author | paulson <lp15@cam.ac.uk> |
Wed, 11 Nov 2015 17:11:50 +0000 | |
changeset 61639 | 6ef461bee3fa |
parent 61605 | 1bf7b186542e |
child 61649 | 268d88ec9087 |
permissions | -rw-r--r-- |
32479 | 1 |
(* Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb, |
31798 | 2 |
Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow |
31706 | 3 |
|
4 |
||
32479 | 5 |
This file deals with the functions gcd and lcm. Definitions and |
6 |
lemmas are proved uniformly for the natural numbers and integers. |
|
31706 | 7 |
|
8 |
This file combines and revises a number of prior developments. |
|
9 |
||
10 |
The original theories "GCD" and "Primes" were by Christophe Tabacznyj |
|
58623 | 11 |
and Lawrence C. Paulson, based on @{cite davenport92}. They introduced |
31706 | 12 |
gcd, lcm, and prime for the natural numbers. |
13 |
||
14 |
The original theory "IntPrimes" was by Thomas M. Rasmussen, and |
|
15 |
extended gcd, lcm, primes to the integers. Amine Chaieb provided |
|
16 |
another extension of the notions to the integers, and added a number |
|
17 |
of results to "Primes" and "GCD". IntPrimes also defined and developed |
|
18 |
the congruence relations on the integers. The notion was extended to |
|
34915 | 19 |
the natural numbers by Chaieb. |
31706 | 20 |
|
32036
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
21 |
Jeremy Avigad combined all of these, made everything uniform for the |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
22 |
natural numbers and the integers, and added a number of new theorems. |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
23 |
|
31798 | 24 |
Tobias Nipkow cleaned up a lot. |
21256 | 25 |
*) |
26 |
||
31706 | 27 |
|
60758 | 28 |
section \<open>Greatest common divisor and least common multiple\<close> |
21256 | 29 |
|
30 |
theory GCD |
|
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
31 |
imports Main |
31706 | 32 |
begin |
33 |
||
60758 | 34 |
subsection \<open>GCD and LCM definitions\<close> |
31706 | 35 |
|
31992 | 36 |
class gcd = zero + one + dvd + |
41550 | 37 |
fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
38 |
and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
21256 | 39 |
begin |
40 |
||
60686 | 41 |
abbreviation coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
42 |
where "coprime x y \<equiv> gcd x y = 1" |
|
31706 | 43 |
|
44 |
end |
|
45 |
||
60686 | 46 |
class Gcd = gcd + |
47 |
fixes Gcd :: "'a set \<Rightarrow> 'a" |
|
48 |
and Lcm :: "'a set \<Rightarrow> 'a" |
|
49 |
||
50 |
class semiring_gcd = normalization_semidom + gcd + |
|
59008 | 51 |
assumes gcd_dvd1 [iff]: "gcd a b dvd a" |
59977 | 52 |
and gcd_dvd2 [iff]: "gcd a b dvd b" |
53 |
and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" |
|
60686 | 54 |
and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" |
55 |
and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b" |
|
56 |
begin |
|
57 |
||
60689 | 58 |
lemma gcd_greatest_iff [simp]: |
60686 | 59 |
"a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" |
60 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
|
61 |
||
60689 | 62 |
lemma gcd_dvdI1: |
63 |
"a dvd c \<Longrightarrow> gcd a b dvd c" |
|
64 |
by (rule dvd_trans) (rule gcd_dvd1) |
|
65 |
||
66 |
lemma gcd_dvdI2: |
|
67 |
"b dvd c \<Longrightarrow> gcd a b dvd c" |
|
68 |
by (rule dvd_trans) (rule gcd_dvd2) |
|
69 |
||
60686 | 70 |
lemma gcd_0_left [simp]: |
71 |
"gcd 0 a = normalize a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
72 |
by (rule associated_eqI) simp_all |
60686 | 73 |
|
74 |
lemma gcd_0_right [simp]: |
|
75 |
"gcd a 0 = normalize a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
76 |
by (rule associated_eqI) simp_all |
60686 | 77 |
|
78 |
lemma gcd_eq_0_iff [simp]: |
|
79 |
"gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" (is "?P \<longleftrightarrow> ?Q") |
|
80 |
proof |
|
81 |
assume ?P then have "0 dvd gcd a b" by simp |
|
82 |
then have "0 dvd a" and "0 dvd b" by (blast intro: dvd_trans)+ |
|
83 |
then show ?Q by simp |
|
84 |
next |
|
85 |
assume ?Q then show ?P by simp |
|
86 |
qed |
|
87 |
||
88 |
lemma unit_factor_gcd: |
|
89 |
"unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" |
|
90 |
proof (cases "gcd a b = 0") |
|
91 |
case True then show ?thesis by simp |
|
92 |
next |
|
93 |
case False |
|
94 |
have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" |
|
95 |
by (rule unit_factor_mult_normalize) |
|
96 |
then have "unit_factor (gcd a b) * gcd a b = gcd a b" |
|
97 |
by simp |
|
98 |
then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" |
|
99 |
by simp |
|
100 |
with False show ?thesis by simp |
|
101 |
qed |
|
102 |
||
60690 | 103 |
lemma is_unit_gcd [simp]: |
104 |
"is_unit (gcd a b) \<longleftrightarrow> coprime a b" |
|
105 |
by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor) |
|
106 |
||
61605 | 107 |
sublocale gcd: abel_semigroup gcd |
60686 | 108 |
proof |
109 |
fix a b c |
|
110 |
show "gcd a b = gcd b a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
111 |
by (rule associated_eqI) simp_all |
60686 | 112 |
from gcd_dvd1 have "gcd (gcd a b) c dvd a" |
113 |
by (rule dvd_trans) simp |
|
114 |
moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" |
|
115 |
by (rule dvd_trans) simp |
|
116 |
ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" |
|
117 |
by (auto intro!: gcd_greatest) |
|
118 |
from gcd_dvd2 have "gcd a (gcd b c) dvd b" |
|
119 |
by (rule dvd_trans) simp |
|
120 |
moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" |
|
121 |
by (rule dvd_trans) simp |
|
122 |
ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" |
|
123 |
by (auto intro!: gcd_greatest) |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
124 |
from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
125 |
by (rule associated_eqI) simp_all |
60686 | 126 |
qed |
127 |
||
128 |
lemma gcd_self [simp]: |
|
129 |
"gcd a a = normalize a" |
|
130 |
proof - |
|
131 |
have "a dvd gcd a a" |
|
132 |
by (rule gcd_greatest) simp_all |
|
133 |
then show ?thesis |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
134 |
by (auto intro: associated_eqI) |
60686 | 135 |
qed |
136 |
||
137 |
lemma coprime_1_left [simp]: |
|
138 |
"coprime 1 a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
139 |
by (rule associated_eqI) simp_all |
60686 | 140 |
|
141 |
lemma coprime_1_right [simp]: |
|
142 |
"coprime a 1" |
|
143 |
using coprime_1_left [of a] by (simp add: ac_simps) |
|
144 |
||
145 |
lemma gcd_mult_left: |
|
146 |
"gcd (c * a) (c * b) = normalize c * gcd a b" |
|
147 |
proof (cases "c = 0") |
|
148 |
case True then show ?thesis by simp |
|
149 |
next |
|
150 |
case False |
|
151 |
then have "c * gcd a b dvd gcd (c * a) (c * b)" |
|
152 |
by (auto intro: gcd_greatest) |
|
153 |
moreover from calculation False have "gcd (c * a) (c * b) dvd c * gcd a b" |
|
154 |
by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) |
|
155 |
ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
156 |
by (auto intro: associated_eqI) |
60686 | 157 |
then show ?thesis by (simp add: normalize_mult) |
158 |
qed |
|
159 |
||
160 |
lemma gcd_mult_right: |
|
161 |
"gcd (a * c) (b * c) = gcd b a * normalize c" |
|
162 |
using gcd_mult_left [of c a b] by (simp add: ac_simps) |
|
163 |
||
164 |
lemma mult_gcd_left: |
|
165 |
"c * gcd a b = unit_factor c * gcd (c * a) (c * b)" |
|
166 |
by (simp add: gcd_mult_left mult.assoc [symmetric]) |
|
167 |
||
168 |
lemma mult_gcd_right: |
|
169 |
"gcd a b * c = gcd (a * c) (b * c) * unit_factor c" |
|
170 |
using mult_gcd_left [of c a b] by (simp add: ac_simps) |
|
171 |
||
60689 | 172 |
lemma dvd_lcm1 [iff]: |
60686 | 173 |
"a dvd lcm a b" |
174 |
proof - |
|
175 |
have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)" |
|
176 |
by (simp add: lcm_gcd normalize_mult div_mult_swap) |
|
177 |
then show ?thesis |
|
178 |
by (simp add: lcm_gcd) |
|
179 |
qed |
|
180 |
||
60689 | 181 |
lemma dvd_lcm2 [iff]: |
60686 | 182 |
"b dvd lcm a b" |
183 |
proof - |
|
184 |
have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)" |
|
185 |
by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps) |
|
186 |
then show ?thesis |
|
187 |
by (simp add: lcm_gcd) |
|
188 |
qed |
|
189 |
||
60689 | 190 |
lemma dvd_lcmI1: |
191 |
"a dvd b \<Longrightarrow> a dvd lcm b c" |
|
192 |
by (rule dvd_trans) (assumption, blast) |
|
193 |
||
194 |
lemma dvd_lcmI2: |
|
195 |
"a dvd c \<Longrightarrow> a dvd lcm b c" |
|
196 |
by (rule dvd_trans) (assumption, blast) |
|
197 |
||
60686 | 198 |
lemma lcm_least: |
199 |
assumes "a dvd c" and "b dvd c" |
|
200 |
shows "lcm a b dvd c" |
|
201 |
proof (cases "c = 0") |
|
202 |
case True then show ?thesis by simp |
|
203 |
next |
|
204 |
case False then have U: "is_unit (unit_factor c)" by simp |
|
205 |
show ?thesis |
|
206 |
proof (cases "gcd a b = 0") |
|
207 |
case True with assms show ?thesis by simp |
|
208 |
next |
|
209 |
case False then have "a \<noteq> 0 \<or> b \<noteq> 0" by simp |
|
210 |
with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b" |
|
211 |
by (simp_all add: mult_dvd_mono) |
|
212 |
then have "normalize (a * b) dvd gcd (a * c) (b * c)" |
|
213 |
by (auto intro: gcd_greatest simp add: ac_simps) |
|
214 |
then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c" |
|
215 |
using U by (simp add: dvd_mult_unit_iff) |
|
216 |
then have "normalize (a * b) dvd gcd a b * c" |
|
217 |
by (simp add: mult_gcd_right [of a b c]) |
|
218 |
then have "normalize (a * b) div gcd a b dvd c" |
|
219 |
