space + | 
| 38656 | 16 | fixes b :: real assumes b_gt_1: "1 < b" | 
| 17 | ||
| 40859 | 18 | context information_space | 
| 38656 | 19 | begin | 
| 20 | ||
| 69597 | 21 | text \<open>Introduce some simplification rules for logarithm of base \<^term>\<open>b\<close>.\<close> | 
| 40859 | 22 | |
| 23 | lemma log_neg_const: | |
| 24 | assumes "x \<le> 0" | |
| 25 | shows "log b x = log b 0" | |
| 36624 | 26 | proof - | 
| 40859 | 27 |   { fix u :: real
 | 
| 28 | have "x \<le> 0" by fact | |
| 29 | also have "0 < exp u" | |
| 30 | using exp_gt_zero . | |
| 31 | finally have "exp u \<noteq> x" | |
| 32 | by auto } | |
| 33 | then show "log b x = log b 0" | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
58876diff
changeset | 34 | by (simp add: log_def ln_real_def) | 
| 38656 | 35 | qed | 
| 36 | ||
| 40859 | 37 | lemma log_mult_eq: | 
| 38 | "log b (A * B) = (if 0 < A * B then log b \<bar>A\<bar> + log b \<bar>B\<bar> else log b 0)" | |
| 79772 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 39 | using log_mult[of "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"] | 
| 40859 | 40 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | 
| 38656 | 41 | |
| 40859 | 42 | lemma log_inverse_eq: | 
| 43 | "log b (inverse B) = (if 0 < B then - log b B else log b 0)" | |
| 79772 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 44 | using ln_inverse log_def log_neg_const by force | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 45 | |
| 40859 | 46 | lemma log_divide_eq: | 
| 79772 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 47 | "log b (A / B) = (if 0 < A * B then (log b \<bar>A\<bar>) - log b \<bar>B\<bar> else log b 0)" | 
| 40859 | 48 | unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse | 
| 49 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | |
| 38656 | 50 | |
| 40859 | 51 | lemmas log_simps = log_mult_eq log_inverse_eq log_divide_eq | 
| 38656 | 52 | |
| 53 | end | |
| 54 | ||
| 39097 | 55 | subsection "Kullback$-$Leibler divergence" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 56 | |
| 61808 | 57 | text \<open>The Kullback$-$Leibler divergence is also known as relative entropy or | 
| 58 | Kullback$-$Leibler distance.\<close> | |
| 39097 | 59 | |
| 60 | definition | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 61 | "entropy_density b M N = log b \<circ> enn2real \<circ> RN_deriv M N" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 62 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 63 | definition | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 64 | "KL_divergence b M N = integral\<^sup>L N (entropy_density b M N)" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 65 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 66 | lemma measurable_entropy_density[measurable]: "entropy_density b M N \<in> borel_measurable M" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 67 | unfolding entropy_density_def by auto | 
| 50003 | 68 | |
| 47694 | 69 | lemma (in sigma_finite_measure) KL_density: | 
| 70 | fixes f :: "'a \<Rightarrow> real" | |
| 71 | assumes "1 < b" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 72 | assumes f[measurable]: "f \<in> borel_measurable M" and nn: "AE x in M. 0 \<le> f x" | 
| 47694 | 73 | shows "KL_divergence b M (density M f) = (\<integral>x. f x * log b (f x) \<partial>M)" | 
| 74 | unfolding KL_divergence_def | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 75 | proof (subst integral_real_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 76 | show [measurable]: "entropy_density b M (density M (\<lambda>x. ennreal (f x))) \<in> borel_measurable M" | 
| 49776 | 77 | using f | 
| 50003 | 78 | by (auto simp: comp_def entropy_density_def) | 
| 47694 | 79 | have "density M (RN_deriv M (density M f)) = density M f" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 80 | using f nn by (intro density_RN_deriv_density) auto | 
| 47694 | 81 | then have eq: "AE x in M. RN_deriv M (density M f) x = f x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 82 | using f nn by (intro density_unique) auto | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 83 | have "AE x in M. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x = | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 84 | f x * log b (f x)" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 85 | using eq nn by (auto simp: entropy_density_def) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 86 | then show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 87 | by (intro integral_cong_AE) measurable | 
| 47694 | 88 | qed fact+ | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 89 | |
| 47694 | 90 | lemma (in sigma_finite_measure) KL_density_density: | 
| 91 | fixes f g :: "'a \<Rightarrow> real" | |
| 92 | assumes "1 < b" | |
| 93 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 94 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" | |
| 95 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 96 | shows "KL_divergence b (density M f) (density M g) = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | |
| 97 | proof - | |
| 98 | interpret Mf: sigma_finite_measure "density M f" | |
| 99 | using f by (subst sigma_finite_iff_density_finite) auto | |
| 100 | have "KL_divergence b (density M f) (density M g) = | |
| 101 | KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | |
| 102 | using f g ac by (subst density_density_divide) simp_all | |
| 103 | also have "\<dots> = (\<integral>x. (g x / f x) * log b (g x / f x) \<partial>density M f)" | |
| 61808 | 104 | using f g \<open>1 < b\<close> by (intro Mf.KL_density) (auto simp: AE_density) | 
| 47694 | 105 | also have "\<dots> = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | 
| 61808 | 106 | using ac f g \<open>1 < b\<close> by (subst integral_density) (auto intro!: integral_cong_AE) | 
| 47694 | 107 | finally show ?thesis . | 
| 108 | qed | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 109 | |
| 47694 | 110 | lemma (in information_space) KL_gt_0: | 
| 111 | fixes D :: "'a \<Rightarrow> real" | |
| 112 | assumes "prob_space (density M D)" | |
| 113 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 114 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 115 | assumes A: "density M D \<noteq> M" | |
| 116 | shows "0 < KL_divergence b M (density M D)" | |
| 117 | proof - | |
| 118 | interpret N: prob_space "density M D" by fact | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 119 | |
| 47694 | 120 | obtain A where "A \<in> sets M" "emeasure (density M D) A \<noteq> emeasure M A" | 
| 61808 | 121 | using measure_eqI[of "density M D" M] \<open>density M D \<noteq> M\<close> by auto | 
| 47694 | 122 | |
| 123 |   let ?D_set = "{x\<in>space M. D x \<noteq> 0}"
 | |
| 124 | have [simp, intro]: "?D_set \<in> sets M" | |
| 125 | using D by auto | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 126 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 127 | have D_neg: "(\<integral>\<^sup>+ x. ennreal (- D x) \<partial>M) = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 128 | using D by (subst nn_integral_0_iff_AE) (auto simp: ennreal_neg) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 129 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 130 | have "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = emeasure (density M D) (space M)" | 
| 56996 | 131 | using D by (simp add: emeasure_density cong: nn_integral_cong) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 132 | then have D_pos: "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = 1" | 
| 47694 | 133 | using N.emeasure_space_1 by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 134 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 135 | have "integrable M D" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 136 | using D D_pos D_neg unfolding real_integrable_def real_lebesgue_integral_def by simp_all | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 137 | then have "integral\<^sup>L M D = 1" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 138 | using D D_pos D_neg by (simp add: real_lebesgue_integral_def) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 139 | |
| 47694 | 140 | have "0 \<le> 1 - measure M ?D_set" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 141 | using prob_le_1 by (auto simp: field_simps) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 142 | also have "\<dots> = (\<integral> x. D x - indicator ?D_set x \<partial>M)" | 
| 61808 | 143 | using \<open>integrable M D\<close> \<open>integral\<^sup>L M D = 1\<close> | 
| 47694 | 144 | by (simp add: emeasure_eq_measure) | 
| 145 | also have "\<dots> < (\<integral> x. D x * (ln b * log b (D x)) \<partial>M)" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 146 | proof (rule integral_less_AE) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 147 | show "integrable M (\<lambda>x. D x - indicator ?D_set x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 148 | using \<open>integrable M D\<close> by (auto simp: less_top[symmetric]) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 149 | next | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 150 | from integrable_mult_left(1)[OF int, of "ln b"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 151 | show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))" | 
| 47694 | 152 | by (simp add: ac_simps) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 153 | next | 
| 47694 | 154 |     show "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<noteq> 0"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 155 | proof | 
| 47694 | 156 |       assume eq_0: "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} = 0"
 | 
| 157 | then have disj: "AE x in M. D x = 1 \<or> D x = 0" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 158 | using D(1) by (auto intro!: AE_I[OF subset_refl] sets.sets_Collect) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 159 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 160 |       have "emeasure M {x\<in>space M. D x = 1} = (\<integral>\<^sup>+ x. indicator {x\<in>space M. D x = 1} x \<partial>M)"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 161 | using D(1) by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 162 | also have "\<dots> = (\<integral>\<^sup>+ x. ennreal (D x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 163 | using disj by (auto intro!: nn_integral_cong_AE simp: indicator_def one_ennreal_def) | 
| 47694 | 164 | finally have "AE x in M. D x = 1" | 
| 165 | using D D_pos by (intro AE_I_eq_1) auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 166 | then have "(\<integral>\<^sup>+x. indicator A x\<partial>M) = (\<integral>\<^sup>+x. ennreal (D x) * indicator A x\<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 167 | by (intro nn_integral_cong_AE) (auto simp: one_ennreal_def[symmetric]) | 
| 47694 | 168 | also have "\<dots> = density M D A" | 
| 61808 | 169 | using \<open>A \<in> sets M\<close> D by (simp add: emeasure_density) | 
| 170 | finally show False using \<open>A \<in> sets M\<close> \<open>emeasure (density M D) A \<noteq> emeasure M A\<close> by simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 171 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 172 |     show "{x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<in> sets M"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 173 | using D(1) by (auto intro: sets.sets_Collect_conj) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 174 | |
| 47694 | 175 |     show "AE t in M. t \<in> {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<longrightarrow>
 | 
| 176 | D t - indicator ?D_set t \<noteq> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 177 | using D(2) | 
| 47694 | 178 | proof (eventually_elim, safe) | 
| 179 | fix t assume Dt: "t \<in> space M" "D t \<noteq> 1" "D t \<noteq> 0" "0 \<le> D t" | |
| 180 | and eq: "D t - indicator ?D_set t = D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 181 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 182 | have "D t - 1 = D t - indicator ?D_set t" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 183 | using Dt by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 184 | also note eq | 
| 47694 | 185 | also have "D t * (ln b * log b (D t)) = - D t * ln (1 / D t)" | 
| 61808 | 186 | using b_gt_1 \<open>D t \<noteq> 0\<close> \<open>0 \<le> D t\<close> | 
| 47694 | 187 | by (simp add: log_def ln_div less_le) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 188 | finally have "ln (1 / D t) = 1 / D t - 1" | 
| 61808 | 189 | using \<open>D t \<noteq> 0\<close> by (auto simp: field_simps) | 
| 190 | from ln_eq_minus_one[OF _ this] \<open>D t \<noteq> 0\<close> \<open>0 \<le> D t\<close> \<open>D t \<noteq> 1\<close> | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 191 | show False by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 192 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 193 | |
| 47694 | 194 | show "AE t in M. D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | 
| 195 | using D(2) AE_space | |
| 196 | proof eventually_elim | |
| 197 | fix t assume "t \<in> space M" "0 \<le> D t" | |
| 198 | show "D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 199 | proof cases | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 200 | assume asm: "D t \<noteq> 0" | 
| 61808 | 201 | then have "0 < D t" using \<open>0 \<le> D t\<close> by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 202 | then have "0 < 1 / D t" by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 203 | have "D t - indicator ?D_set t \<le> - D t * (1 / D t - 1)" | 
| 61808 | 204 | using asm \<open>t \<in> space M\<close> by (simp add: field_simps) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 205 | also have "- D t * (1 / D t - 1) \<le> - D t * ln (1 / D t)" | 
| 61808 | 206 | using ln_le_minus_one \<open>0 < 1 / D t\<close> by (intro mult_left_mono_neg) auto | 
| 47694 | 207 | also have "\<dots> = D t * (ln b * log b (D t))" | 
| 61808 | 208 | using \<open>0 < D t\<close> b_gt_1 | 
| 47694 | 209 | by (simp_all add: log_def ln_div) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 210 | finally show ?thesis by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 211 | qed simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 212 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 213 | qed | 
| 47694 | 214 | also have "\<dots> = (\<integral> x. ln b * (D x * log b (D x)) \<partial>M)" | 
| 215 | by (simp add: ac_simps) | |
| 216 | also have "\<dots> = ln b * (\<integral> x. D x * log b (D x) \<partial>M)" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 217 | using int by simp | 
| 47694 | 218 | finally show ?thesis | 
| 219 | using b_gt_1 D by (subst KL_density) (auto simp: zero_less_mult_iff) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 220 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 221 | |
| 47694 | 222 | lemma (in sigma_finite_measure) KL_same_eq_0: "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 223 | proof - | 
| 47694 | 224 | have "AE x in M. 1 = RN_deriv M M x" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 225 | proof (rule RN_deriv_unique) | 
| 47694 | 226 | show "density M (\<lambda>x. 1) = M" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 227 | by (simp add: density_1) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 228 | qed auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 229 | then have "AE x in M. log b (enn2real (RN_deriv M M x)) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 230 | by (elim AE_mp) simp | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 231 | from integral_cong_AE[OF _ _ this] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 232 | have "integral\<^sup>L M (entropy_density b M M) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 233 | by (simp add: entropy_density_def comp_def) | 
| 47694 | 234 | then show "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 235 | unfolding KL_divergence_def | 
| 47694 | 236 | by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 237 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 238 | |
| 47694 | 239 | lemma (in information_space) KL_eq_0_iff_eq: | 
| 240 | fixes D :: "'a \<Rightarrow> real" | |
| 241 | assumes "prob_space (density M D)" | |
| 242 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 243 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 244 | shows "KL_divergence b M (density M D) = 0 \<longleftrightarrow> density M D = M" | |
| 245 | using KL_same_eq_0[of b] KL_gt_0[OF assms] | |
| 246 | by (auto simp: less_le) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 247 | |
| 47694 | 248 | lemma (in information_space) KL_eq_0_iff_eq_ac: | 
| 249 | fixes D :: "'a \<Rightarrow> real" | |
| 250 | assumes "prob_space N" | |
| 251 | assumes ac: "absolutely_continuous M N" "sets N = sets M" | |
| 252 | assumes int: "integrable N (entropy_density b M N)" | |
| 253 | shows "KL_divergence b M N = 0 \<longleftrightarrow> N = M" | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 254 | proof - | 
| 47694 | 255 | interpret N: prob_space N by fact | 
| 256 | have "finite_measure N" by unfold_locales | |
| 74362 | 257 | from real_RN_deriv[OF this ac] obtain D | 
| 258 | where D: | |
| 259 | "random_variable borel D" | |
| 260 | "AE x in M. RN_deriv M N x = ennreal (D x)" | |
| 261 | "AE x in N. 0 < D x" | |
| 262 | "\<And>x. 0 \<le> D x" | |
| 263 | by this auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 264 | |
| 47694 | 265 | have "N = density M (RN_deriv M N)" | 
| 266 | using ac by (rule density_RN_deriv[symmetric]) | |
| 267 | also have "\<dots> = density M D" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 268 | using D by (auto intro!: density_cong) | 
| 47694 | 269 | finally have N: "N = density M D" . | 
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 270 | |
| 47694 | 271 | from absolutely_continuous_AE[OF ac(2,1) D(2)] D b_gt_1 ac measurable_entropy_density | 
| 272 | have "integrable N (\<lambda>x. log b (D x))" | |
| 273 | by (intro integrable_cong_AE[THEN iffD2, OF _ _ _ int]) | |
| 274 | (auto simp: N entropy_density_def) | |
| 275 | with D b_gt_1 have "integrable M (\<lambda>x. D x * log b (D x))" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 276 | by (subst integrable_real_density[symmetric]) (auto simp: N[symmetric] comp_def) | 
| 61808 | 277 | with \<open>prob_space N\<close> D show ?thesis | 
| 47694 | 278 | unfolding N | 
| 279 | by (intro KL_eq_0_iff_eq) auto | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 280 | qed | 
| 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 281 | |
| 47694 | 282 | lemma (in information_space) KL_nonneg: | 
| 283 | assumes "prob_space (density M D)" | |
| 284 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 285 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 286 | shows "0 \<le> KL_divergence b M (density M D)" | |
| 287 | using KL_gt_0[OF assms] by (cases "density M D = M") (auto simp: KL_same_eq_0) | |
| 40859 | 288 | |
| 47694 | 289 | lemma (in sigma_finite_measure) KL_density_density_nonneg: | 
| 290 | fixes f g :: "'a \<Rightarrow> real" | |
| 291 | assumes "1 < b" | |
| 292 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" "prob_space (density M f)" | |
| 293 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" "prob_space (density M g)" | |
| 294 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 295 | assumes int: "integrable M (\<lambda>x. g x * log b (g x / f x))" | |
| 296 | shows "0 \<le> KL_divergence b (density M f) (density M g)" | |
| 297 | proof - | |
| 298 | interpret Mf: prob_space "density M f" by fact | |
| 61169 | 299 | interpret Mf: information_space "density M f" b by standard fact | 
| 47694 | 300 | have eq: "density (density M f) (\<lambda>x. g x / f x) = density M g" (is "?DD = _") | 
| 301 | using f g ac by (subst density_density_divide) simp_all | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 302 | |
| 47694 | 303 | have "0 \<le> KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | 
| 304 | proof (rule Mf.KL_nonneg) | |
| 305 | show "prob_space ?DD" unfolding eq by fact | |
| 306 | from f g show "(\<lambda>x. g x / f x) \<in> borel_measurable (density M f)" | |
| 307 | by auto | |
| 308 | show "AE x in density M f. 0 \<le> g x / f x" | |
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 309 | using f g by (auto simp: AE_density) | 
| 47694 | 310 | show "integrable (density M f) (\<lambda>x. g x / f x * log b (g x / f x))" | 
| 61808 | 311 | using \<open>1 < b\<close> f g ac | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 312 | by (subst integrable_density) | 
| 47694 | 313 | (auto intro!: integrable_cong_AE[THEN iffD2, OF _ _ _ int] measurable_If) | 
| 314 | qed | |
| 315 | also have "\<dots> = KL_divergence b (density M f) (density M g)" | |
| 316 | using f g ac by (subst density_density_divide) simp_all | |
| 317 | finally show ?thesis . | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 318 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 319 | |
| 61808 | 320 | subsection \<open>Finite Entropy\<close> | 
| 49803 | 321 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 322 | definition (in information_space) finite_entropy :: "'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 323 | where | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 324 | "finite_entropy S X f \<longleftrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 325 | distributed M S X f \<and> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 326 | integrable S (\<lambda>x. f x * log b (f x)) \<and> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 327 | (\<forall>x\<in>space S. 0 \<le> f x)" | 
| 49803 | 328 | |
| 329 | lemma (in information_space) finite_entropy_simple_function: | |
| 330 | assumes X: "simple_function M X" | |
| 331 |   shows "finite_entropy (count_space (X`space M)) X (\<lambda>a. measure M {x \<in> space M. X x = a})"
 | |
| 332 | unfolding finite_entropy_def | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 333 | proof safe | 
| 49803 | 334 | have [simp]: "finite (X ` space M)" | 
| 335 | using X by (auto simp: simple_function_def) | |
| 336 | then show "integrable (count_space (X ` space M)) | |
| 337 |      (\<lambda>x. prob {xa \<in> space M. X xa = x} * log b (prob {xa \<in> space M. X xa = x}))"
 | |
| 338 | by (rule integrable_count_space) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 339 |   have d: "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (if x \<in> X`space M then prob {xa \<in> space M. X xa = x} else 0))"
 | 
| 49803 | 340 | by (rule distributed_simple_function_superset[OF X]) (auto intro!: arg_cong[where f=prob]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 341 |   show "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (prob {xa \<in> space M. X xa = x}))"
 | 
| 49803 | 342 | by (rule distributed_cong_density[THEN iffD1, OF _ _ _ d]) auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 343 | qed (rule measure_nonneg) | 
| 49803 | 344 | |
| 345 | lemma ac_fst: | |
| 346 | assumes "sigma_finite_measure T" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 347 | shows "absolutely_continuous S (distr (S \<Otimes>\<^sub>M T) S fst)" | 
| 49803 | 348 | proof - | 
| 349 | interpret sigma_finite_measure T by fact | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 350 |   { fix A assume A: "A \<in> sets S" "emeasure S A = 0"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 351 | then have "fst -` A \<inter> space (S \<Otimes>\<^sub>M T) = A \<times> space T" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 352 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 353 | with A have "emeasure (S \<Otimes>\<^sub>M T) (fst -` A \<inter> space (S \<Otimes>\<^sub>M T)) = 0" | 
| 49803 | 354 | by (simp add: emeasure_pair_measure_Times) } | 
| 355 | then show ?thesis | |
| 356 | unfolding absolutely_continuous_def | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 357 | by (metis emeasure_distr measurable_fst null_setsD1 null_setsD2 null_setsI sets_distr subsetI) | 
| 49803 | 358 | qed | 
| 359 | ||
| 360 | lemma ac_snd: | |
| 361 | assumes "sigma_finite_measure T" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 362 | shows "absolutely_continuous T (distr (S \<Otimes>\<^sub>M T) T snd)" | 
| 49803 | 363 | proof - | 
| 364 | interpret sigma_finite_measure T by fact | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 365 |   { fix A assume A: "A \<in> sets T" "emeasure T A = 0"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 366 | then have "snd -` A \<inter> space (S \<Otimes>\<^sub>M T) = space S \<times> A" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 367 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 368 | with A have "emeasure (S \<Otimes>\<^sub>M T) (snd -` A \<inter> space (S \<Otimes>\<^sub>M T)) = 0" | 
| 49803 | 369 | by (simp add: emeasure_pair_measure_Times) } | 
| 370 | then show ?thesis | |
| 371 | unfolding absolutely_continuous_def | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 372 | by (metis emeasure_distr measurable_snd null_setsD1 null_setsD2 null_setsI sets_distr subsetI) | 
| 49803 | 373 | qed | 
| 374 | ||
| 375 | lemma (in information_space) finite_entropy_integrable: | |
| 376 | "finite_entropy S X Px \<Longrightarrow> integrable S (\<lambda>x. Px x * log b (Px x))" | |
| 377 | unfolding finite_entropy_def by auto | |
| 378 | ||
| 379 | lemma (in information_space) finite_entropy_distributed: | |
| 380 | "finite_entropy S X Px \<Longrightarrow> distributed M S X Px" | |
| 381 | unfolding finite_entropy_def by auto | |
| 382 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 383 | lemma (in information_space) finite_entropy_nn: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 384 | "finite_entropy S X Px \<Longrightarrow> x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 385 | by (auto simp: finite_entropy_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 386 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 387 | lemma (in information_space) finite_entropy_measurable: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 388 | "finite_entropy S X Px \<Longrightarrow> Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 389 | using distributed_real_measurable[of S Px M X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 390 | finite_entropy_nn[of S X Px] finite_entropy_distributed[of S X Px] by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 391 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 392 | lemma (in information_space) subdensity_finite_entropy: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 393 | fixes g :: "'b \<Rightarrow> real" and f :: "'c \<Rightarrow> real" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 394 | assumes T: "T \<in> measurable P Q" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 395 | assumes f: "finite_entropy P X f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 396 | assumes g: "finite_entropy Q Y g" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 397 | assumes Y: "Y = T \<circ> X" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 398 | shows "AE x in P. g (T x) = 0 \<longrightarrow> f x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 399 | using subdensity[OF T, of M X "\<lambda>x. ennreal (f x)" Y "\<lambda>x. ennreal (g x)"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 400 | finite_entropy_distributed[OF f] finite_entropy_distributed[OF g] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 401 | finite_entropy_nn[OF f] finite_entropy_nn[OF g] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 402 | assms | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 403 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 404 | |
| 49803 | 405 | lemma (in information_space) finite_entropy_integrable_transform: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 406 | "finite_entropy S X Px \<Longrightarrow> distributed M T Y Py \<Longrightarrow> (\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x) \<Longrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 407 | X = (\<lambda>x. f (Y x)) \<Longrightarrow> f \<in> measurable T S \<Longrightarrow> integrable T (\<lambda>x. Py x * log b (Px (f x)))" | 
| 49803 | 408 | using distributed_transform_integrable[of M T Y Py S X Px f "\<lambda>x. log b (Px x)"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 409 | using distributed_real_measurable[of S Px M X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 410 | by (auto simp: finite_entropy_def) | 
| 49803 | 411 | |
| 61808 | 412 | subsection \<open>Mutual Information\<close> | 
| 39097 | 413 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 414 | definition (in prob_space) | 
| 38656 | 415 | "mutual_information b S T X Y = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 416 | KL_divergence b (distr M S X \<Otimes>\<^sub>M distr M T Y) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 417 | |
| 47694 | 418 | lemma (in information_space) mutual_information_indep_vars: | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 419 | fixes S T X Y | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 420 | defines "P \<equiv> distr M S X \<Otimes>\<^sub>M distr M T Y" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 421 | defines "Q \<equiv> distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 422 | shows "indep_var S X T Y \<longleftrightarrow> | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 423 | (random_variable S X \<and> random_variable T Y \<and> | 
| 47694 | 424 | absolutely_continuous P Q \<and> integrable Q (entropy_density b P Q) \<and> | 
| 425 | mutual_information b S T X Y = 0)" | |
| 426 | unfolding indep_var_distribution_eq | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 427 | proof safe | 
| 50003 | 428 | assume rv[measurable]: "random_variable S X" "random_variable T Y" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 429 | |
| 47694 | 430 | interpret X: prob_space "distr M S X" | 
| 431 | by (rule prob_space_distr) fact | |
| 432 | interpret Y: prob_space "distr M T Y" | |
| 433 | by (rule prob_space_distr) fact | |
| 61169 | 434 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" by standard | 
| 435 | interpret P: information_space P b unfolding P_def by standard (rule b_gt_1) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 436 | |
| 47694 | 437 | interpret Q: prob_space Q unfolding Q_def | 
| 50003 | 438 | by (rule prob_space_distr) simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 439 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 440 |   { assume "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
 | 
| 47694 | 441 | then have [simp]: "Q = P" unfolding Q_def P_def by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 442 | |
| 47694 | 443 | show ac: "absolutely_continuous P Q" by (simp add: absolutely_continuous_def) | 
| 444 | then have ed: "entropy_density b P Q \<in> borel_measurable P" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 445 | by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 446 | |
| 47694 | 447 | have "AE x in P. 1 = RN_deriv P Q x" | 
| 448 | proof (rule P.RN_deriv_unique) | |
| 449 | show "density P (\<lambda>x. 1) = Q" | |
| 61808 | 450 | unfolding \<open>Q = P\<close> by (intro measure_eqI) (auto simp: emeasure_density) | 
| 47694 | 451 | qed auto | 
| 452 | then have ae_0: "AE x in P. entropy_density b P Q x = 0" | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 453 | by (auto simp: entropy_density_def) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 454 | then have "integrable P (entropy_density b P Q) \<longleftrightarrow> integrable Q (\<lambda>x. 0::real)" | 
| 61808 | 455 | using ed unfolding \<open>Q = P\<close> by (intro integrable_cong_AE) auto | 
| 47694 | 456 | then show "integrable Q (entropy_density b P Q)" by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 457 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 458 | from ae_0 have "mutual_information b S T X Y = (\<integral>x. 0 \<partial>P)" | 
| 61808 | 459 | unfolding mutual_information_def KL_divergence_def P_def[symmetric] Q_def[symmetric] \<open>Q = P\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 460 | by (intro integral_cong_AE) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 461 | then show "mutual_information b S T X Y = 0" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 462 | by simp } | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 463 | |
| 47694 | 464 |   { assume ac: "absolutely_continuous P Q"
 | 
| 465 | assume int: "integrable Q (entropy_density b P Q)" | |
| 466 | assume I_eq_0: "mutual_information b S T X Y = 0" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 467 | |
| 47694 | 468 | have eq: "Q = P" | 
| 469 | proof (rule P.KL_eq_0_iff_eq_ac[THEN iffD1]) | |
| 470 | show "prob_space Q" by unfold_locales | |
| 471 | show "absolutely_continuous P Q" by fact | |
| 472 | show "integrable Q (entropy_density b P Q)" by fact | |
| 473 | show "sets Q = sets P" by (simp add: P_def Q_def sets_pair_measure) | |
| 474 | show "KL_divergence b P Q = 0" | |
| 475 | using I_eq_0 unfolding mutual_information_def by (simp add: P_def Q_def) | |
| 476 | qed | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 477 | then show "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 47694 | 478 | unfolding P_def Q_def .. } | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 479 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 480 | |
| 40859 | 481 | abbreviation (in information_space) | 
| 482 |   mutual_information_Pow ("\<I>'(_ ; _')") where
 | |
| 47694 | 483 | "\<I>(X ; Y) \<equiv> mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 484 | |
| 47694 | 485 | lemma (in information_space) | 
| 486 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 49803 | 487 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 488 | assumes Fx: "finite_entropy S X Px" and Fy: "finite_entropy T Y Py" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 489 | assumes Fxy: "finite_entropy (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 49803 | 490 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 491 | shows mutual_information_distr': "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R") | 
| 49803 | 492 | and mutual_information_nonneg': "0 \<le> mutual_information b S T X Y" | 
| 493 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 494 | have Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 49803 | 495 | using Fx by (auto simp: finite_entropy_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 496 | have Py: "distributed M T Y Py" and Py_nn: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 49803 | 497 | using Fy by (auto simp: finite_entropy_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 498 | have Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 499 | and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 500 | "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 501 | using Fxy by (auto simp: finite_entropy_def space_pair_measure) | 