using False by (simp add: div_dvd_iff_mult ac_simps) |
|
220 |
then show ?thesis by (simp add: lcm_gcd) |
|
221 |
qed |
|
222 |
qed |
|
223 |
||
60689 | 224 |
lemma lcm_least_iff [simp]: |
60686 | 225 |
"lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" |
226 |
by (blast intro!: lcm_least intro: dvd_trans) |
|
227 |
||
228 |
lemma normalize_lcm [simp]: |
|
229 |
"normalize (lcm a b) = lcm a b" |
|
230 |
by (simp add: lcm_gcd dvd_normalize_div) |
|
231 |
||
232 |
lemma lcm_0_left [simp]: |
|
233 |
"lcm 0 a = 0" |
|
234 |
by (simp add: lcm_gcd) |
|
235 |
||
236 |
lemma lcm_0_right [simp]: |
|
237 |
"lcm a 0 = 0" |
|
238 |
by (simp add: lcm_gcd) |
|
239 |
||
240 |
lemma lcm_eq_0_iff: |
|
241 |
"lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" (is "?P \<longleftrightarrow> ?Q") |
|
242 |
proof |
|
243 |
assume ?P then have "0 dvd lcm a b" by simp |
|
244 |
then have "0 dvd normalize (a * b) div gcd a b" |
|
245 |
by (simp add: lcm_gcd) |
|
246 |
then have "0 * gcd a b dvd normalize (a * b)" |
|
247 |
using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all |
|
248 |
then have "normalize (a * b) = 0" |
|
249 |
by simp |
|
250 |
then show ?Q by simp |
|
251 |
next |
|
252 |
assume ?Q then show ?P by auto |
|
253 |
qed |
|
254 |
||
255 |
lemma unit_factor_lcm : |
|
256 |
"unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" |
|
257 |
by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd) |
|
258 |
||
61605 | 259 |
sublocale lcm: abel_semigroup lcm |
60686 | 260 |
proof |
261 |
fix a b c |
|
262 |
show "lcm a b = lcm b a" |
|
263 |
by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
264 |
have "lcm (lcm a b) c dvd lcm a (lcm b c)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
265 |
and "lcm a (lcm b c) dvd lcm (lcm a b) c" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
266 |
by (auto intro: lcm_least |
60686 | 267 |
dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] |
268 |
dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] |
|
269 |
dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] |
|
270 |
dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) |
|
271 |
then show "lcm (lcm a b) c = lcm a (lcm b c)" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
272 |
by (rule associated_eqI) simp_all |
60686 | 273 |
qed |
274 |
||
275 |
lemma lcm_self [simp]: |
|
276 |
"lcm a a = normalize a" |
|
277 |
proof - |
|
278 |
have "lcm a a dvd a" |
|
279 |
by (rule lcm_least) simp_all |
|
280 |
then show ?thesis |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
281 |
by (auto intro: associated_eqI) |
60686 | 282 |
qed |
283 |
||
284 |
lemma gcd_mult_lcm [simp]: |
|
285 |
"gcd a b * lcm a b = normalize a * normalize b" |
|
286 |
by (simp add: lcm_gcd normalize_mult) |
|
287 |
||
288 |
lemma lcm_mult_gcd [simp]: |
|
289 |
"lcm a b * gcd a b = normalize a * normalize b" |
|
290 |
using gcd_mult_lcm [of a b] by (simp add: ac_simps) |
|
291 |
||
292 |
lemma gcd_lcm: |
|
293 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
294 |
shows "gcd a b = normalize (a * b) div lcm a b" |
|
295 |
proof - |
|
296 |
from assms have "lcm a b \<noteq> 0" |
|
297 |
by (simp add: lcm_eq_0_iff) |
|
298 |
have "gcd a b * lcm a b = normalize a * normalize b" by simp |
|
299 |
then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b" |
|
300 |
by (simp_all add: normalize_mult) |
|
301 |
with \<open>lcm a b \<noteq> 0\<close> show ?thesis |
|
302 |
using nonzero_mult_divide_cancel_right [of "lcm a b" "gcd a b"] by simp |
|
303 |
qed |
|
304 |
||
305 |
lemma lcm_1_left [simp]: |
|
306 |
"lcm 1 a = normalize a" |
|
307 |
by (simp add: lcm_gcd) |
|
308 |
||
309 |
lemma lcm_1_right [simp]: |
|
310 |
"lcm a 1 = normalize a" |
|
311 |
by (simp add: lcm_gcd) |
|
312 |
||
313 |
lemma lcm_mult_left: |
|
314 |
"lcm (c * a) (c * b) = normalize c * lcm a b" |
|
315 |
by (cases "c = 0") |
|
316 |
(simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps, |
|
317 |
simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric]) |
|
318 |
||
319 |
lemma lcm_mult_right: |
|
320 |
"lcm (a * c) (b * c) = lcm b a * normalize c" |
|
321 |
using lcm_mult_left [of c a b] by (simp add: ac_simps) |
|
322 |
||
323 |
lemma mult_lcm_left: |
|
324 |
"c * lcm a b = unit_factor c * lcm (c * a) (c * b)" |
|
325 |
by (simp add: lcm_mult_left mult.assoc [symmetric]) |
|
326 |
||
327 |
lemma mult_lcm_right: |
|
328 |
"lcm a b * c = lcm (a * c) (b * c) * unit_factor c" |
|
329 |
using mult_lcm_left [of c a b] by (simp add: ac_simps) |
|
330 |
||
331 |
end |
|
332 |
||
333 |
class semiring_Gcd = semiring_gcd + Gcd + |
|
334 |
assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" |
|
335 |
and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" |
|
336 |
and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" |
|
337 |
begin |
|
338 |
||
339 |
lemma Gcd_empty [simp]: |
|
340 |
"Gcd {} = 0" |
|
341 |
by (rule dvd_0_left, rule Gcd_greatest) simp |
|
342 |
||
343 |
lemma Gcd_0_iff [simp]: |
|
60687 | 344 |
"Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}" (is "?P \<longleftrightarrow> ?Q") |
60686 | 345 |
proof |
346 |
assume ?P |
|
347 |
show ?Q |
|
348 |
proof |
|
349 |
fix a |
|
350 |
assume "a \<in> A" |
|
351 |
then have "Gcd A dvd a" by (rule Gcd_dvd) |
|
60687 | 352 |
with \<open>?P\<close> have "a = 0" by simp |
353 |
then show "a \<in> {0}" by simp |
|
60686 | 354 |
qed |
355 |
next |
|
356 |
assume ?Q |
|
357 |
have "0 dvd Gcd A" |
|
358 |
proof (rule Gcd_greatest) |
|
359 |
fix a |
|
360 |
assume "a \<in> A" |
|
60687 | 361 |
with \<open>?Q\<close> have "a = 0" by auto |
60686 | 362 |
then show "0 dvd a" by simp |
363 |
qed |
|
364 |
then show ?P by simp |
|
365 |
qed |
|
366 |
||
367 |
lemma unit_factor_Gcd: |
|
368 |
"unit_factor (Gcd A) = (if \<forall>a\<in>A. a = 0 then 0 else 1)" |
|
369 |
proof (cases "Gcd A = 0") |
|
60687 | 370 |
case True then show ?thesis by auto |
60686 | 371 |
next |
372 |
case False |
|
373 |
from unit_factor_mult_normalize |
|
374 |
have "unit_factor (Gcd A) * normalize (Gcd A) = Gcd A" . |
|
375 |
then have "unit_factor (Gcd A) * Gcd A = Gcd A" by simp |
|
376 |
then have "unit_factor (Gcd A) * Gcd A div Gcd A = Gcd A div Gcd A" by simp |
|
377 |
with False have "unit_factor (Gcd A) = 1" by simp |
|
60687 | 378 |
with False show ?thesis by auto |
60686 | 379 |
qed |
380 |
||
381 |
lemma Gcd_UNIV [simp]: |
|
382 |
"Gcd UNIV = 1" |
|
383 |
by (rule associated_eqI) (auto intro: Gcd_dvd simp add: unit_factor_Gcd) |
|
384 |
||
385 |
lemma Gcd_eq_1_I: |
|
386 |
assumes "is_unit a" and "a \<in> A" |
|
387 |
shows "Gcd A = 1" |
|
388 |
proof - |
|
389 |
from assms have "is_unit (Gcd A)" |
|
390 |
by (blast intro: Gcd_dvd dvd_unit_imp_unit) |
|
391 |
then have "normalize (Gcd A) = 1" |
|
392 |
by (rule is_unit_normalize) |
|
393 |
then show ?thesis |
|
394 |
by simp |
|
395 |
qed |
|
396 |
||
397 |
lemma Gcd_insert [simp]: |
|
398 |
"Gcd (insert a A) = gcd a (Gcd A)" |
|
399 |
proof - |
|
400 |
have "Gcd (insert a A) dvd gcd a (Gcd A)" |
|
401 |
by (auto intro: Gcd_dvd Gcd_greatest) |
|
402 |
moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" |
|
403 |
proof (rule Gcd_greatest) |
|
404 |
fix b |
|
405 |
assume "b \<in> insert a A" |
|
406 |
then show "gcd a (Gcd A) dvd b" |
|
407 |
proof |
|
408 |
assume "b = a" then show ?thesis by simp |
|
409 |
next |
|
410 |
assume "b \<in> A" |
|
411 |
then have "Gcd A dvd b" by (rule Gcd_dvd) |
|
412 |
moreover have "gcd a (Gcd A) dvd Gcd A" by simp |
|
413 |
ultimately show ?thesis by (blast intro: dvd_trans) |
|
414 |
qed |
|
415 |
qed |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
416 |
ultimately show ?thesis |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
417 |
by (auto intro: associated_eqI) |
60686 | 418 |
qed |
419 |
||
420 |
lemma dvd_Gcd: -- \<open>FIXME remove\<close> |
|
421 |
"\<forall>b\<in>A. a dvd b \<Longrightarrow> a dvd Gcd A" |
|
422 |
by (blast intro: Gcd_greatest) |
|
423 |
||
424 |
lemma Gcd_set [code_unfold]: |
|
425 |
"Gcd (set as) = foldr gcd as 0" |
|
426 |
by (induct as) simp_all |
|
427 |
||
428 |
end |
|
429 |
||
430 |
class semiring_Lcm = semiring_Gcd + |
|
431 |
assumes Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}" |
|
432 |
begin |
|
433 |
||
434 |
lemma dvd_Lcm: |
|
435 |
assumes "a \<in> A" |
|
436 |
shows "a dvd Lcm A" |
|
437 |
using assms by (auto intro: Gcd_greatest simp add: Lcm_Gcd) |
|
438 |
||
439 |
lemma Gcd_image_normalize [simp]: |
|
440 |
"Gcd (normalize ` A) = Gcd A" |
|
441 |
proof - |
|
442 |
have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a |
|
443 |
proof - |
|
444 |
from that obtain B where "A = insert a B" by blast |
|
445 |
moreover have " gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" |
|
446 |
by (rule gcd_dvd1) |
|
447 |
ultimately show "Gcd (normalize ` A) dvd a" |
|
448 |
by simp |
|
449 |
qed |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
450 |
then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
451 |
by (auto intro!: Gcd_greatest intro: Gcd_dvd) |
60686 | 452 |
then show ?thesis |
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
453 |
by (auto intro: associated_eqI) |
60686 | 454 |
qed |
455 |
||
456 |
lemma Lcm_least: |
|
457 |
assumes "\<And>b. b \<in> A \<Longrightarrow> b dvd a" |
|
458 |
shows "Lcm A dvd a" |
|
459 |
using assms by (auto intro: Gcd_dvd simp add: Lcm_Gcd) |
|
460 |
||
461 |
lemma normalize_Lcm [simp]: |
|
462 |
"normalize (Lcm A) = Lcm A" |
|
463 |
by (simp add: Lcm_Gcd) |
|
464 |
||
465 |
lemma unit_factor_Lcm: |
|
466 |
"unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" |
|
467 |
proof (cases "Lcm A = 0") |
|
468 |
case True then show ?thesis by simp |
|
469 |
next |
|
470 |
case False |
|
471 |
with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" |
|
472 |
by blast |
|
473 |
with False show ?thesis |
|
474 |
by simp |
|
475 |
qed |
|
476 |
||
477 |
lemma Lcm_empty [simp]: |
|
478 |
"Lcm {} = 1" |
|
479 |
by (simp add: Lcm_Gcd) |
|
480 |
||
481 |
lemma Lcm_1_iff [simp]: |
|
482 |
"Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" (is "?P \<longleftrightarrow> ?Q") |
|
483 |
proof |
|
484 |
assume ?P |
|
485 |
show ?Q |
|
486 |
proof |
|
487 |
fix a |
|
488 |
assume "a \<in> A" |
|
489 |
then have "a dvd Lcm A" |
|
490 |
by (rule dvd_Lcm) |
|
491 |
with \<open>?P\<close> show "is_unit a" |
|
492 |
by simp |
|
493 |
qed |
|
494 |
next |
|
495 |
assume ?Q |
|
496 |
then have "is_unit (Lcm A)" |
|
497 |
by (blast intro: Lcm_least) |
|
498 |
then have "normalize (Lcm A) = 1" |
|
499 |
by (rule is_unit_normalize) |
|
500 |
then show ?P |
|
501 |
by simp |
|
502 |
qed |
|
503 |
||
504 |
lemma Lcm_UNIV [simp]: |
|
505 |
"Lcm UNIV = 0" |
|
506 |
proof - |
|
507 |
have "0 dvd Lcm UNIV" |
|
508 |
by (rule dvd_Lcm) simp |
|
509 |
then show ?thesis |
|
510 |
by simp |
|
511 |
qed |
|
512 |
||
513 |
lemma Lcm_eq_0_I: |
|
514 |
assumes "0 \<in> A" |
|
515 |
shows "Lcm A = 0" |
|
516 |
proof - |
|
517 |
from assms have "0 dvd Lcm A" |
|
518 |
by (rule dvd_Lcm) |
|
519 |
then show ?thesis |
|
520 |
by simp |
|
521 |
qed |
|
522 |
||
523 |
lemma Gcd_Lcm: |
|
524 |
"Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}" |
|
525 |
by (rule associated_eqI) (auto intro: associatedI Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least |
|
526 |
simp add: unit_factor_Gcd unit_factor_Lcm) |
|
527 |
||
528 |
lemma Lcm_insert [simp]: |
|
529 |
"Lcm (insert a A) = lcm a (Lcm A)" |
|
530 |
proof (rule sym) |
|
531 |
have "lcm a (Lcm A) dvd Lcm (insert a A)" |
|
532 |
by (auto intro: dvd_Lcm Lcm_least) |
|
533 |
moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" |
|
534 |
proof (rule Lcm_least) |
|
535 |
fix b |
|
536 |
assume "b \<in> insert a A" |
|
537 |
then show "b dvd lcm a (Lcm A)" |
|
538 |
proof |
|
539 |
assume "b = a" then show ?thesis by simp |
|
540 |
next |
|
541 |
assume "b \<in> A" |
|
542 |
then have "b dvd Lcm A" by (rule dvd_Lcm) |
|
543 |
moreover have "Lcm A dvd lcm a (Lcm A)" by simp |
|
544 |
ultimately show ?thesis by (blast intro: dvd_trans) |
|
545 |
qed |
|
546 |
qed |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
547 |
ultimately show "lcm a (Lcm A) = Lcm (insert a A)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
548 |
by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) |
60686 | 549 |
qed |
550 |
||
551 |
lemma Lcm_set [code_unfold]: |
|
552 |
"Lcm (set as) = foldr lcm as 1" |
|
553 |
by (induct as) simp_all |
|
554 |
||
555 |
end |
|
59008 | 556 |
|
557 |
class ring_gcd = comm_ring_1 + semiring_gcd |
|
558 |
||
31706 | 559 |
instantiation nat :: gcd |
560 |
begin |
|
21256 | 561 |
|
31706 | 562 |
fun |
563 |
gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
564 |
where |
|
565 |
"gcd_nat x y = |
|
566 |
(if y = 0 then x else gcd y (x mod y))" |
|
567 |
||
568 |
definition |
|
569 |
lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
570 |
where |
|
571 |
"lcm_nat x y = x * y div (gcd x y)" |
|
572 |
||
573 |
instance proof qed |
|
574 |
||
575 |
end |
|
576 |
||
577 |
instantiation int :: gcd |
|
578 |
begin |
|
21256 | 579 |
|
31706 | 580 |
definition |
581 |
gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" |
|
582 |
where |
|
583 |
"gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
584 |
|
31706 | 585 |
definition |
586 |
lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" |
|
587 |
where |
|
588 |
"lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
589 |
|
31706 | 590 |
instance proof qed |
591 |
||
592 |
end |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
593 |
|
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
594 |
|
60758 | 595 |
subsection \<open>Transfer setup\<close> |
31706 | 596 |
|
597 |
lemma transfer_nat_int_gcd: |
|
598 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" |
|
599 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" |
|
32479 | 600 |
unfolding gcd_int_def lcm_int_def |
31706 | 601 |
by auto |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
602 |
|
31706 | 603 |
lemma transfer_nat_int_gcd_closures: |
604 |
"x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0" |
|
605 |
"x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0" |
|
606 |
by (auto simp add: gcd_int_def lcm_int_def) |
|
607 |
||
35644 | 608 |
declare transfer_morphism_nat_int[transfer add return: |
31706 | 609 |
transfer_nat_int_gcd transfer_nat_int_gcd_closures] |
610 |
||
611 |
lemma transfer_int_nat_gcd: |
|
612 |
"gcd (int x) (int y) = int (gcd x y)" |
|
613 |
"lcm (int x) (int y) = int (lcm x y)" |
|
32479 | 614 |
by (unfold gcd_int_def lcm_int_def, auto) |
31706 | 615 |
|
616 |
lemma transfer_int_nat_gcd_closures: |
|
617 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" |
|
618 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" |
|
619 |
by (auto simp add: gcd_int_def lcm_int_def) |
|
620 |
||
35644 | 621 |
declare transfer_morphism_int_nat[transfer add return: |
31706 | 622 |
transfer_int_nat_gcd transfer_int_nat_gcd_closures] |
623 |
||
624 |
||
60758 | 625 |
subsection \<open>GCD properties\<close> |
31706 | 626 |
|
627 |
(* was gcd_induct *) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
628 |
lemma gcd_nat_induct: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
629 |
fixes m n :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
630 |
assumes "\<And>m. P m 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
631 |
and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
632 |
shows "P m n" |
31706 | 633 |
apply (rule gcd_nat.induct) |
634 |
apply (case_tac "y = 0") |
|
635 |
using assms apply simp_all |
|
636 |
done |
|
637 |
||
638 |
(* specific to int *) |
|
639 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
640 |
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y" |
31706 | 641 |
by (simp add: gcd_int_def) |
642 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
643 |
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y" |
31706 | 644 |
by (simp add: gcd_int_def) |
645 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
646 |
lemma gcd_neg_numeral_1_int [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
647 |
"gcd (- numeral n :: int) x = gcd (numeral n) x" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
648 |
by (fact gcd_neg1_int) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
649 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
650 |
lemma gcd_neg_numeral_2_int [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
651 |
"gcd x (- numeral n :: int) = gcd x (numeral n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
652 |
by (fact gcd_neg2_int) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
653 |
|
31813 | 654 |
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y" |
655 |
by(simp add: gcd_int_def) |
|
656 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
657 |
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)" |
31813 | 658 |
by (simp add: gcd_int_def) |
659 |
||
660 |
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
661 |
by (metis abs_idempotent gcd_abs_int) |
31813 | 662 |
|
663 |
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
664 |
by (metis abs_idempotent gcd_abs_int) |
31706 | 665 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
666 |
lemma gcd_cases_int: |
31706 | 667 |
fixes x :: int and y |
668 |
assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)" |
|
669 |
and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))" |
|
670 |
and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)" |
|
671 |
and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))" |
|
672 |
shows "P (gcd x y)" |
|
35216 | 673 |
by (insert assms, auto, arith) |
21256 | 674 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
675 |
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" |
31706 | 676 |
by (simp add: gcd_int_def) |
677 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
678 |
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y" |
31706 | 679 |
by (simp add: lcm_int_def) |
680 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
681 |
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y" |
31706 | 682 |
by (simp add: lcm_int_def) |
683 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
684 |
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)" |
31706 | 685 |
by (simp add: lcm_int_def) |
21256 | 686 |
|
31814 | 687 |
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j" |
688 |
by(simp add:lcm_int_def) |
|
689 |
||
690 |
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y" |
|
691 |
by (metis abs_idempotent lcm_int_def) |
|
692 |
||
693 |
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y" |
|
694 |
by (metis abs_idempotent lcm_int_def) |
|
695 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
696 |
lemma lcm_cases_int: |
31706 | 697 |
fixes x :: int and y |
698 |
assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)" |
|
699 |
and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))" |
|
700 |
and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)" |
|
701 |