| 49803 | 502 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 503 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 504 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 505 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 506 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 507 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 508 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 509 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 510 | have X[measurable]: "random_variable S X" | 
| 50003 | 511 | using Px by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 512 | have Y[measurable]: "random_variable T Y" | 
| 50003 | 513 | using Py by auto | 
| 49803 | 514 | interpret S: sigma_finite_measure S by fact | 
| 515 | interpret T: sigma_finite_measure T by fact | |
| 516 | interpret ST: pair_sigma_finite S T .. | |
| 517 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 518 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 519 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 520 | let ?P = "S \<Otimes>\<^sub>M T" | 
| 49803 | 521 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | 
| 522 | ||
| 523 |   { fix A assume "A \<in> sets S"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 524 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 525 | have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 526 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 49803 | 527 | note marginal_eq1 = this | 
| 528 |   { fix A assume "A \<in> sets T"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 529 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 530 | have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 531 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 49803 | 532 | note marginal_eq2 = this | 
| 533 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 534 | have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 535 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] | 
| 49803 | 536 | proof (subst pair_measure_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 537 | show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T" | 
| 49803 | 538 | using Px Py by (auto simp: distributed_def) | 
| 539 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 540 | show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 541 | density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 542 | using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 543 | qed fact | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 544 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 545 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))" | 
| 49803 | 546 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | 
| 547 | ||
| 548 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 549 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 550 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 551 | using Px_nn Py_nn by (auto simp: space_pair_measure) | 
| 49803 | 552 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 553 | have A: "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 554 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure) | 
| 49803 | 555 | moreover | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 556 | have B: "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 557 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure) | 
| 49803 | 558 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 559 | by auto | 
| 49803 | 560 | |
| 561 | show "?M = ?R" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 562 | unfolding M f_def using Pxy_nn Px_nn Py_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 563 | by (intro ST.KL_density_density b_gt_1 f PxPy_nonneg ac) (auto simp: space_pair_measure) | 
| 49803 | 564 | |
| 565 | have X: "X = fst \<circ> (\<lambda>x. (X x, Y x))" and Y: "Y = snd \<circ> (\<lambda>x. (X x, Y x))" | |
| 566 | by auto | |
| 567 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 568 | have "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)))" | 
| 49803 | 569 | using finite_entropy_integrable[OF Fxy] | 
| 570 | using finite_entropy_integrable_transform[OF Fx Pxy, of fst] | |
| 571 | using finite_entropy_integrable_transform[OF Fy Pxy, of snd] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 572 | by (simp add: Pxy_nn) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 573 | moreover have "f \<in> borel_measurable (S \<Otimes>\<^sub>M T)" | 
| 49803 | 574 | unfolding f_def using Px Py Pxy | 
| 575 | by (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'' | |
| 576 | intro!: borel_measurable_times borel_measurable_log borel_measurable_divide) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 577 | ultimately have int: "integrable (S \<Otimes>\<^sub>M T) f" | 
| 49803 | 578 | apply (rule integrable_cong_AE_imp) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 579 | using A B | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 580 | by (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 581 | less_le) | 
| 49803 | 582 | |
| 583 | show "0 \<le> ?M" unfolding M | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 584 | proof (intro ST.KL_density_density_nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 585 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) " | 
| 49803 | 586 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | 
| 587 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 588 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))" | 
| 49803 | 589 | unfolding distr_eq[symmetric] by unfold_locales | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 590 | show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 591 | using int unfolding f_def . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 592 | qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure) | 
| 49803 | 593 | qed | 
| 594 | ||
| 595 | lemma (in information_space) | |
| 596 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 47694 | 597 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 598 | assumes Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 599 | and Py: "distributed M T Y Py" and Py_nn: "\<And>y. y \<in> space T \<Longrightarrow> 0 \<le> Py y" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 600 | and Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 601 | and Pxy_nn: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 47694 | 602 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 603 | shows mutual_information_distr: "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R") | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 604 | and mutual_information_nonneg: "integrable (S \<Otimes>\<^sub>M T) f \<Longrightarrow> 0 \<le> mutual_information b S T X Y" | 
| 40859 | 605 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 606 | have X[measurable]: "random_variable S X" | 
| 47694 | 607 | using Px by (auto simp: distributed_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 608 | have Y[measurable]: "random_variable T Y" | 
| 47694 | 609 | using Py by (auto simp: distributed_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 610 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 611 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 612 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 613 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 614 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 615 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 616 | |
| 47694 | 617 | interpret S: sigma_finite_measure S by fact | 
| 618 | interpret T: sigma_finite_measure T by fact | |
| 619 | interpret ST: pair_sigma_finite S T .. | |
| 620 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 621 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 622 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 623 | let ?P = "S \<Otimes>\<^sub>M T" | 
| 47694 | 624 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | 
| 625 | ||
| 626 |   { fix A assume "A \<in> sets S"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 627 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 628 | have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 629 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 47694 | 630 | note marginal_eq1 = this | 
| 631 |   { fix A assume "A \<in> sets T"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 632 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 633 | have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 634 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 47694 | 635 | note marginal_eq2 = this | 
| 636 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 637 | have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 638 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] | 
| 47694 | 639 | proof (subst pair_measure_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 640 | show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T" | 
| 47694 | 641 | using Px Py by (auto simp: distributed_def) | 
| 642 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 643 | show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 644 | density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 645 | using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 646 | qed fact | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 647 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 648 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))" | 
| 47694 | 649 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | 
| 650 | ||
| 651 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 652 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 653 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 654 | using Px_nn Py_nn by (auto simp: space_pair_measure) | 
| 47694 | 655 | |
| 656 | have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 657 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure) | 
| 47694 | 658 | moreover | 
| 659 | have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 660 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure) | 
| 47694 | 661 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 662 | by auto | 
| 47694 | 663 | |
| 664 | show "?M = ?R" | |
| 665 | unfolding M f_def | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 666 | using b_gt_1 f PxPy_nonneg ac Pxy_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 667 | by (intro ST.KL_density_density) (auto simp: space_pair_measure) | 
| 47694 | 668 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 669 | assume int: "integrable (S \<Otimes>\<^sub>M T) f" | 
| 47694 | 670 | show "0 \<le> ?M" unfolding M | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 671 | proof (intro ST.KL_density_density_nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 672 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) " | 
| 47694 | 673 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | 
| 674 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 675 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))" | 
| 47694 | 676 | unfolding distr_eq[symmetric] by unfold_locales | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 677 | show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 678 | using int unfolding f_def . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 679 | qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure) | 
| 40859 | 680 | qed | 
| 681 | ||
| 682 | lemma (in information_space) | |
| 47694 | 683 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 684 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 685 | assumes Px[measurable]: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 686 | and Py[measurable]: "distributed M T Y Py" and Py_nn: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 687 | and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 688 | and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 47694 | 689 | assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y" | 
| 690 | shows mutual_information_eq_0: "mutual_information b S T X Y = 0" | |
| 36624 | 691 | proof - | 
| 47694 | 692 | interpret S: sigma_finite_measure S by fact | 
| 693 | interpret T: sigma_finite_measure T by fact | |
| 694 | interpret ST: pair_sigma_finite S T .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 695 | note | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 696 | distributed_real_measurable[OF Px_nn Px, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 697 | distributed_real_measurable[OF Py_nn Py, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 698 | distributed_real_measurable[OF Pxy_nn Pxy, measurable] | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 699 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 700 | have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 701 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (auto simp: Px_nn Pxy_nn space_pair_measure) | 
| 47694 | 702 | moreover | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 703 | have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 704 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (auto simp: Py_nn Pxy_nn space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 705 | moreover | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 706 | have "AE x in S \<Otimes>\<^sub>M T. Pxy x = Px (fst x) * Py (snd x)" | 
| 47694 | 707 | by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 708 | ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0" | 
| 47694 | 709 | by eventually_elim simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 710 | then have "(\<integral>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) \<partial>(S \<Otimes>\<^sub>M T)) = (\<integral>x. 0 \<partial>(S \<Otimes>\<^sub>M T))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 711 | by (intro integral_cong_AE) auto | 
| 47694 | 712 | then show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 713 | by (subst mutual_information_distr[OF assms(1-8)]) (auto simp add: space_pair_measure) | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 714 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 715 | |
| 47694 | 716 | lemma (in information_space) mutual_information_simple_distributed: | 
| 717 | assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py" | |
| 718 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 719 | shows "\<I>(X ; Y) = (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 720 | proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 47694 | 721 | note fin = simple_distributed_joint_finite[OF XY, simp] | 
| 722 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 723 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 724 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 725 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 726 | let ?Pxy = "\<lambda>x. (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 727 | let ?f = "\<lambda>x. ?Pxy x * log b (?Pxy x / (Px (fst x) * Py (snd x)))" | |
| 728 | have "\<And>x. ?f x = (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) else 0)" | |
| 729 | by auto | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 730 | with fin show "(\<integral> x. ?f x \<partial>(count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M))) = | 
| 47694 | 731 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | 
| 64267 | 732 | by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite sum.If_cases split_beta' | 
| 733 | intro!: sum.cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 734 | qed (insert X Y XY, auto simp: simple_distributed_def) | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 735 | |
| 47694 | 736 | lemma (in information_space) | 
| 737 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 738 | assumes Px: "simple_distributed M X Px" and Py: "simple_distributed M Y Py" | |
| 739 | assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 740 | assumes ae: "\<forall>x\<in>space M. Pxy (X x, Y x) = Px (X x) * Py (Y x)" | |
| 741 | shows mutual_information_eq_0_simple: "\<I>(X ; Y) = 0" | |
| 742 | proof (subst mutual_information_simple_distributed[OF Px Py Pxy]) | |
| 743 | have "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = | |
| 744 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. 0)" | |
| 64267 | 745 | by (intro sum.cong) (auto simp: ae) | 
| 47694 | 746 | then show "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. | 
| 747 | Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = 0" by simp | |
| 748 | qed | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 749 | |
| 61808 | 750 | subsection \<open>Entropy\<close> | 
| 39097 | 751 | |
| 47694 | 752 | definition (in prob_space) entropy :: "real \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> real" where
 | 
| 753 | "entropy b S X = - KL_divergence b S (distr M S X)" | |
| 754 | ||
| 40859 | 755 | abbreviation (in information_space) | 
| 756 |   entropy_Pow ("\<H>'(_')") where
 | |
| 47694 | 757 | "\<H>(X) \<equiv> entropy b (count_space (X`space M)) X" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41833diff