and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))" |
|
702 |
shows "P (lcm x y)" |
|
41550 | 703 |
using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith |
31706 | 704 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
705 |
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0" |
31706 | 706 |
by (simp add: lcm_int_def) |
707 |
||
708 |
(* was gcd_0, etc. *) |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
709 |
lemma gcd_0_nat: "gcd (x::nat) 0 = x" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
710 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
711 |
|
31706 | 712 |
(* was igcd_0, etc. *) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
713 |
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x" |
31706 | 714 |
by (unfold gcd_int_def, auto) |
715 |
||
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
716 |
lemma gcd_0_left_nat: "gcd 0 (x::nat) = x" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
717 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
718 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
719 |
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x" |
31706 | 720 |
by (unfold gcd_int_def, auto) |
721 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
722 |
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)" |
31706 | 723 |
by (case_tac "y = 0", auto) |
724 |
||
725 |
(* weaker, but useful for the simplifier *) |
|
726 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
727 |
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)" |
31706 | 728 |
by simp |
729 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
730 |
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1" |
21263 | 731 |
by simp |
21256 | 732 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
733 |
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0" |
60690 | 734 |
by simp |
31706 | 735 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
736 |
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1" |
31706 | 737 |
by (simp add: gcd_int_def) |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
738 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
739 |
lemma gcd_idem_nat: "gcd (x::nat) x = x" |
31798 | 740 |
by simp |
31706 | 741 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
742 |
lemma gcd_idem_int: "gcd (x::int) x = abs x" |
31813 | 743 |
by (auto simp add: gcd_int_def) |
31706 | 744 |
|
745 |
declare gcd_nat.simps [simp del] |
|
21256 | 746 |
|
60758 | 747 |
text \<open> |
27556 | 748 |
\medskip @{term "gcd m n"} divides @{text m} and @{text n}. The |
21256 | 749 |
conjunctions don't seem provable separately. |
60758 | 750 |
\<close> |
21256 | 751 |
|
59008 | 752 |
instance nat :: semiring_gcd |
753 |
proof |
|
754 |
fix m n :: nat |
|
755 |
show "gcd m n dvd m" and "gcd m n dvd n" |
|
756 |
proof (induct m n rule: gcd_nat_induct) |
|
757 |
fix m n :: nat |
|
758 |
assume "gcd n (m mod n) dvd m mod n" and "gcd n (m mod n) dvd n" |
|
759 |
then have "gcd n (m mod n) dvd m" |
|
760 |
by (rule dvd_mod_imp_dvd) |
|
761 |
moreover assume "0 < n" |
|
762 |
ultimately show "gcd m n dvd m" |
|
763 |
by (simp add: gcd_non_0_nat) |
|
764 |
qed (simp_all add: gcd_0_nat gcd_non_0_nat) |
|
765 |
next |
|
766 |
fix m n k :: nat |
|
767 |
assume "k dvd m" and "k dvd n" |
|
768 |
then show "k dvd gcd m n" |
|
769 |
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) |
|
60686 | 770 |
qed (simp_all add: lcm_nat_def) |
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
771 |
|
59008 | 772 |
instance int :: ring_gcd |
60686 | 773 |
by standard |
774 |
(simp_all add: dvd_int_unfold_dvd_nat gcd_int_def lcm_int_def zdiv_int nat_abs_mult_distrib [symmetric] lcm_gcd gcd_greatest) |
|
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
775 |
|
31730 | 776 |
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m" |
59008 | 777 |
by (metis gcd_dvd1 dvd_trans) |
31730 | 778 |
|
779 |
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n" |
|
59008 | 780 |
by (metis gcd_dvd2 dvd_trans) |
31730 | 781 |
|
782 |
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m" |
|
59008 | 783 |
by (metis gcd_dvd1 dvd_trans) |
31730 | 784 |
|
785 |
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n" |
|
59008 | 786 |
by (metis gcd_dvd2 dvd_trans) |
31730 | 787 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
788 |
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a" |
31706 | 789 |
by (rule dvd_imp_le, auto) |
790 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
791 |
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b" |
31706 | 792 |
by (rule dvd_imp_le, auto) |
793 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
794 |
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a" |
31706 | 795 |
by (rule zdvd_imp_le, auto) |
21256 | 796 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
797 |
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b" |
31706 | 798 |
by (rule zdvd_imp_le, auto) |
799 |
||
60689 | 800 |
lemma gcd_greatest_iff_nat: |
801 |
"(k dvd gcd (m::nat) n) = (k dvd m & k dvd n)" |
|
802 |
by (fact gcd_greatest_iff) |
|
803 |
||
804 |
lemma gcd_greatest_iff_int: |
|
805 |
"((k::int) dvd gcd m n) = (k dvd m & k dvd n)" |
|
806 |
by (fact gcd_greatest_iff) |
|
31706 | 807 |
|
60689 | 808 |
lemma gcd_zero_nat: |
809 |
"(gcd (m::nat) n = 0) = (m = 0 & n = 0)" |
|
810 |
by (fact gcd_eq_0_iff) |
|
21256 | 811 |
|
60689 | 812 |
lemma gcd_zero_int [simp]: |
813 |
"(gcd (m::int) n = 0) = (m = 0 & n = 0)" |
|
814 |
by (fact gcd_eq_0_iff) |
|
21256 | 815 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
816 |
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
817 |
by (insert gcd_zero_nat [of m n], arith) |
21256 | 818 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
819 |
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
820 |
by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith) |
31706 | 821 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
822 |
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and> |
31706 | 823 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
824 |
apply auto |
|
33657 | 825 |
apply (rule dvd_antisym) |
59008 | 826 |
apply (erule (1) gcd_greatest) |
31706 | 827 |
apply auto |
828 |
done |
|
21256 | 829 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
830 |
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and> |
31706 | 831 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
33657 | 832 |
apply (case_tac "d = 0") |
833 |
apply simp |
|
834 |
apply (rule iffI) |
|
835 |
apply (rule zdvd_antisym_nonneg) |
|
59008 | 836 |
apply (auto intro: gcd_greatest) |
31706 | 837 |
done |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
838 |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
839 |
interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
840 |
+ gcd_nat: semilattice_neutr_order "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" 0 "op dvd" "(\<lambda>m n. m dvd n \<and> \<not> n dvd m)" |
60686 | 841 |
apply standard |
842 |
apply (auto intro: dvd_antisym dvd_trans)[2] |
|
59545
12a6088ed195
explicit equivalence for strict order on lattices
haftmann
parents:
59497
diff
changeset
|
843 |
apply (metis dvd.dual_order.refl gcd_unique_nat)+ |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
844 |
done |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
845 |
|
60686 | 846 |
interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int" .. |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
847 |
|
60686 | 848 |
lemmas gcd_assoc_nat = gcd.assoc [where ?'a = nat] |
849 |
lemmas gcd_commute_nat = gcd.commute [where ?'a = nat] |
|
850 |
lemmas gcd_left_commute_nat = gcd.left_commute [where ?'a = nat] |
|
851 |
lemmas gcd_assoc_int = gcd.assoc [where ?'a = int] |
|
852 |
lemmas gcd_commute_int = gcd.commute [where ?'a = int] |
|
853 |
lemmas gcd_left_commute_int = gcd.left_commute [where ?'a = int] |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
854 |
|
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
855 |
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
856 |
|
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
857 |
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
858 |
|
31798 | 859 |
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x" |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
860 |
by (fact gcd_nat.absorb1) |
31798 | 861 |
|
862 |
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y" |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
863 |
by (fact gcd_nat.absorb2) |
31798 | 864 |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
865 |
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x" |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
866 |
by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int) |
31798 | 867 |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
868 |
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y" |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
869 |
by (metis gcd_proj1_if_dvd_int gcd_commute_int) |
31798 | 870 |
|
60758 | 871 |
text \<open> |
21256 | 872 |
\medskip Multiplication laws |
60758 | 873 |
\<close> |
21256 | 874 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
875 |
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)" |
60758 | 876 |
-- \<open>@{cite \<open>page 27\<close> davenport92}\<close> |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
877 |
apply (induct m n rule: gcd_nat_induct) |
31706 | 878 |
apply simp |
21256 | 879 |