changeset | 758 | |
| 49791 | 759 | lemma (in prob_space) distributed_RN_deriv: | 
| 760 | assumes X: "distributed M S X Px" | |
| 761 | shows "AE x in S. RN_deriv S (density S Px) x = Px x" | |
| 762 | proof - | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 763 | have "distributed M S X (RN_deriv S (density S Px))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 764 | by (metis RN_derivI assms borel_measurable_RN_deriv distributed_def) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 765 | then show ?thesis | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 766 | using assms distributed_unique by blast | 
| 49791 | 767 | qed | 
| 768 | ||
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 769 | lemma (in information_space) | 
| 47694 | 770 | fixes X :: "'a \<Rightarrow> 'b" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 771 | assumes X[measurable]: "distributed M MX X f" and nn: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> f x" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 772 | shows entropy_distr: "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)" (is ?eq) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 773 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 774 | note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] | 
| 49791 | 775 | note ae = distributed_RN_deriv[OF X] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 776 | note distributed_real_measurable[OF nn X, measurable] | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 777 | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 778 | have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) = log b (f x)" | 
| 49785 | 779 | unfolding distributed_distr_eq_density[OF X] | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 780 | using D ae by (auto simp: AE_density) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 781 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 782 | have int_eq: "(\<integral> x. f x * log b (f x) \<partial>MX) = (\<integral> x. log b (f x) \<partial>distr M MX X)" | 
| 49785 | 783 | unfolding distributed_distr_eq_density[OF X] | 
| 784 | using D | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 785 | by (subst integral_density) (auto simp: nn) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 786 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 787 | show ?eq | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 788 | unfolding entropy_def KL_divergence_def entropy_density_def comp_def int_eq neg_equal_iff_equal | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 789 | using ae_eq by (intro integral_cong_AE) (auto simp: nn) | 
| 49786 | 790 | qed | 
| 791 | ||
| 792 | lemma (in information_space) entropy_le: | |
| 793 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 794 | assumes X[measurable]: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 795 |   and fin: "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> top"
 | 
| 49786 | 796 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | 
| 797 |   shows "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 798 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 799 | note Px = distributed_borel_measurable[OF X] | 
| 49786 | 800 | interpret X: prob_space "distr M MX X" | 
| 801 | using distributed_measurable[OF X] by (rule prob_space_distr) | |
| 802 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 803 |   have " - log b (measure MX {x \<in> space MX. Px x \<noteq> 0}) =
 | 
| 49786 | 804 |     - log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 805 | using Px Px_nn fin by (auto simp: measure_def) | 
| 49786 | 806 |   also have "- log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX) = - log b (\<integral> x. 1 / Px x \<partial>distr M MX X)"
 | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 807 | proof - | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 808 |     have "integral\<^sup>L MX (indicator {x \<in> space MX. Px x \<noteq> 0}) = LINT x|MX. Px x *\<^sub>R (1 / Px x)"
 | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 809 | by (rule Bochner_Integration.integral_cong) auto | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 810 | also have "... = LINT x|density MX (\<lambda>x. ennreal (Px x)). 1 / Px x" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 811 | by (rule integral_density [symmetric]) (use Px Px_nn in auto) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 812 | finally show ?thesis | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 813 | unfolding distributed_distr_eq_density[OF X] by simp | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 814 | qed | 
| 49786 | 815 | also have "\<dots> \<le> (\<integral> x. - log b (1 / Px x) \<partial>distr M MX X)" | 
| 816 |   proof (rule X.jensens_inequality[of "\<lambda>x. 1 / Px x" "{0<..}" 0 1 "\<lambda>x. - log b x"])
 | |
| 817 |     show "AE x in distr M MX X. 1 / Px x \<in> {0<..}"
 | |
| 818 | unfolding distributed_distr_eq_density[OF X] | |
| 819 | using Px by (auto simp: AE_density) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 820 |     have [simp]: "\<And>x. x \<in> space MX \<Longrightarrow> ennreal (if Px x = 0 then 0 else 1) = indicator {x \<in> space MX. Px x \<noteq> 0} x"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 821 | by (auto simp: one_ennreal_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 822 | have "(\<integral>\<^sup>+ x. ennreal (- (if Px x = 0 then 0 else 1)) \<partial>MX) = (\<integral>\<^sup>+ x. 0 \<partial>MX)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 823 | by (intro nn_integral_cong) (auto simp: ennreal_neg) | 
| 49786 | 824 | then show "integrable (distr M MX X) (\<lambda>x. 1 / Px x)" | 
| 825 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 826 | by (auto simp: nn_integral_density real_integrable_def fin ennreal_neg ennreal_mult[symmetric] | 
| 56996 | 827 | cong: nn_integral_cong) | 
| 49786 | 828 | have "integrable MX (\<lambda>x. Px x * log b (1 / Px x)) = | 
| 829 | integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 830 | using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 831 | by (intro integrable_cong_AE) (auto simp: log_divide_eq less_le) | 
| 49786 | 832 | then show "integrable (distr M MX X) (\<lambda>x. - log b (1 / Px x))" | 
| 833 | unfolding distributed_distr_eq_density[OF X] | |
| 834 | using Px int | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 835 | by (subst integrable_real_density) auto | 
| 49786 | 836 | qed (auto simp: minus_log_convex[OF b_gt_1]) | 
| 837 | also have "\<dots> = (\<integral> x. log b (Px x) \<partial>distr M MX X)" | |
| 838 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 839 | by (intro integral_cong_AE) (auto simp: AE_density log_divide_eq) | |
| 840 | also have "\<dots> = - entropy b MX X" | |
| 841 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 842 | by (subst entropy_distr[OF X]) (auto simp: integral_density) | 
| 49786 | 843 | finally show ?thesis | 
| 844 | by simp | |
| 845 | qed | |
| 846 | ||
| 847 | lemma (in information_space) entropy_le_space: | |
| 848 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 849 | assumes X: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x" | 
| 49786 | 850 | and fin: "finite_measure MX" | 
| 851 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 852 | shows "entropy b MX X \<le> log b (measure MX (space MX))" | |
| 853 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 854 | note Px = distributed_borel_measurable[OF X] | 
| 49786 | 855 | interpret finite_measure MX by fact | 
| 856 |   have "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 857 | using int X by (intro entropy_le) auto | |
| 858 | also have "\<dots> \<le> log b (measure MX (space MX))" | |
| 859 | using Px distributed_imp_emeasure_nonzero[OF X] | |
| 80034 
95b4fb2b5359
New material and a bit of refactoring
 paulson <lp15@cam.ac.uk> parents: 
79772diff
changeset | 860 | by (intro Transcendental.log_mono) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 861 | (auto intro!: finite_measure_mono b_gt_1 less_le[THEN iffD2] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 862 | simp: emeasure_eq_measure cong: conj_cong) | 
| 49786 | 863 | finally show ?thesis . | 
| 864 | qed | |
| 865 | ||
| 47694 | 866 | lemma (in information_space) entropy_uniform: | 
| 49785 | 867 | assumes X: "distributed M MX X (\<lambda>x. indicator A x / measure MX A)" (is "distributed _ _ _ ?f") | 
| 47694 | 868 | shows "entropy b MX X = log b (measure MX A)" | 
| 49785 | 869 | proof (subst entropy_distr[OF X]) | 
| 870 | have [simp]: "emeasure MX A \<noteq> \<infinity>" | |
| 871 | using uniform_distributed_params[OF X] by (auto simp add: measure_def) | |
| 872 | have eq: "(\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | |
| 873 | (\<integral> x. (- log b (measure MX A) / measure MX A) * indicator A x \<partial>MX)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 874 | using uniform_distributed_params[OF X] | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 875 | by (intro Bochner_Integration.integral_cong) (auto split: split_indicator simp: log_divide_eq zero_less_measure_iff) | 
| 49785 | 876 | show "- (\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | 
| 877 | log b (measure MX A)" | |
| 878 | unfolding eq using uniform_distributed_params[OF X] | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 879 | by (subst Bochner_Integration.integral_mult_right) (auto simp: measure_def less_top[symmetric] intro!: integrable_real_indicator) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 880 | qed simp | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 881 | |
| 47694 | 882 | lemma (in information_space) entropy_simple_distributed: | 
| 49786 | 883 | "simple_distributed M X f \<Longrightarrow> \<H>(X) = - (\<Sum>x\<in>X`space M. f x * log b (f x))" | 
| 884 | by (subst entropy_distr[OF simple_distributed]) | |
| 885 | (auto simp add: lebesgue_integral_count_space_finite) | |
| 39097 | 886 | |
| 40859 | 887 | lemma (in information_space) entropy_le_card_not_0: | 
| 47694 | 888 | assumes X: "simple_distributed M X f" | 
| 889 |   shows "\<H>(X) \<le> log b (card (X ` space M \<inter> {x. f x \<noteq> 0}))"
 | |
| 39097 | 890 | proof - | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 891 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 892 |   have "\<H>(X) \<le> log b (measure ?X {x \<in> space ?X. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 893 | by (rule entropy_le[OF simple_distributed[OF X]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 894 | (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 895 |   also have "measure ?X {x \<in> space ?X. f x \<noteq> 0} = card (X ` space M \<inter> {x. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 896 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def Int_def) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 897 | finally show ?thesis . | 
| 39097 | 898 | qed | 
| 899 | ||
| 40859 | 900 | lemma (in information_space) entropy_le_card: | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 901 | assumes X: "simple_distributed M X f" | 
| 40859 | 902 | shows "\<H>(X) \<le> log b (real (card (X ` space M)))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 903 | proof - | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 904 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 905 | have "\<H>(X) \<le> log b (measure ?X (space ?X))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 906 | by (rule entropy_le_space[OF simple_distributed[OF X]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 907 | (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 908 | also have "measure ?X (space ?X) = card (X ` space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 909 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def) | 
| 39097 | 910 | finally show ?thesis . | 
| 911 | qed | |
| 912 | ||
| 61808 | 913 | subsection \<open>Conditional Mutual Information\<close> | 
| 39097 | 914 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 915 | definition (in prob_space) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 916 | "conditional_mutual_information b MX MY MZ X Y Z \<equiv> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 917 | mutual_information b MX (MY \<Otimes>\<^sub>M MZ) X (\<lambda>x. (Y x, Z x)) - | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 918 | mutual_information b MX MZ X Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 919 | |
| 40859 | 920 | abbreviation (in information_space) | 
| 921 |   conditional_mutual_information_Pow ("\<I>'( _ ; _ | _ ')") where
 | |
| 36624 | 922 | "\<I>(X ; Y | Z) \<equiv> conditional_mutual_information b | 
| 47694 | 923 | (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 924 | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 925 | lemma (in information_space) | 
| 47694 | 926 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | 
| 50003 | 927 | assumes Px[measurable]: "distributed M S X Px" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 928 | and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 50003 | 929 | assumes Pz[measurable]: "distributed M P Z Pz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 930 | and Pz_nn[simp]: "\<And>z. z \<in> space P \<Longrightarrow> 0 \<le> Pz z" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 931 | assumes Pyz[measurable]: "distributed M (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 932 | and Pyz_nn[simp]: "\<And>y z. y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pyz (y, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 933 | assumes Pxz[measurable]: "distributed M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) Pxz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 934 | and Pxz_nn[simp]: "\<And>x z. x \<in> space S \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxz (x, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 935 | assumes Pxyz[measurable]: "distributed M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 936 | and Pxyz_nn[simp]: "\<And>x y z. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxyz (x, y, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 937 | assumes I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 938 | assumes I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 939 | shows conditional_mutual_information_generic_eq: "conditional_mutual_information b S T P X Y Z | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 940 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" (is "?eq") | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 941 | and conditional_mutual_information_generic_nonneg: "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | 
| 40859 | 942 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 943 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 944 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 945 | have [measurable]: "Pz \<in> P \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 946 | using Pz Pz_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 947 | have measurable_Pyz[measurable]: "Pyz \<in> (T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 948 | using Pyz Pyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 949 | have measurable_Pxz[measurable]: "Pxz \<in> (S \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 950 | using Pxz Pxz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 951 | have measurable_Pxyz[measurable]: "Pxyz \<in> (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 952 | using Pxyz Pxyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 953 | |
| 47694 | 954 | interpret S: sigma_finite_measure S by fact | 
| 955 | interpret T: sigma_finite_measure T by fact | |
| 956 | interpret P: sigma_finite_measure P by fact | |
| 957 | interpret TP: pair_sigma_finite T P .. | |
| 958 | interpret SP: pair_sigma_finite S P .. | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 959 | interpret ST: pair_sigma_finite S T .. | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 960 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^sub>M P" T .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 961 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^sub>M P" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 962 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^sub>M P" S .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 963 | have TP: "sigma_finite_measure (T \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 964 | have SP: "sigma_finite_measure (S \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 965 | have YZ: "random_variable (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x))" | 
| 47694 | 966 | using Pyz by (simp add: distributed_measurable) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 967 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 968 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 969 | distr (distr M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). (x, z))" | 
| 50003 | 970 | by (simp add: comp_def distr_distr) | 
| 40859 | 971 | |
| 47694 | 972 | have "mutual_information b S P X Z = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 973 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 974 | by (rule mutual_information_distr[OF S P Px Px_nn Pz Pz_nn Pxz Pxz_nn]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 975 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 47694 | 976 | using b_gt_1 Pxz Px Pz | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 977 | by (subst distributed_transform_integral[OF Pxyz _ Pxz _, where T="\<lambda>(x, y, z). (x, z)"]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 978 | (auto simp: split_beta' space_pair_measure) | 
| 47694 | 979 | finally have mi_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 980 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 981 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 982 | have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 983 | by (intro subdensity_real[of fst, OF _ Pxyz Px]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 984 | moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 985 | by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 986 | moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 987 | by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 988 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 989 | by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 990 | ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. | 
| 47694 | 991 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | 
| 992 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 993 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 994 | using AE_space | 
| 47694 | 995 | proof eventually_elim | 
| 60580 | 996 | case (elim x) | 
| 47694 | 997 | show ?case | 
| 40859 | 998 | proof cases | 
| 47694 | 999 | assume "Pxyz x \<noteq> 0" | 
| 60580 | 1000 | with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" | 
| 1001 | "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1002 | by (auto simp: space_pair_measure less_le) | 
| 47694 | 1003 | then show ?thesis | 
| 56544 | 1004 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 40859 | 1005 | qed simp | 
| 1006 | qed | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1007 | with I1 I2 show ?eq | 
| 40859 | 1008 | unfolding conditional_mutual_information_def | 
| 47694 | 1009 | apply (subst mi_eq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1010 | apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz _ Pxyz]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1011 | apply (auto simp: space_pair_measure) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1012 | apply (subst Bochner_Integration.integral_diff[symmetric]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1013 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff) | 
| 47694 | 1014 | done | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1015 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1016 | let ?P = "density (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) Pxyz" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1017 | interpret P: prob_space ?P | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1018 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] | 
| 50003 | 1019 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1020 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1021 | let ?Q = "density (T \<Otimes>\<^sub>M P) Pyz" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1022 | interpret Q: prob_space ?Q | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1023 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] | 
| 50003 | 1024 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1025 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1026 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1027 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1028 | from subdensity_real[of snd, OF _ Pyz Pz _ AE_I2 AE_I2] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1029 | have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1030 | by (auto simp: comp_def space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1031 | have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1032 | using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1033 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1034 | have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 1035 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1036 | by (intro TP.AE_pair_measure) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1037 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1038 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1039 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1040 | (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1041 | also have "\<dots> = (\<integral>\<^sup>+(y, z). (\<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S) \<partial>(T \<Otimes>\<^sub>M P))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1042 | by (subst STP.nn_integral_snd[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1043 | (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1044 | also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1045 | proof - | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1046 | have D: "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1047 | if "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "a \<in> space T \<and> b \<in> space P" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1048 | "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1049 | for a b | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1050 | using that by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1051 | show ?thesis | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1052 | apply (rule nn_integral_cong_AE) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1053 | using aeX1 aeX2 aeX3 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1054 | by (force simp add: space_pair_measure D) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1055 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1056 | also have "\<dots> = 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1057 | using Q.emeasure_space_1 distributed_distr_eq_density[OF Pyz] | 
| 56996 | 1058 | by (subst nn_integral_density[symmetric]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1059 | finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1060 | also have "\<dots> < \<infinity>" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1061 | finally have fin: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1062 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1063 | have pos: "(\<integral>\<^sup>+x. ?f x \<partial>?P) \<noteq> 0" | 
| 56996 | 1064 | apply (subst nn_integral_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1065 | apply (simp_all add: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1066 | proof | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1067 | let ?g = "\<lambda>x. ennreal (Pxyz x) * (Pxz (fst x, snd (snd x)) * Pyz (snd x) / (Pz (snd (snd x)) * Pxyz x))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1068 | assume "(\<integral>\<^sup>+x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1069 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0" | 
| 56996 | 1070 | by (intro nn_integral_0_iff_AE[THEN iffD1]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1071 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1072 | using ae1 ae2 ae3 ae4 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1073 | by (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1074 | then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0" | 
| 56996 | 1075 | by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1076 | with P.emeasure_space_1 show False | 
| 56996 | 1077 | by (subst (asm) emeasure_density) (auto cong: nn_integral_cong) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1078 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1079 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1080 | have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1081 | by (subst nn_integral_0_iff_AE) (auto simp: space_pair_measure ennreal_neg) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1082 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1083 | have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1084 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]]) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1085 | using ae | 
| 50003 | 1086 | apply (auto simp: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1087 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1088 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1089 | have "- log b 1 \<le> - log b (integral\<^sup>L ?P ?f)" | 
| 80034 
95b4fb2b5359
New material and a bit of refactoring
 paulson <lp15@cam.ac.uk> parents: 
79772diff
changeset | 1090 | proof (intro le_imp_neg_le Transcendental.log_mono[OF b_gt_1]) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1091 | have If: "integrable ?P ?f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1092 | unfolding real_integrable_def | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1093 | proof (intro conjI) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1094 | from neg show "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1095 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1096 | from fin show "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1097 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1098 | qed simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1099 | then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)" | 
| 56996 | 1100 | apply (rule nn_integral_eq_integral) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1101 | apply (auto simp: space_pair_measure ennreal_neg) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1102 | done | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1103 | with pos le1 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1104 | show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1105 | by (simp_all add: one_ennreal.rep_eq zero_less_iff_neq_zero[symmetric]) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1106 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1107 | also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1108 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1109 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1110 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1111 | using ae1 ae2 ae3 ae4 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1112 | by (auto simp: space_pair_measure less_le) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1113 | show "integrable ?P ?f" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1114 | unfolding real_integrable_def | 
| 50003 | 1115 | using fin neg by (auto simp: split_beta') | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1116 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1117 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1118 | using ae1 ae2 ae3 ae4 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1119 | apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1120 | less_le space_pair_measure) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1121 | done | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1122 | then | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1123 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1124 | by (subst integrable_real_density) (auto simp: space_pair_measure) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1125 | qed (auto simp: b_gt_1 minus_log_convex) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1126 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | 
| 61808 | 1127 | unfolding \<open>?eq\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1128 | apply (subst integral_real_density) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1129 | apply simp | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1130 | apply (force simp: space_pair_measure) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1131 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1132 | apply (intro integral_cong_AE) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1133 | using ae1 ae2 ae3 ae4 | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1134 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1135 | space_pair_measure less_le) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1136 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1137 | finally show ?nonneg | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1138 | by simp | 
| 40859 | 1139 | qed | 
| 1140 | ||
| 49803 | 1141 | lemma (in information_space) | 
| 1142 | fixes Px :: "_ \<Rightarrow> real" | |
| 1143 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | |
| 1144 | assumes Fx: "finite_entropy S X Px" | |
| 1145 | assumes Fz: "finite_entropy P Z Pz" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1146 | assumes Fyz: "finite_entropy (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1147 | assumes Fxz: "finite_entropy (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) Pxz" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1148 | assumes Fxyz: "finite_entropy (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | 
| 49803 | 1149 | shows conditional_mutual_information_generic_eq': "conditional_mutual_information b S T P X Y Z | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1150 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" (is "?eq") | 
| 49803 | 1151 | and conditional_mutual_information_generic_nonneg': "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | 
| 1152 | proof - | |
| 50003 | 1153 | note Px = Fx[THEN finite_entropy_distributed, measurable] | 
| 1154 | note Pz = Fz[THEN finite_entropy_distributed, measurable] | |
| 1155 | note Pyz = Fyz[THEN finite_entropy_distributed, measurable] | |
| 1156 | note Pxz = Fxz[THEN finite_entropy_distributed, measurable] | |
| 1157 | note Pxyz = Fxyz[THEN finite_entropy_distributed, measurable] | |
| 49803 | 1158 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1159 | note Px_nn = Fx[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1160 | note Pz_nn = Fz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1161 | note Pyz_nn = Fyz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1162 | note Pxz_nn = Fxz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1163 | note Pxyz_nn = Fxyz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1164 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1165 | note Px' = Fx[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1166 | note Pz' = Fz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1167 | note Pyz' = Fyz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1168 | note Pxz' = Fxz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1169 | note Pxyz' = Fxyz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1170 | |
| 49803 | 1171 | interpret S: sigma_finite_measure S by fact | 
| 1172 | interpret T: sigma_finite_measure T by fact | |
| 1173 | interpret P: sigma_finite_measure P by fact | |
| 1174 | interpret TP: pair_sigma_finite T P .. | |
| 1175 | interpret SP: pair_sigma_finite S P .. | |
| 1176 | interpret ST: pair_sigma_finite S T .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1177 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^sub>M P" T .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1178 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^sub>M P" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1179 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^sub>M P" S .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1180 | have TP: "sigma_finite_measure (T \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1181 | have SP: "sigma_finite_measure (S \<Otimes>\<^sub>M P)" .. | 
| 49803 | 1182 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1183 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1184 | distr (distr M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). (x, z))" | 
| 50003 | 1185 | by (simp add: distr_distr comp_def) | 
| 49803 | 1186 | |
| 1187 | have "mutual_information b S P X Z = | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1188 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1189 | using Px Px_nn Pz Pz_nn Pxz Pxz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1190 | by (rule mutual_information_distr[OF S P]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1191 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1192 | using b_gt_1 Pxz Pxz_nn Pxyz Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1193 | by (subst distributed_transform_integral[OF Pxyz _ Pxz, where T="\<lambda>(x, y, z). (x, z)"]) | 
| 50003 | 1194 | (auto simp: split_beta') | 
| 49803 | 1195 | finally have mi_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1196 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1197 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1198 | have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1199 | by (intro subdensity_finite_entropy[of fst, OF _ Fxyz Fx]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1200 | moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1201 | by (intro subdensity_finite_entropy[of "\<lambda>x. snd (snd x)", OF _ Fxyz Fz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1202 | moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1203 | by (intro subdensity_finite_entropy[of "\<lambda>x. (fst x, snd (snd x))", OF _ Fxyz Fxz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1204 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1205 | by (intro subdensity_finite_entropy[of snd, OF _ Fxyz Fyz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1206 | ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. | 