apply (case_tac "k = 0") |
45270
d5b5c9259afd
fix bug in cancel_factor simprocs so they will work on goals like 'x * y < x * z' where the common term is already on the left
huffman
parents:
45264
diff
changeset
|
880 |
apply (simp_all add: gcd_non_0_nat) |
31706 | 881 |
done |
21256 | 882 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
883 |
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
884 |
apply (subst (1 2) gcd_abs_int) |
31813 | 885 |
apply (subst (1 2) abs_mult) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
886 |
apply (rule gcd_mult_distrib_nat [transferred]) |
31706 | 887 |
apply auto |
888 |
done |
|
21256 | 889 |
|
60690 | 890 |
context semiring_gcd |
891 |
begin |
|
21256 | 892 |
|
60690 | 893 |
lemma coprime_dvd_mult: |
894 |
assumes "coprime a b" and "a dvd c * b" |
|
895 |
shows "a dvd c" |
|
896 |
proof (cases "c = 0") |
|
897 |
case True then show ?thesis by simp |
|
898 |
next |
|
899 |
case False |
|
900 |
then have unit: "is_unit (unit_factor c)" by simp |
|
901 |
from \<open>coprime a b\<close> mult_gcd_left [of c a b] |
|
902 |
have "gcd (c * a) (c * b) * unit_factor c = c" |
|
903 |
by (simp add: ac_simps) |
|
904 |
moreover from \<open>a dvd c * b\<close> have "a dvd gcd (c * a) (c * b) * unit_factor c" |
|
905 |
by (simp add: dvd_mult_unit_iff unit) |
|
906 |
ultimately show ?thesis by simp |
|
907 |
qed |
|
908 |
||
909 |
end |
|
910 |
||
911 |
lemmas coprime_dvd_mult_nat = coprime_dvd_mult [where ?'a = nat] |
|
912 |
lemmas coprime_dvd_mult_int = coprime_dvd_mult [where ?'a = int] |
|
31706 | 913 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
914 |
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow> |
31706 | 915 |
(k dvd m * n) = (k dvd m)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
916 |
by (auto intro: coprime_dvd_mult_nat) |
31706 | 917 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
918 |
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow> |
31706 | 919 |
(k dvd m * n) = (k dvd m)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
920 |
by (auto intro: coprime_dvd_mult_int) |
31706 | 921 |
|
60690 | 922 |
context semiring_gcd |
923 |
begin |
|
924 |
||
925 |
lemma gcd_mult_cancel: |
|
926 |
"coprime c b \<Longrightarrow> gcd (c * a) b = gcd a b" |
|
927 |
apply (rule associated_eqI) |
|
59008 | 928 |
apply (rule gcd_greatest) |
60690 | 929 |
apply (rule_tac b = c in coprime_dvd_mult) |
930 |
apply (simp add: gcd.assoc) |
|
931 |
apply (simp_all add: ac_simps) |
|
932 |
done |
|
21256 | 933 |
|
60690 | 934 |
end |
935 |
||
936 |
lemmas gcd_mult_cancel_nat = gcd_mult_cancel [where ?'a = nat] |
|
937 |
lemmas gcd_mult_cancel_int = gcd_mult_cancel [where ?'a = int] |
|
21256 | 938 |
|
35368 | 939 |
lemma coprime_crossproduct_nat: |
940 |
fixes a b c d :: nat |
|
941 |
assumes "coprime a d" and "coprime b c" |
|
942 |
shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs") |
|
943 |
proof |
|
944 |
assume ?rhs then show ?lhs by simp |
|
945 |
next |
|
946 |
assume ?lhs |
|
60758 | 947 |
from \<open>?lhs\<close> have "a dvd b * d" by (auto intro: dvdI dest: sym) |
948 |
with \<open>coprime a d\<close> have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat) |
|
949 |
from \<open>?lhs\<close> have "b dvd a * c" by (auto intro: dvdI dest: sym) |
|
950 |
with \<open>coprime b c\<close> have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat) |
|
951 |
from \<open>?lhs\<close> have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
952 |
with \<open>coprime b c\<close> have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) |
|
953 |
from \<open>?lhs\<close> have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
954 |
with \<open>coprime a d\<close> have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) |
|
955 |
from \<open>a dvd b\<close> \<open>b dvd a\<close> have "a = b" by (rule Nat.dvd.antisym) |
|
956 |
moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "c = d" by (rule Nat.dvd.antisym) |
|
35368 | 957 |
ultimately show ?rhs .. |
958 |
qed |
|
959 |
||
960 |
lemma coprime_crossproduct_int: |
|
961 |
fixes a b c d :: int |
|
962 |
assumes "coprime a d" and "coprime b c" |
|
963 |
shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" |
|
964 |
using assms by (intro coprime_crossproduct_nat [transferred]) auto |
|
965 |
||
60758 | 966 |
text \<open>\medskip Addition laws\<close> |
21256 | 967 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
968 |
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n" |
31706 | 969 |
apply (case_tac "n = 0") |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
970 |
apply (simp_all add: gcd_non_0_nat) |
31706 | 971 |
done |
972 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
973 |
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
974 |
apply (subst (1 2) gcd_commute_nat) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
975 |
apply (subst add.commute) |
31706 | 976 |
apply simp |
977 |
done |
|
978 |
||
979 |
(* to do: add the other variations? *) |
|
980 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
981 |
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
982 |
by (subst gcd_add1_nat [symmetric], auto) |
31706 | 983 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
984 |
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
985 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
986 |
apply (subst gcd_diff1_nat [symmetric]) |
31706 | 987 |
apply auto |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
988 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
989 |
apply (subst gcd_diff1_nat) |
31706 | 990 |
apply assumption |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
991 |
apply (rule gcd_commute_nat) |
31706 | 992 |
done |
993 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
994 |
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" |
31706 | 995 |
apply (frule_tac b = y and a = x in pos_mod_sign) |
996 |
apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
997 |
apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] |
31706 | 998 |
zmod_zminus1_eq_if) |
999 |
apply (frule_tac a = x in pos_mod_bound) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1000 |
apply (subst (1 2) gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1001 |
apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat |
31706 | 1002 |
nat_le_eq_zle) |
1003 |
done |
|
21256 | 1004 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1005 |
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)" |
31706 | 1006 |
apply (case_tac "y = 0") |
1007 |
apply force |
|
1008 |
apply (case_tac "y > 0") |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1009 |
apply (subst gcd_non_0_int, auto) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1010 |
apply (insert gcd_non_0_int [of "-y" "-x"]) |
35216 | 1011 |
apply auto |
31706 | 1012 |
done |
1013 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1014 |
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1015 |
by (metis gcd_red_int mod_add_self1 add.commute) |
31706 | 1016 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1017 |
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1018 |
by (metis gcd_add1_int gcd_commute_int add.commute) |
21256 | 1019 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1020 |
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1021 |
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat) |
21256 | 1022 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1023 |
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1024 |
by (metis gcd_commute_int gcd_red_int mod_mult_self1 add.commute) |
31798 | 1025 |
|
21256 | 1026 |
|
31706 | 1027 |
(* to do: differences, and all variations of addition rules |
1028 |
as simplification rules for nat and int *) |
|
1029 |
||
60689 | 1030 |
lemma gcd_dvd_prod_nat: "gcd (m::nat) n dvd k * n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1031 |
using mult_dvd_mono [of 1] by auto |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1032 |
|
31706 | 1033 |
(* to do: add the three variations of these, and for ints? *) |
1034 |
||
31992 | 1035 |
lemma finite_divisors_nat[simp]: |
1036 |
assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}" |
|
31734 | 1037 |
proof- |
60512 | 1038 |
have "finite{d. d <= m}" |
1039 |
by (blast intro: bounded_nat_set_is_finite) |
|
31734 | 1040 |
from finite_subset[OF _ this] show ?thesis using assms |
60512 | 1041 |
by (metis Collect_mono dvd_imp_le neq0_conv) |
31734 | 1042 |
qed |
1043 |
||
31995 | 1044 |
lemma finite_divisors_int[simp]: |
31734 | 1045 |
assumes "(i::int) ~= 0" shows "finite{d. d dvd i}" |
1046 |
proof- |
|
1047 |
have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if) |
|
1048 |
hence "finite{d. abs d <= abs i}" by simp |
|
1049 |
from finite_subset[OF _ this] show ?thesis using assms |
|
60512 | 1050 |
by (simp add: dvd_imp_le_int subset_iff) |
31734 | 1051 |
qed |
1052 |
||
31995 | 1053 |
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n" |
1054 |
apply(rule antisym) |
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44845
diff
changeset
|
1055 |
apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) |
31995 | 1056 |
apply simp |
1057 |
done |
|
1058 |
||
1059 |
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n" |
|
1060 |
apply(rule antisym) |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
42871
diff
changeset
|
1061 |
apply(rule Max_le_iff [THEN iffD2]) |
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
42871