| 49803 | 1207 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | 
| 1208 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 1209 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1210 | using AE_space | 
| 49803 | 1211 | proof eventually_elim | 
| 60580 | 1212 | case (elim x) | 
| 49803 | 1213 | show ?case | 
| 1214 | proof cases | |
| 1215 | assume "Pxyz x \<noteq> 0" | |
| 60580 | 1216 | with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" | 
| 1217 | "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1218 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1219 | by (auto simp: space_pair_measure less_le) | 
| 49803 | 1220 | then show ?thesis | 
| 56544 | 1221 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 49803 | 1222 | qed simp | 
| 1223 | qed | |
| 1224 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1225 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) | 
| 49803 | 1226 | (\<lambda>x. Pxyz x * log b (Pxyz x) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pyz (snd x)))" | 
| 1227 | using finite_entropy_integrable[OF Fxyz] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1228 | using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1229 | using finite_entropy_integrable_transform[OF Fyz Pxyz Pxyz_nn, of snd] | 
| 49803 | 1230 | by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1231 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z)))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)" | 
| 50003 | 1232 | using Pxyz Px Pyz by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1233 | ultimately have I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 49803 | 1234 | apply (rule integrable_cong_AE_imp) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1235 | using ae1 ae4 Px_nn Pyz_nn Pxyz_nn | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1236 | by (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff space_pair_measure less_le) | 
| 49803 | 1237 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1238 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) | 
| 49803 | 1239 | (\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1240 | using finite_entropy_integrable_transform[OF Fxz Pxyz Pxyz_nn, of "\<lambda>x. (fst x, snd (snd x))"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1241 | using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1242 | using finite_entropy_integrable_transform[OF Fz Pxyz Pxyz_nn, of "snd \<circ> snd"] | 
| 50003 | 1243 | by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1244 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)" | 
| 49803 | 1245 | using Pxyz Px Pz | 
| 50003 | 1246 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1247 | ultimately have I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | 
| 49803 | 1248 | apply (rule integrable_cong_AE_imp) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1249 | using ae1 ae2 ae3 ae4 Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1250 | by (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff less_le space_pair_measure) | 
| 49803 | 1251 | |
| 1252 | from ae I1 I2 show ?eq | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1253 | unfolding conditional_mutual_information_def mi_eq | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1254 | apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn]; simp add: space_pair_measure) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1255 | apply (subst Bochner_Integration.integral_diff[symmetric]) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1256 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff) | 
| 49803 | 1257 | done | 
| 1258 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1259 | let ?P = "density (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) Pxyz" | 
| 49803 | 1260 | interpret P: prob_space ?P | 
| 50003 | 1261 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1262 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1263 | let ?Q = "density (T \<Otimes>\<^sub>M P) Pyz" | 
| 49803 | 1264 | interpret Q: prob_space ?Q | 
| 50003 | 1265 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1266 | |
| 1267 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | |
| 1268 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1269 | from subdensity_finite_entropy[of snd, OF _ Fyz Fz] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1270 | have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1271 | have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1272 | using Pz by (intro TP.AE_pair_measure) (auto intro: Pz_nn) | 
| 49803 | 1273 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1274 | have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))" | 
| 49803 | 1275 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1276 | by (intro TP.AE_pair_measure) (auto ) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1277 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1278 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1279 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1280 | (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1281 | also have "\<dots> = (\<integral>\<^sup>+(y, z). \<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^sub>M P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1282 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1283 | by (subst STP.nn_integral_snd[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1284 | (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1285 | also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1286 | proof - | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1287 | have *: "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1288 | if "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1289 | "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)" for a b | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1290 | using Pyz_nn[of "(a,b)"] that | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1291 | by (subst nn_integral_multc) (auto simp: space_pair_measure ennreal_mult[symmetric]) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1292 | show ?thesis | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1293 | using aeX1 aeX2 aeX3 AE_space | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1294 | by (force simp: * space_pair_measure intro: nn_integral_cong_AE) | 
| 49803 | 1295 | qed | 
| 1296 | also have "\<dots> = 1" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1297 | using Q.emeasure_space_1 Pyz_nn distributed_distr_eq_density[OF Pyz] | 
| 56996 | 1298 | by (subst nn_integral_density[symmetric]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1299 | finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 49803 | 1300 | also have "\<dots> < \<infinity>" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1301 | finally have fin: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | 
| 49803 | 1302 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1303 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1304 | using Pxyz_nn | 
| 56996 | 1305 | apply (subst nn_integral_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1306 | apply (simp_all add: split_beta' ennreal_mult'[symmetric] cong: nn_integral_cong) | 
| 49803 | 1307 | proof | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1308 | let ?g = "\<lambda>x. ennreal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1309 | assume "(\<integral>\<^sup>+ x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1310 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1311 | by (intro nn_integral_0_iff_AE[THEN iffD1]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1312 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1313 | using ae1 ae2 ae3 ae4 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1314 | by (insert Px_nn Pz_nn Pxz_nn Pyz_nn, | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1315 | auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1316 | then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0" | 
| 56996 | 1317 | by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | 
| 49803 | 1318 | with P.emeasure_space_1 show False | 
| 56996 | 1319 | by (subst (asm) emeasure_density) (auto cong: nn_integral_cong) | 
| 49803 | 1320 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1321 | then have pos: "0 < (\<integral>\<^sup>+ x. ?f x \<partial>?P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1322 | by (simp add: zero_less_iff_neq_zero) | 
| 49803 | 1323 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1324 | have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1325 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1326 | by (intro nn_integral_0_iff_AE[THEN iffD2]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1327 | (auto simp: split_beta' AE_density space_pair_measure intro!: AE_I2 ennreal_neg) | 
| 49803 | 1328 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1329 | have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1330 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]]) | 
| 49803 | 1331 | using ae | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1332 | by (auto simp: split_beta') | 
| 49803 | 1333 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1334 | have "- log b 1 \<le> - log b (integral\<^sup>L ?P ?f)" | 
| 80034 
95b4fb2b5359
New material and a bit of refactoring
 paulson <lp15@cam.ac.uk> parents: 
79772diff
changeset | 1335 | proof (intro le_imp_neg_le Transcendental.log_mono[OF b_gt_1]) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1336 | have If: "integrable ?P ?f" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1337 | using neg fin by (force simp add: real_integrable_def) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1338 | then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1339 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1340 | by (intro nn_integral_eq_integral) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1341 | (auto simp: AE_density space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1342 | with pos le1 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1343 | show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1344 | by (simp_all add: ) | 
| 49803 | 1345 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1346 | also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | 
| 49803 | 1347 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | 
| 1348 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | |
| 1349 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1350 | using ae1 ae2 ae3 ae4 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1351 | by (insert Pxyz_nn Pyz_nn Pz_nn Pxz_nn, auto simp: space_pair_measure less_le) | 
| 49803 | 1352 | show "integrable ?P ?f" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1353 | unfolding real_integrable_def | 
| 50003 | 1354 | using fin neg by (auto simp: split_beta') | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1355 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))" | 
| 49803 | 1356 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1357 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn ae2 ae3 ae4 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1358 | by (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1359 | zero_less_divide_iff field_simps space_pair_measure less_le) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1360 | then | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1361 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1362 | using Pxyz_nn by (auto simp: integrable_real_density) | 
| 49803 | 1363 | qed (auto simp: b_gt_1 minus_log_convex) | 
| 1364 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | |
| 61808 | 1365 | unfolding \<open>?eq\<close> | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1366 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1367 | apply (subst integral_real_density) | 
| 50003 | 1368 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1369 | apply simp | 
| 50003 | 1370 | apply simp | 
| 49803 | 1371 | apply (intro integral_cong_AE) | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1372 | using ae1 ae2 ae3 ae4 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1373 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1374 | field_simps space_pair_measure less_le integral_cong_AE) | 
| 49803 | 1375 | done | 
| 1376 | finally show ?nonneg | |
| 1377 | by simp | |
| 1378 | qed | |
| 1379 | ||
| 40859 | 1380 | lemma (in information_space) conditional_mutual_information_eq: | 
| 47694 | 1381 | assumes Pz: "simple_distributed M Z Pz" | 
| 1382 | assumes Pyz: "simple_distributed M (\<lambda>x. (Y x, Z x)) Pyz" | |
| 1383 | assumes Pxz: "simple_distributed M (\<lambda>x. (X x, Z x)) Pxz" | |
| 1384 | assumes Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz" | |
| 1385 | shows "\<I>(X ; Y | Z) = | |
| 1386 | (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x))`space M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1387 | proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _ _ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1388 | simple_distributed[OF Pz] _ simple_distributed_joint[OF Pyz] _ simple_distributed_joint[OF Pxz] _ | 
| 47694 | 1389 | simple_distributed_joint2[OF Pxyz]]) | 
| 1390 | note simple_distributed_joint2_finite[OF Pxyz, simp] | |
| 1391 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1392 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1393 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1394 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1395 | show "sigma_finite_measure (count_space (Z ` space M))" | |
| 1396 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1397 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) \<Otimes>\<^sub>M count_space (Z ` space M) = | 
| 47694 | 1398 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | 
| 1399 | (is "?P = ?C") | |
| 1400 | by (simp add: pair_measure_count_space) | |
| 40859 | 1401 | |
| 47694 | 1402 |   let ?Px = "\<lambda>x. measure M (X -` {x} \<inter> space M)"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1403 | have "(\<lambda>x. (X x, Z x)) \<in> measurable M (count_space (X ` space M) \<Otimes>\<^sub>M count_space (Z ` space M))" | 
| 47694 | 1404 | using simple_distributed_joint[OF Pxz] by (rule distributed_measurable) | 
| 1405 | from measurable_comp[OF this measurable_fst] | |
| 1406 | have "random_variable (count_space (X ` space M)) X" | |
| 1407 | by (simp add: comp_def) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1408 | then have "simple_function M X" | 
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
49999diff
changeset | 1409 | unfolding simple_function_def by (auto simp: measurable_count_space_eq2) | 
| 47694 | 1410 | then have "simple_distributed M X ?Px" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1411 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1412 | then show "distributed M (count_space (X ` space M)) X ?Px" | 
| 1413 | by (rule simple_distributed) | |
| 1414 | ||
| 1415 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then Pxyz x else 0)" | |
| 1416 | let ?g = "(\<lambda>x. if x \<in> (\<lambda>x. (Y x, Z x)) ` space M then Pyz x else 0)" | |
| 1417 | let ?h = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Z x)) ` space M then Pxz x else 0)" | |
| 1418 | show | |
| 1419 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?f (x, y, z) / (?Px x * ?g (y, z))))" | |
| 1420 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?h (x, z) / (?Px x * Pz z)))" | |
| 1421 | by (auto intro!: integrable_count_space simp: pair_measure_count_space) | |
| 1422 | let ?i = "\<lambda>x y z. ?f (x, y, z) * log b (?f (x, y, z) / (?h (x, z) * (?g (y, z) / Pz z)))" | |
| 1423 | let ?j = "\<lambda>x y z. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z)))" | |
| 1424 | have "(\<lambda>(x, y, z). ?i x y z) = (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then ?j (fst x) (fst (snd x)) (snd (snd x)) else 0)" | |
| 1425 | by (auto intro!: ext) | |
| 1426 | then show "(\<integral> (x, y, z). ?i x y z \<partial>?P) = (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x)) ` space M. ?j x y z)" | |
| 64267 | 1427 | by (auto intro!: sum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite sum.If_cases split_beta') | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1428 | qed (insert Pz Pyz Pxz Pxyz, auto intro: measure_nonneg) | 
| 36624 | 1429 | |
| 47694 | 1430 | lemma (in information_space) conditional_mutual_information_nonneg: | 
| 1431 | assumes X: "simple_function M X" and Y: "simple_function M Y" and Z: "simple_function M Z" | |
| 1432 | shows "0 \<le> \<I>(X ; Y | Z)" | |