diff
changeset
|
1062 |
apply (auto intro: abs_le_D1 dvd_imp_le_int) |
31995 | 1063 |
done |
1064 |
||
31734 | 1065 |
lemma gcd_is_Max_divisors_nat: |
1066 |
"m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})" |
|
1067 |
apply(rule Max_eqI[THEN sym]) |
|
31995 | 1068 |
apply (metis finite_Collect_conjI finite_divisors_nat) |
31734 | 1069 |
apply simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1070 |
apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat) |
31734 | 1071 |
apply simp |
1072 |
done |
|
1073 |
||
1074 |
lemma gcd_is_Max_divisors_int: |
|
1075 |
"m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})" |
|
1076 |
apply(rule Max_eqI[THEN sym]) |
|
31995 | 1077 |
apply (metis finite_Collect_conjI finite_divisors_int) |
31734 | 1078 |
apply simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1079 |
apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le) |
31734 | 1080 |
apply simp |
1081 |
done |
|
1082 |
||
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1083 |
lemma gcd_code_int [code]: |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1084 |
"gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1085 |
by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1086 |
|
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1087 |
|
60758 | 1088 |
subsection \<open>Coprimality\<close> |
31706 | 1089 |
|
60690 | 1090 |
context semiring_gcd |
1091 |
begin |
|
1092 |
||
1093 |
lemma div_gcd_coprime: |
|
1094 |
assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" |
|
31706 | 1095 |
shows "coprime (a div gcd a b) (b div gcd a b)" |
22367 | 1096 |
proof - |
27556 | 1097 |
let ?g = "gcd a b" |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1098 |
let ?a' = "a div ?g" |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1099 |
let ?b' = "b div ?g" |
27556 | 1100 |
let ?g' = "gcd ?a' ?b'" |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1101 |
have dvdg: "?g dvd a" "?g dvd b" by simp_all |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1102 |
have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all |
22367 | 1103 |
from dvdg dvdg' obtain ka kb ka' kb' where |
1104 |
kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" |
|
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1105 |
unfolding dvd_def by blast |
58834 | 1106 |
from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" |
1107 |
by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) |
|
22367 | 1108 |
then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" |
1109 |
by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] |
|
1110 |
dvd_mult_div_cancel [OF dvdg(2)] dvd_def) |
|
35216 | 1111 |
have "?g \<noteq> 0" using nz by simp |
60690 | 1112 |
moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . |
1113 |
thm dvd_mult_cancel_left |
|
1114 |
ultimately show ?thesis using dvd_times_left_cancel_iff [of "gcd a b" _ 1] by simp |
|
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1115 |
qed |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
1116 |
|
60690 | 1117 |
end |
1118 |
||
1119 |
lemmas div_gcd_coprime_nat = div_gcd_coprime [where ?'a = nat] |
|
1120 |
lemmas div_gcd_coprime_int = div_gcd_coprime [where ?'a = int] |
|
31706 | 1121 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1122 |
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1123 |
using gcd_unique_nat[of 1 a b, simplified] by auto |
31706 | 1124 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1125 |
lemma coprime_Suc_0_nat: |
31706 | 1126 |
"coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" |
60690 | 1127 |
using coprime_nat by simp |
31706 | 1128 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1129 |
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow> |
31706 | 1130 |
(\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1131 |
using gcd_unique_int [of 1 a b] |
31706 | 1132 |
apply clarsimp |
1133 |
apply (erule subst) |
|
1134 |
apply (rule iffI) |
|
1135 |
apply force |
|
59807 | 1136 |
apply (drule_tac x = "abs e" for e in exI) |
1137 |
apply (case_tac "e >= 0" for e :: int) |
|
31706 | 1138 |
apply force |
1139 |
apply force |
|
59807 | 1140 |
done |
31706 | 1141 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1142 |
lemma gcd_coprime_nat: |
31706 | 1143 |
assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and |
1144 |
b: "b = b' * gcd a b" |
|
1145 |
shows "coprime a' b'" |
|
1146 |
||
1147 |
apply (subgoal_tac "a' = a div gcd a b") |
|
1148 |
apply (erule ssubst) |
|
1149 |
apply (subgoal_tac "b' = b div gcd a b") |
|
1150 |
apply (erule ssubst) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1151 |
apply (rule div_gcd_coprime_nat) |
41550 | 1152 |
using z apply force |
31706 | 1153 |
apply (subst (1) b) |
1154 |
using z apply force |
|
1155 |
apply (subst (1) a) |
|
1156 |
using z apply force |
|
41550 | 1157 |
done |
31706 | 1158 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1159 |
lemma gcd_coprime_int: |
31706 | 1160 |
assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and |
1161 |
b: "b = b' * gcd a b" |
|
1162 |
shows "coprime a' b'" |
|
1163 |
||
1164 |
apply (subgoal_tac "a' = a div gcd a b") |
|
1165 |
apply (erule ssubst) |
|
1166 |
apply (subgoal_tac "b' = b div gcd a b") |
|
1167 |
apply (erule ssubst) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1168 |
apply (rule div_gcd_coprime_int) |
41550 | 1169 |
using z apply force |
31706 | 1170 |
apply (subst (1) b) |
1171 |
using z apply force |
|
1172 |
apply (subst (1) a) |
|
1173 |
using z apply force |
|
41550 | 1174 |
done |
31706 | 1175 |
|
60690 | 1176 |
context semiring_gcd |
1177 |
begin |
|
31706 | 1178 |
|
60690 | 1179 |
lemma coprime_mult: |
1180 |
assumes da: "coprime d a" and db: "coprime d b" |
|
1181 |
shows "coprime d (a * b)" |
|
1182 |
apply (subst gcd.commute) |
|
1183 |
using da apply (subst gcd_mult_cancel) |
|
1184 |
apply (subst gcd.commute, assumption) |
|
1185 |
apply (subst gcd.commute, rule db) |
|
1186 |
done |
|
31706 | 1187 |
|
60690 | 1188 |
end |
1189 |
||
1190 |
lemmas coprime_mult_nat = coprime_mult [where ?'a = nat] |
|
1191 |
lemmas coprime_mult_int = coprime_mult [where ?'a = int] |
|
1192 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1193 |
lemma coprime_lmult_nat: |
31706 | 1194 |
assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a" |
1195 |
proof - |
|
1196 |
have "gcd d a dvd gcd d (a * b)" |
|
59008 | 1197 |
by (rule gcd_greatest, auto) |
31706 | 1198 |
with dab show ?thesis |
1199 |
by auto |
|
1200 |
qed |
|
1201 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1202 |
lemma coprime_lmult_int: |
31798 | 1203 |
assumes "coprime (d::int) (a * b)" shows "coprime d a" |
31706 | 1204 |
proof - |
1205 |
have "gcd d a dvd gcd d (a * b)" |
|
59008 | 1206 |
by (rule gcd_greatest, auto) |
31798 | 1207 |
with assms show ?thesis |
31706 | 1208 |
by auto |
1209 |
qed |
|
1210 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1211 |
lemma coprime_rmult_nat: |
31798 | 1212 |
assumes "coprime (d::nat) (a * b)" shows "coprime d b" |
31706 | 1213 |
proof - |
1214 |
have "gcd d b dvd gcd d (a * b)" |
|
59008 | 1215 |
by (rule gcd_greatest, auto intro: dvd_mult) |
31798 | 1216 |
with assms show ?thesis |
31706 | 1217 |
by auto |
1218 |
qed |
|
1219 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1220 |
lemma coprime_rmult_int: |
31706 | 1221 |
assumes dab: "coprime (d::int) (a * b)" shows "coprime d b" |
1222 |
proof - |
|
1223 |
have "gcd d b dvd gcd d (a * b)" |
|
59008 | 1224 |
by (rule gcd_greatest, auto intro: dvd_mult) |
31706 | 1225 |
with dab show ?thesis |
1226 |
by auto |
|
1227 |
qed |
|
1228 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1229 |
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow> |
31706 | 1230 |
coprime d a \<and> coprime d b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1231 |
using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1232 |
coprime_mult_nat[of d a b] |
31706 | 1233 |
by blast |
1234 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1235 |
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow> |
31706 | 1236 |
coprime d a \<and> coprime d b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1237 |
using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1238 |
coprime_mult_int[of d a b] |
31706 | 1239 |
by blast |
1240 |
||
52397 | 1241 |
lemma coprime_power_int: |
1242 |
assumes "0 < n" shows "coprime (a :: int) (b ^ n) \<longleftrightarrow> coprime a b" |
|
1243 |
using assms |
|
1244 |
proof (induct n) |
|
1245 |
case (Suc n) then show ?case |
|
1246 |
by (cases n) (simp_all add: coprime_mul_eq_int) |
|
1247 |
qed simp |
|
1248 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1249 |
lemma gcd_coprime_exists_nat: |
31706 | 1250 |
assumes nz: "gcd (a::nat) b \<noteq> 0" |
1251 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
1252 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
1253 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1254 |
using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult) |
31706 | 1255 |
done |
1256 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1257 |
lemma gcd_coprime_exists_int: |
31706 | 1258 |
assumes nz: "gcd (a::int) b \<noteq> 0" |
1259 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
1260 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
1261 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
59008 | 1262 |
using nz apply (auto simp add: div_gcd_coprime_int) |
31706 | 1263 |
done |