| 1433 | proof - | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1434 | have [simp]: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) \<Otimes>\<^sub>M count_space (Z ` space M) = | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1435 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1436 | by (simp add: pair_measure_count_space X Y Z simple_functionD) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1437 | note sf = sigma_finite_measure_count_space_finite[OF simple_functionD(1)] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1438 | note sd = simple_distributedI[OF _ _ refl] | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1439 | note sp = simple_function_Pair | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1440 | show ?thesis | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1441 | apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1442 | apply (force intro: simple_distributed[OF sd[OF X]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1443 | apply simp | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1444 | apply (force intro: simple_distributed[OF sd[OF Z]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1445 | apply simp | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1446 | apply (force intro: simple_distributed_joint[OF sd[OF sp[OF Y Z]]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1447 | apply simp | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1448 | apply (force intro: simple_distributed_joint[OF sd[OF sp[OF X Z]]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1449 | apply simp | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1450 | apply (fastforce intro: simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1451 | apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1452 | done | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1453 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1454 | |
| 61808 | 1455 | subsection \<open>Conditional Entropy\<close> | 
| 39097 | 1456 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1457 | definition (in prob_space) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1458 | "conditional_entropy b S T X Y = - (\<integral>(x, y). log b (enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (x, y)) / | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1459 | enn2real (RN_deriv T (distr M T Y) y)) \<partial>distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1460 | |
| 40859 | 1461 | abbreviation (in information_space) | 
| 1462 |   conditional_entropy_Pow ("\<H>'(_ | _')") where
 | |
| 47694 | 1463 | "\<H>(X | Y) \<equiv> conditional_entropy b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1464 | |
| 49791 | 1465 | lemma (in information_space) conditional_entropy_generic_eq: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1466 | fixes Pxy :: "_ \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 49791 | 1467 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1468 | assumes Py[measurable]: "distributed M T Y Py" and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1469 | assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1470 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1471 | shows "conditional_entropy b S T X Y = - (\<integral>(x, y). Pxy (x, y) * log b (Pxy (x, y) / Py y) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 49791 | 1472 | proof - | 
| 1473 | interpret S: sigma_finite_measure S by fact | |
| 1474 | interpret T: sigma_finite_measure T by fact | |
| 1475 | interpret ST: pair_sigma_finite S T .. | |
| 1476 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1477 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1478 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1479 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1480 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1481 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1482 | have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Pxy x = enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) x)" | 
| 49791 | 1483 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | 
| 1484 | unfolding distributed_distr_eq_density[OF Pxy] | |
| 1485 | using distributed_RN_deriv[OF Pxy] | |
| 1486 | by auto | |
| 1487 | moreover | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1488 | have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Py (snd x) = enn2real (RN_deriv T (distr M T Y) (snd x))" | 
| 49791 | 1489 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | 
| 1490 | unfolding distributed_distr_eq_density[OF Py] | |
| 1491 | using distributed_RN_deriv[OF Py] | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1492 | by (force intro: ST.AE_pair_measure) | 
| 49791 | 1493 | ultimately | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1494 | have "conditional_entropy b S T X Y = - (\<integral>x. Pxy x * log b (Pxy x / Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 49791 | 1495 | unfolding conditional_entropy_def neg_equal_iff_equal | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1496 | apply (subst integral_real_density[symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1497 | apply (auto simp: distributed_distr_eq_density[OF Pxy] space_pair_measure | 
| 49791 | 1498 | intro!: integral_cong_AE) | 
| 1499 | done | |
| 1500 | then show ?thesis by (simp add: split_beta') | |
| 1501 | qed | |
| 1502 | ||
| 1503 | lemma (in information_space) conditional_entropy_eq_entropy: | |
| 47694 | 1504 | fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 1505 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1506 | assumes Py[measurable]: "distributed M T Y Py" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1507 | and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1508 | assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1509 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1510 | assumes I1: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1511 | assumes I2: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1512 | shows "conditional_entropy b S T X Y = entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) - entropy b T Y" | 
| 40859 | 1513 | proof - | 
| 47694 | 1514 | interpret S: sigma_finite_measure S by fact | 
| 1515 | interpret T: sigma_finite_measure T by fact | |
| 1516 | interpret ST: pair_sigma_finite S T .. | |
| 1517 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1518 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1519 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1520 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1521 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1522 | |
| 47694 | 1523 | have "entropy b T Y = - (\<integral>y. Py y * log b (Py y) \<partial>T)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1524 | by (rule entropy_distr[OF Py Py_nn]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1525 | also have "\<dots> = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1526 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1527 | by (subst distributed_transform_integral[OF Pxy _ Py, where T=snd]) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1528 | (auto intro!: Bochner_Integration.integral_cong simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1529 | finally have e_eq: "entropy b T Y = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))" . | 
| 49791 | 1530 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1531 | have **: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1532 | by (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1533 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1534 | have ae2: "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1535 | by (intro subdensity_real[of snd, OF _ Pxy Py]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1536 | (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1537 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1538 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1539 | ultimately have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Pxy x \<and> 0 \<le> Py (snd x) \<and> | 
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1540 | (Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Py (snd x)))" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1541 | by (auto simp: space_pair_measure less_le) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1542 | then have ae: "AE x in S \<Otimes>\<^sub>M T. | 
| 47694 | 1543 | Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1544 | by (auto simp: log_simps field_simps b_gt_1) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1545 | have "conditional_entropy b S T X Y = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1546 | - (\<integral>x. Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1547 | unfolding conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] neg_equal_iff_equal | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1548 | using ae by (force intro: integral_cong_AE) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1549 | also have "\<dots> = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T)) - - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1550 | by (simp add: Bochner_Integration.integral_diff[OF I1 I2]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1551 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1552 | using conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1553 | entropy_distr[OF Pxy **, simplified] e_eq | 
| 49791 | 1554 | by (simp add: split_beta') | 
| 1555 | qed | |
| 1556 | ||
| 1557 | lemma (in information_space) conditional_entropy_eq_entropy_simple: | |
| 1558 | assumes X: "simple_function M X" and Y: "simple_function M Y" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1559 | shows "\<H>(X | Y) = entropy b (count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x)) - \<H>(Y)" | 
| 49791 | 1560 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1561 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | 
| 49791 | 1562 | (is "?P = ?C") using X Y by (simp add: simple_functionD pair_measure_count_space) | 
| 1563 | show ?thesis | |
| 1564 | by (rule conditional_entropy_eq_entropy sigma_finite_measure_count_space_finite | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1565 | simple_functionD X Y simple_distributed simple_distributedI[OF _ _ refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1566 | simple_distributed_joint simple_function_Pair integrable_count_space measure_nonneg)+ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1567 | (auto simp: \<open>?P = ?C\<close> measure_nonneg intro!: integrable_count_space simple_functionD X Y) | 
| 39097 | 1568 | qed | 
| 1569 | ||
| 40859 | 1570 | lemma (in information_space) conditional_entropy_eq: | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1571 | assumes Y: "simple_distributed M Y Py" | 
| 47694 | 1572 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | 
| 1573 | shows "\<H>(X | Y) = - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | |
| 1574 | proof (subst conditional_entropy_generic_eq[OF _ _ | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1575 | simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1576 | have "finite ((\<lambda>x. (X x, Y x))`space M)" | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1577 | using XY unfolding simple_distributed_def by auto | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1578 | from finite_imageI[OF this, of fst] | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1579 | have [simp]: "finite (X`space M)" | 
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
53374diff
changeset | 1580 | by (simp add: image_comp comp_def) | 
| 47694 | 1581 | note Y[THEN simple_distributed_finite, simp] | 
| 1582 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1583 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1584 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1585 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1586 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1587 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | 
| 47694 | 1588 | (is "?P = ?C") | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1589 | using Y by (simp add: simple_distributed_finite pair_measure_count_space) | 
| 47694 | 1590 | have eq: "(\<lambda>(x, y). ?f (x, y) * log b (?f (x, y) / Py y)) = | 
| 1591 | (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / Py (snd x)) else 0)" | |
| 1592 | by auto | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1593 | from Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) = | 
| 47694 | 1594 | - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | 
| 64267 | 1595 | by (auto intro!: sum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite eq sum.If_cases split_beta') | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1596 | qed (use Y XY in auto) | 
| 39097 | 1597 | |
| 47694 | 1598 | lemma (in information_space) conditional_mutual_information_eq_conditional_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1599 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 47694 | 1600 | shows "\<I>(X ; X | Y) = \<H>(X | Y)" | 
| 1601 | proof - | |
| 63040 | 1602 |   define Py where "Py x = (if x \<in> Y`space M then measure M (Y -` {x} \<inter> space M) else 0)" for x
 | 
| 1603 | define Pxy where "Pxy x = | |
| 1604 |       (if x \<in> (\<lambda>x. (X x, Y x))`space M then measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M) else 0)"
 | |
| 1605 | for x | |
| 1606 | define Pxxy where "Pxxy x = | |
| 1607 |       (if x \<in> (\<lambda>x. (X x, X x, Y x))`space M then measure M ((\<lambda>x. (X x, X x, Y x)) -` {x} \<inter> space M)
 | |
| 1608 | else 0)" | |
| 1609 | for x | |
| 47694 | 1610 | let ?M = "X`space M \<times> X`space M \<times> Y`space M" | 
| 39097 | 1611 | |
| 47694 | 1612 | note XY = simple_function_Pair[OF X Y] | 
| 1613 | note XXY = simple_function_Pair[OF X XY] | |
| 1614 | have Py: "simple_distributed M Y Py" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1615 | using Y by (rule simple_distributedI) (auto simp: Py_def measure_nonneg) | 
| 47694 | 1616 | have Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1617 | using XY by (rule simple_distributedI) (auto simp: Pxy_def measure_nonneg) | 
| 47694 | 1618 | have Pxxy: "simple_distributed M (\<lambda>x. (X x, X x, Y x)) Pxxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1619 | using XXY by (rule simple_distributedI) (auto simp: Pxxy_def measure_nonneg) | 
| 47694 | 1620 | have eq: "(\<lambda>x. (X x, X x, Y x)) ` space M = (\<lambda>(x, y). (x, x, y)) ` (\<lambda>x. (X x, Y x)) ` space M" | 
| 1621 | by auto | |
| 1622 | have inj: "\<And>A. inj_on (\<lambda>(x, y). (x, x, y)) A" | |
| 1623 | by (auto simp: inj_on_def) | |
| 1624 | have Pxxy_eq: "\<And>x y. Pxxy (x, x, y) = Pxy (x, y)" | |
| 1625 | by (auto simp: Pxxy_def Pxy_def intro!: arg_cong[where f=prob]) | |
| 1626 | have "AE x in count_space ((\<lambda>x. (X x, Y x))`space M). Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1627 | using Py Pxy | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1628 | by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1629 | (auto intro: measurable_Pair simp: AE_count_space) | 
| 47694 | 1630 | then show ?thesis | 
| 1631 | apply (subst conditional_mutual_information_eq[OF Py Pxy Pxy Pxxy]) | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1632 | apply (subst conditional_entropy_eq[OF Py Pxy]) | 
| 64267 | 1633 | apply (auto intro!: sum.cong simp: Pxxy_eq sum_negf[symmetric] eq sum.reindex[OF inj] | 
| 47694 | 1634 | log_simps zero_less_mult_iff zero_le_mult_iff field_simps mult_less_0_iff AE_count_space) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1635 | using Py[THEN simple_distributed] Pxy[THEN simple_distributed] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1636 | apply (auto simp add: not_le AE_count_space less_le antisym | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1637 | simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy]) | 
| 47694 | 1638 | done | 
| 1639 | qed | |
| 1640 | ||
| 1641 | lemma (in information_space) conditional_entropy_nonneg: | |
| 1642 | assumes X: "simple_function M X" and Y: "simple_function M Y" shows "0 \<le> \<H>(X | Y)" | |
| 1643 | using conditional_mutual_information_eq_conditional_entropy[OF X Y] conditional_mutual_information_nonneg[OF X X Y] | |
| 1644 | by simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1645 | |
| 61808 | 1646 | subsection \<open>Equalities\<close> | 
| 39097 | 1647 | |
| 47694 | 1648 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy_distr: | 
| 1649 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | |
| 1650 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1651 | assumes Px[measurable]: "distributed M S X Px" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1652 | and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1653 | and Py[measurable]: "distributed M T Y Py" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1654 | and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1655 | and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1656 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1657 | assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1658 | assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1659 | assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1660 | shows "mutual_information b S T X Y = entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 40859 | 1661 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1662 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1663 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1664 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1665 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1666 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1667 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1668 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1669 | have X: "entropy b S X = - (\<integral>x. Pxy x * log b (Px (fst x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1670 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1671 | apply (subst entropy_distr[OF Px Px_nn], simp) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1672 | apply (subst distributed_transform_integral[OF Pxy _ Px, where T=fst]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1673 | apply (auto intro!: integral_cong simp: space_pair_measure) | 