1264 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1265 |
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)" |
60596 | 1266 |
by (induct n) (simp_all add: coprime_mult_nat) |
31706 | 1267 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1268 |
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)" |
60596 | 1269 |
by (induct n) (simp_all add: coprime_mult_int) |
31706 | 1270 |
|
60690 | 1271 |
context semiring_gcd |
1272 |
begin |
|
1273 |
||
1274 |
lemma coprime_exp_left: |
|
1275 |
assumes "coprime a b" |
|
1276 |
shows "coprime (a ^ n) b" |
|
1277 |
using assms by (induct n) (simp_all add: gcd_mult_cancel) |
|
1278 |
||
1279 |
lemma coprime_exp2: |
|
1280 |
assumes "coprime a b" |
|
1281 |
shows "coprime (a ^ n) (b ^ m)" |
|
1282 |
proof (rule coprime_exp_left) |
|
1283 |
from assms show "coprime a (b ^ m)" |
|
1284 |
by (induct m) (simp_all add: gcd_mult_cancel gcd.commute [of a]) |
|
1285 |
qed |
|
1286 |
||
1287 |
end |
|
1288 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1289 |
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)" |
60690 | 1290 |
by (fact coprime_exp2) |
31706 | 1291 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1292 |
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)" |
60690 | 1293 |
by (fact coprime_exp2) |
31706 | 1294 |
|
60690 | 1295 |
lemma gcd_exp_nat: |
1296 |
"gcd ((a :: nat) ^ n) (b ^ n) = gcd a b ^ n" |
|
1297 |
proof (cases "a = 0 \<and> b = 0") |
|
1298 |
case True then show ?thesis by (cases "n > 0") (simp_all add: zero_power) |
|
1299 |
next |
|
1300 |
case False |
|
1301 |
then have "coprime (a div gcd a b) (b div gcd a b)" |
|
1302 |
by (auto simp: div_gcd_coprime) |
|
1303 |
then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" |
|
1304 |
by (simp add: coprime_exp2) |
|
1305 |
then have "gcd ((a div gcd a b)^n * (gcd a b)^n) |
|
31706 | 1306 |
((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n" |
60162 | 1307 |
by (metis gcd_mult_distrib_nat mult.commute mult.right_neutral) |
31706 | 1308 |
also have "(a div gcd a b)^n * (gcd a b)^n = a^n" |
60162 | 1309 |
by (metis dvd_div_mult_self gcd_unique_nat power_mult_distrib) |
31706 | 1310 |
also have "(b div gcd a b)^n * (gcd a b)^n = b^n" |
60162 | 1311 |
by (metis dvd_div_mult_self gcd_unique_nat power_mult_distrib) |
31706 | 1312 |
finally show ?thesis . |
1313 |
qed |
|
1314 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1315 |
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1316 |
apply (subst (1 2) gcd_abs_int) |
31706 | 1317 |
apply (subst (1 2) power_abs) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1318 |
apply (rule gcd_exp_nat [where n = n, transferred]) |
31706 | 1319 |
apply auto |
1320 |
done |
|
1321 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1322 |
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c" |
31706 | 1323 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
1324 |
proof- |
|
1325 |
let ?g = "gcd a b" |
|
1326 |
{assume "?g = 0" with dc have ?thesis by auto} |
|
1327 |
moreover |
|
1328 |
{assume z: "?g \<noteq> 0" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1329 |
from gcd_coprime_exists_nat[OF z] |
31706 | 1330 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
1331 |
by blast |
|
1332 |
have thb: "?g dvd b" by auto |
|
1333 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
1334 |
with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp |
|
1335 |
from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1336 |
hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult.assoc) |
31706 | 1337 |
with z have th_1: "a' dvd b' * c" by auto |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1338 |
from coprime_dvd_mult_nat[OF ab'(3)] th_1 |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1339 |
have thc: "a' dvd c" by (subst (asm) mult.commute, blast) |
31706 | 1340 |
from ab' have "a = ?g*a'" by algebra |
1341 |
with thb thc have ?thesis by blast } |
|
1342 |
ultimately show ?thesis by blast |
|
1343 |
qed |
|
1344 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1345 |
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c" |
31706 | 1346 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
1347 |
proof- |
|
1348 |
let ?g = "gcd a b" |
|
1349 |
{assume "?g = 0" with dc have ?thesis by auto} |
|
1350 |
moreover |
|
1351 |
{assume z: "?g \<noteq> 0" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1352 |
from gcd_coprime_exists_int[OF z] |
31706 | 1353 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
1354 |
by blast |
|
1355 |
have thb: "?g dvd b" by auto |
|
1356 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
1357 |
with dc have th0: "a' dvd b*c" |
|
1358 |
using dvd_trans[of a' a "b*c"] by simp |
|
1359 |
from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto |
|
60690 | 1360 |
hence "?g*a' dvd ?g * (b' * c)" by (simp add: ac_simps) |
31706 | 1361 |
with z have th_1: "a' dvd b' * c" by auto |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1362 |
from coprime_dvd_mult_int[OF ab'(3)] th_1 |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1363 |
have thc: "a' dvd c" by (subst (asm) mult.commute, blast) |
31706 | 1364 |
from ab' have "a = ?g*a'" by algebra |
1365 |
with thb thc have ?thesis by blast } |
|
1366 |
ultimately show ?thesis by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1367 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1368 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1369 |
lemma pow_divides_pow_nat: |
31706 | 1370 |
assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" |
1371 |
shows "a dvd b" |
|
1372 |
proof- |
|
1373 |
let ?g = "gcd a b" |
|
1374 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
1375 |
{assume "?g = 0" with ab n have ?thesis by auto } |
|
1376 |
moreover |
|
1377 |
{assume z: "?g \<noteq> 0" |
|
35216 | 1378 |
hence zn: "?g ^ n \<noteq> 0" using n by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1379 |
from gcd_coprime_exists_nat[OF z] |
31706 | 1380 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
1381 |
by blast |
|
1382 |
from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" |
|
1383 |
by (simp add: ab'(1,2)[symmetric]) |
|
1384 |
hence "?g^n*a'^n dvd ?g^n *b'^n" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1385 |
by (simp only: power_mult_distrib mult.commute) |
58787 | 1386 |
then have th0: "a'^n dvd b'^n" |
1387 |
using zn by auto |
|
31706 | 1388 |
have "a' dvd a'^n" by (simp add: m) |
1389 |
with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1390 |
hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1391 |
from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1 |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1392 |
have "a' dvd b'" by (subst (asm) mult.commute, blast) |
31706 | 1393 |
hence "a'*?g dvd b'*?g" by simp |
1394 |
with ab'(1,2) have ?thesis by simp } |
|
1395 |
ultimately show ?thesis by blast |
|
1396 |
qed |
|
1397 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1398 |
lemma pow_divides_pow_int: |
31706 | 1399 |
assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0" |
1400 |
shows "a dvd b" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1401 |
proof- |
31706 | 1402 |
let ?g = "gcd a b" |
1403 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
1404 |
{assume "?g = 0" with ab n have ?thesis by auto } |
|
1405 |
moreover |
|
1406 |
{assume z: "?g \<noteq> 0" |
|
35216 | 1407 |
hence zn: "?g ^ n \<noteq> 0" using n by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1408 |
from gcd_coprime_exists_int[OF z] |
31706 | 1409 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
1410 |
by blast |
|
1411 |
from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" |
|
1412 |
by (simp add: ab'(1,2)[symmetric]) |
|
1413 |
hence "?g^n*a'^n dvd ?g^n *b'^n" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1414 |
by (simp only: power_mult_distrib mult.commute) |
31706 | 1415 |
with zn z n have th0:"a'^n dvd b'^n" by auto |
1416 |
have "a' dvd a'^n" by (simp add: m) |
|
1417 |
with th0 have "a' dvd b'^n" |
|
1418 |
using dvd_trans[of a' "a'^n" "b'^n"] by simp |
|
60596 | 1419 |
hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1420 |
from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1 |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1421 |
have "a' dvd b'" by (subst (asm) mult.commute, blast) |
31706 | 1422 |
hence "a'*?g dvd b'*?g" by simp |
1423 |
with ab'(1,2) have ?thesis by simp } |
|
1424 |
ultimately show ?thesis by blast |
|
1425 |
qed |
|
1426 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1427 |
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1428 |
by (auto intro: pow_divides_pow_nat dvd_power_same) |
31706 | 1429 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1430 |
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1431 |
by (auto intro: pow_divides_pow_int dvd_power_same) |
31706 | 1432 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1433 |
lemma divides_mult_nat: |
31706 | 1434 |
assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n" |
1435 |
shows "m * n dvd r" |
|
1436 |
proof- |
|
1437 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
1438 |
unfolding dvd_def by blast |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1439 |
from mr n' have "m dvd n'*n" by (simp add: mult.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1440 |
hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp |
31706 | 1441 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
1442 |