| 47694 | 1674 | done | 
| 1675 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1676 | have Y: "entropy b T Y = - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1677 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1678 | apply (subst entropy_distr[OF Py Py_nn], simp) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1679 | apply (subst distributed_transform_integral[OF Pxy _ Py, where T=snd]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1680 | apply (auto intro!: integral_cong simp: space_pair_measure) | 
| 47694 | 1681 | done | 
| 1682 | ||
| 1683 | interpret S: sigma_finite_measure S by fact | |
| 1684 | interpret T: sigma_finite_measure T by fact | |
| 1685 | interpret ST: pair_sigma_finite S T .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1686 | have ST: "sigma_finite_measure (S \<Otimes>\<^sub>M T)" .. | 
| 47694 | 1687 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1688 | have XY: "entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1689 | by (subst entropy_distr[OF Pxy]) (auto intro!: integral_cong simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1690 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1691 | have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1692 | by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1693 | moreover have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1694 | by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1695 | moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Px (fst x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1696 | using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1697 | moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1698 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'') | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1699 | ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) = | 
| 47694 | 1700 | Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 1701 | (is "AE x in _. ?f x = ?g x") | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1702 | using AE_space | 
| 47694 | 1703 | proof eventually_elim | 
| 60580 | 1704 | case (elim x) | 
| 47694 | 1705 | show ?case | 
| 1706 | proof cases | |
| 1707 | assume "Pxy x \<noteq> 0" | |
| 60580 | 1708 | with elim have "0 < Px (fst x)" "0 < Py (snd x)" "0 < Pxy x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1709 | by (auto simp: space_pair_measure less_le) | 
| 47694 | 1710 | then show ?thesis | 
| 56544 | 1711 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 47694 | 1712 | qed simp | 
| 1713 | qed | |
| 1714 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1715 | have "entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = integral\<^sup>L (S \<Otimes>\<^sub>M T) ?f" | 
| 47694 | 1716 | unfolding X Y XY | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1717 | apply (subst Bochner_Integration.integral_diff) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1718 | apply (intro Bochner_Integration.integrable_diff Ixy Ix Iy)+ | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1719 | apply (subst Bochner_Integration.integral_diff) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1720 | apply (intro Ixy Ix Iy)+ | 
| 47694 | 1721 | apply (simp add: field_simps) | 
| 1722 | done | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1723 | also have "\<dots> = integral\<^sup>L (S \<Otimes>\<^sub>M T) ?g" | 
| 61808 | 1724 | using \<open>AE x in _. ?f x = ?g x\<close> by (intro integral_cong_AE) auto | 
| 47694 | 1725 | also have "\<dots> = mutual_information b S T X Y" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1726 | by (rule mutual_information_distr[OF S T Px _ Py _ Pxy _ , symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1727 | (auto simp: space_pair_measure) | 
| 47694 | 1728 | finally show ?thesis .. | 
| 1729 | qed | |
| 1730 | ||
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1731 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy': | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1732 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1733 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1734 | assumes Px: "distributed M S X Px" "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1735 | and Py: "distributed M T Y Py" "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1736 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1737 | "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1738 | assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1739 | assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1740 | assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1741 | shows "mutual_information b S T X Y = entropy b S X - conditional_entropy b S T X Y" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1742 | using | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1743 | mutual_information_eq_entropy_conditional_entropy_distr[OF S T Px Py Pxy Ix Iy Ixy] | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1744 | conditional_entropy_eq_entropy[OF S T Py Pxy Ixy Iy] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1745 | by (simp add: space_pair_measure) | 
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1746 | |
| 47694 | 1747 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy: | 
| 1748 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1749 | shows "\<I>(X ; Y) = \<H>(X) - \<H>(X | Y)" | |
| 1750 | proof - | |
| 1751 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1752 | using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1753 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1754 | using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1755 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | 
| 1756 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1757 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1758 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1759 | from simple_distributed_joint_finite[OF this, simp] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1760 | have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | 
| 47694 | 1761 | by (simp add: pair_measure_count_space) | 
| 1762 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1763 | have "\<I>(X ; Y) = \<H>(X) + \<H>(Y) - entropy b (count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1764 | using sigma_finite_measure_count_space_finite | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1765 | sigma_finite_measure_count_space_finite | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1766 | simple_distributed[OF X] measure_nonneg simple_distributed[OF Y] measure_nonneg simple_distributed_joint[OF XY] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1767 | by (rule mutual_information_eq_entropy_conditional_entropy_distr) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1768 | (auto simp: eq integrable_count_space measure_nonneg) | 
| 47694 | 1769 | then show ?thesis | 
| 49791 | 1770 | unfolding conditional_entropy_eq_entropy_simple[OF sf_X sf_Y] by simp | 
| 47694 | 1771 | qed | 
| 1772 | ||
| 1773 | lemma (in information_space) mutual_information_nonneg_simple: | |
| 1774 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1775 | shows "0 \<le> \<I>(X ; Y)" | |
| 1776 | proof - | |
| 1777 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1778 | using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1779 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1780 | using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1781 | |
| 1782 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | |
| 1783 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1784 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1785 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1786 | |
| 1787 | from simple_distributed_joint_finite[OF this, simp] | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1788 | have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | 
| 47694 | 1789 | by (simp add: pair_measure_count_space) | 
| 1790 | ||
| 40859 | 1791 | show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1792 | by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1793 | (simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite measure_nonneg) | 
| 40859 | 1794 | qed | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1795 | |
| 40859 | 1796 | lemma (in information_space) conditional_entropy_less_eq_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1797 | assumes X: "simple_function M X" and Z: "simple_function M Z" | 
| 40859 | 1798 | shows "\<H>(X | Z) \<le> \<H>(X)" | 
| 36624 | 1799 | proof - | 
| 47694 | 1800 | have "0 \<le> \<I>(X ; Z)" using X Z by (rule mutual_information_nonneg_simple) | 
| 1801 | also have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy[OF assms] . | |
| 1802 | finally show ?thesis by auto | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1803 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1804 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1805 | lemma (in information_space) | 
| 49803 | 1806 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
| 1807 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1808 | assumes Px: "finite_entropy S X Px" and Py: "finite_entropy T Y Py" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1809 | assumes Pxy: "finite_entropy (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 49803 | 1810 | shows "conditional_entropy b S T X Y \<le> entropy b S X" | 
| 1811 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1812 | have "0 \<le> mutual_information b S T X Y" | 
| 49803 | 1813 | by (rule mutual_information_nonneg') fact+ | 
| 1814 | also have "\<dots> = entropy b S X - conditional_entropy b S T X Y" | |
| 79772 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1815 | proof (intro mutual_information_eq_entropy_conditional_entropy') | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1816 | show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1817 | "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1818 | "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1819 | using assms | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1820 | by (auto intro!: finite_entropy_integrable finite_entropy_distributed | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1821 | finite_entropy_integrable_transform[OF Px] finite_entropy_integrable_transform[OF Py] | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1822 | intro: finite_entropy_nn) | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1823 | qed (use assms Px Py Pxy finite_entropy_nn finite_entropy_distributed in auto) | 
| 49803 | 1824 | finally show ?thesis by auto | 
| 1825 | qed | |
| 1826 | ||
| 40859 | 1827 | lemma (in information_space) entropy_chain_rule: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1828 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 40859 | 1829 | shows "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)" | 
| 1830 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1831 | note XY = simple_distributedI[OF simple_function_Pair[OF X Y] measure_nonneg refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1832 | note YX = simple_distributedI[OF simple_function_Pair[OF Y X] measure_nonneg refl] | 
| 47694 | 1833 | note simple_distributed_joint_finite[OF this, simp] | 
| 1834 |   let ?f = "\<lambda>x. prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)"
 | |
| 1835 |   let ?g = "\<lambda>x. prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M)"
 | |
| 1836 |   let ?h = "\<lambda>x. if x \<in> (\<lambda>x. (Y x, X x)) ` space M then prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M) else 0"
 | |
| 1837 | have "\<H>(\<lambda>x. (X x, Y x)) = - (\<Sum>x\<in>(\<lambda>x. (X x, Y x)) ` space M. ?f x * log b (?f x))" | |
| 1838 | using XY by (rule entropy_simple_distributed) | |
| 1839 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>(x, y). (y, x)) ` (\<lambda>x. (X x, Y x)) ` space M. ?g x * log b (?g x))" | |
| 64267 | 1840 | by (subst (2) sum.reindex) (auto simp: inj_on_def intro!: sum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | 
| 47694 | 1841 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. (Y x, X x)) ` space M. ?h x * log b (?h x))" | 
| 64267 | 1842 | by (auto intro!: sum.cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1843 | also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" | 
| 49786 | 1844 | by (subst entropy_distr[OF simple_distributed_joint[OF YX]]) | 
| 47694 | 1845 | (auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite | 
| 69654 | 1846 | cong del: sum.cong_simp intro!: sum.mono_neutral_left measure_nonneg) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1847 | finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" . | 
| 47694 | 1848 | then show ?thesis | 
| 49791 | 1849 | unfolding conditional_entropy_eq_entropy_simple[OF Y X] by simp | 
| 36624 | 1850 | qed | 
| 1851 | ||
| 40859 | 1852 | lemma (in information_space) entropy_partition: | 
| 47694 | 1853 | assumes X: "simple_function M X" | 
| 1854 | shows "\<H>(X) = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)" | |
| 36624 | 1855 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1856 | note fX = simple_function_compose[OF X, of f] | 
| 47694 | 1857 | have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto | 
| 1858 | have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A" | |
| 1859 | by (auto simp: inj_on_def) | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1860 | |
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1861 |   have "\<H>(X) = - (\<Sum>x\<in>X ` space M. prob (X -` {x} \<inter> space M) * log b (prob (X -` {x} \<inter> space M)))"
 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1862 | by (simp add: entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]]) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1863 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. ((f \<circ> X) x, X x)) ` space M. | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1864 |                        prob ((\<lambda>x. ((f \<circ> X) x, X x)) -` {x} \<inter> space M) *
 | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1865 |                        log b (prob ((\<lambda>x. ((f \<circ> X) x, X x)) -` {x} \<inter> space M)))"
 | 
| 47694 | 1866 | unfolding eq | 
| 64267 | 1867 | apply (subst sum.reindex[OF inj]) | 
| 1868 | apply (auto intro!: sum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | |
| 47694 | 1869 | done | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1870 | also have "... = \<H>(\<lambda>x. ((f \<circ> X) x, X x))" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1871 | using entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] measure_nonneg refl]] | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1872 | by fastforce | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1873 | also have "\<dots> = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1874 | using X entropy_chain_rule by blast | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
74362diff
changeset | 1875 | finally show ?thesis . | 
| 36624 | 1876 | qed | 
| 1877 | ||
| 40859 | 1878 | corollary (in information_space) entropy_data_processing: | 
| 79772 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1879 | assumes "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)" | 
| 
817d33f8aa7f
Moving valuable library material from Martingales into the distribution
 paulson <lp15@cam.ac.uk> parents: 
79492diff
changeset | 1880 | by (smt (verit) assms conditional_entropy_nonneg entropy_partition simple_function_compose) | 
| 36624 | 1881 | |
| 40859 | 1882 | corollary (in information_space) entropy_of_inj: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1883 | assumes X: "simple_function M X" and inj: "inj_on f (X`space M)" | 
| 36624 | 1884 | shows "\<H>(f \<circ> X) = \<H>(X)" | 
| 1885 | proof (rule antisym) | |
| 40859 | 1886 | show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing[OF X] . | 
| 36624 | 1887 | next | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1888 | have sf: "simple_function M (f \<circ> X)" | 
| 40859 | 1889 | using X by auto | 
| 36624 | 1890 | have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))" | 
| 47694 | 1891 | unfolding o_assoc | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1892 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]]) | 
| 47694 | 1893 |     apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_compose[OF X]], where f="\<lambda>x. prob (X -` {x} \<inter> space M)"])
 | 
| 64267 | 1894 | apply (auto intro!: sum.cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def measure_nonneg) | 
| 47694 | 1895 | done | 
| 36624 | 1896 | also have "... \<le> \<H>(f \<circ> X)" | 
| 40859 | 1897 | using entropy_data_processing[OF sf] . | 
| 36624 | 1898 | finally show "\<H>(X) \<le> \<H>(f \<circ> X)" . | 
| 1899 | qed | |
| 1900 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1901 | end |