from n' k show ?thesis unfolding dvd_def by auto |
|
1443 |
qed |
|
1444 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1445 |
lemma divides_mult_int: |
31706 | 1446 |
assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n" |
1447 |
shows "m * n dvd r" |
|
1448 |
proof- |
|
1449 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
1450 |
unfolding dvd_def by blast |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1451 |
from mr n' have "m dvd n'*n" by (simp add: mult.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1452 |
hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp |
31706 | 1453 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
1454 |
from n' k show ?thesis unfolding dvd_def by auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1455 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1456 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1457 |
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n" |
60690 | 1458 |
by (simp add: gcd.commute del: One_nat_def) |
31706 | 1459 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1460 |
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" |
60690 | 1461 |
using coprime_plus_one_nat by simp |
31706 | 1462 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1463 |
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n" |
60686 | 1464 |
by (simp add: gcd.commute) |
31706 | 1465 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1466 |
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1467 |
using coprime_plus_one_nat [of "n - 1"] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1468 |
gcd_commute_nat [of "n - 1" n] by auto |
31706 | 1469 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1470 |
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1471 |
using coprime_plus_one_int [of "n - 1"] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1472 |
gcd_commute_int [of "n - 1" n] by auto |
31706 | 1473 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1474 |
lemma setprod_coprime_nat [rule_format]: |
31706 | 1475 |
"(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x" |
1476 |
apply (case_tac "finite A") |
|
1477 |
apply (induct set: finite) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1478 |
apply (auto simp add: gcd_mult_cancel_nat) |
31706 | 1479 |
done |
1480 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1481 |
lemma setprod_coprime_int [rule_format]: |
31706 | 1482 |
"(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x" |
1483 |
apply (case_tac "finite A") |
|
1484 |
apply (induct set: finite) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1485 |
apply (auto simp add: gcd_mult_cancel_int) |
31706 | 1486 |
done |
1487 |
||
60162 | 1488 |
lemma coprime_common_divisor_nat: |
60686 | 1489 |
"coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" |
60162 | 1490 |
by (metis gcd_greatest_iff_nat nat_dvd_1_iff_1) |
31706 | 1491 |
|
60162 | 1492 |
lemma coprime_common_divisor_int: |
60686 | 1493 |
"coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> abs x = 1" |
1494 |
using gcd_greatest_iff [of x a b] by auto |
|
31706 | 1495 |
|
60162 | 1496 |
lemma coprime_divisors_nat: |
1497 |
"(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> coprime d e" |
|
1498 |
by (meson coprime_int dvd_trans gcd_dvd1 gcd_dvd2 gcd_ge_0_int) |
|
31706 | 1499 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1500 |
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m" |
60162 | 1501 |
by (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat) |
31706 | 1502 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1503 |
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m" |
60162 | 1504 |
by (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int) |
31706 | 1505 |
|
1506 |
||
60758 | 1507 |
subsection \<open>Bezout's theorem\<close> |
31706 | 1508 |
|
1509 |
(* Function bezw returns a pair of witnesses to Bezout's theorem -- |
|
1510 |
see the theorems that follow the definition. *) |
|
1511 |
fun |
|
1512 |
bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" |
|
1513 |
where |
|
1514 |
"bezw x y = |
|
1515 |
(if y = 0 then (1, 0) else |
|
1516 |
(snd (bezw y (x mod y)), |
|
1517 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" |
|
1518 |
||
1519 |
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp |
|
1520 |
||
1521 |
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)), |
|
1522 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" |
|
1523 |
by simp |
|
1524 |
||
1525 |
declare bezw.simps [simp del] |
|
1526 |
||
1527 |
lemma bezw_aux [rule_format]: |
|
1528 |
"fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1529 |
proof (induct x y rule: gcd_nat_induct) |
31706 | 1530 |
fix m :: nat |
1531 |
show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" |
|
1532 |
by auto |
|
1533 |
next fix m :: nat and n |
|
1534 |
assume ngt0: "n > 0" and |
|
1535 |
ih: "fst (bezw n (m mod n)) * int n + |
|
1536 |
snd (bezw n (m mod n)) * int (m mod n) = |
|
1537 |
int (gcd n (m mod n))" |
|
1538 |
thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1539 |
apply (simp add: bezw_non_0 gcd_non_0_nat) |
31706 | 1540 |
apply (erule subst) |
36350 | 1541 |
apply (simp add: field_simps) |
31706 | 1542 |
apply (subst mod_div_equality [of m n, symmetric]) |
1543 |
(* applying simp here undoes the last substitution! |
|
1544 |
what is procedure cancel_div_mod? *) |
|
58776
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
hoelzl
parents:
58770
diff
changeset
|
1545 |
apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult) |
31706 | 1546 |
done |
1547 |
qed |
|
1548 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1549 |
lemma bezout_int: |
31706 | 1550 |
fixes x y |
1551 |
shows "EX u v. u * (x::int) + v * y = gcd x y" |
|
1552 |
proof - |
|
1553 |
have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow> |
|
1554 |
EX u v. u * x + v * y = gcd x y" |
|
1555 |
apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) |
|
1556 |
apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) |
|
1557 |
apply (unfold gcd_int_def) |
|
1558 |
apply simp |
|
1559 |
apply (subst bezw_aux [symmetric]) |
|
1560 |
apply auto |
|
1561 |
done |
|
1562 |
have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) | |
|
1563 |
(x \<le> 0 \<and> y \<le> 0)" |
|
1564 |
by auto |
|
1565 |
moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis" |
|
1566 |
by (erule (1) bezout_aux) |
|
1567 |
moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" |
|
1568 |
apply (insert bezout_aux [of x "-y"]) |
|
1569 |
apply auto |
|
1570 |
apply (rule_tac x = u in exI) |
|
1571 |
apply (rule_tac x = "-v" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1572 |
apply (subst gcd_neg2_int [symmetric]) |
31706 | 1573 |
apply auto |
1574 |
done |
|
1575 |
moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis" |
|
1576 |
apply (insert bezout_aux [of "-x" y]) |
|
1577 |
apply auto |
|
1578 |
apply (rule_tac x = "-u" in exI) |
|
1579 |
apply (rule_tac x = v in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1580 |
apply (subst gcd_neg1_int [symmetric]) |
31706 | 1581 |
apply auto |
1582 |
done |
|
1583 |
moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" |
|
1584 |
apply (insert bezout_aux [of "-x" "-y"]) |
|
1585 |
apply auto |
|
1586 |
apply (rule_tac x = "-u" in exI) |
|
1587 |
apply (rule_tac x = "-v" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1588 |
apply (subst gcd_neg1_int [symmetric]) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1589 |
apply (subst gcd_neg2_int [symmetric]) |
31706 | 1590 |
apply auto |
1591 |
done |
|
1592 |
ultimately show ?thesis by blast |
|
1593 |
qed |
|
1594 |
||
60758 | 1595 |
text \<open>versions of Bezout for nat, by Amine Chaieb\<close> |
31706 | 1596 |
|
1597 |
lemma ind_euclid: |
|
1598 |
assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" |
|
1599 |
and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1600 |
shows "P a b" |
34915 | 1601 |
proof(induct "a + b" arbitrary: a b rule: less_induct) |
1602 |
case less |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1603 |
have "a = b \<or> a < b \<or> b < a" by arith |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1604 |
moreover {assume eq: "a= b" |
31706 | 1605 |
from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq |
1606 |
by simp} |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1607 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1608 |
{assume lt: "a < b" |
34915 | 1609 |
hence "a + b - a < a + b \<or> a = 0" by arith |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1610 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1611 |
{assume "a =0" with z c have "P a b" by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1612 |
moreover |
34915 | 1613 |
{assume "a + b - a < a + b" |
1614 |
also have th0: "a + b - a = a + (b - a)" using lt by arith |
|
1615 |
finally have "a + (b - a) < a + b" . |
|
1616 |
then have "P a (a + (b - a))" by (rule add[rule_format, OF less]) |
|
1617 |
then have "P a b" by (simp add: th0[symmetric])} |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1618 |
ultimately have "P a b" by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1619 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1620 |
{assume lt: "a > b" |
34915 | 1621 |
hence "b + a - b < a + b \<or> b = 0" by arith |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1622 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1623 |
{assume "b =0" with z c have "P a b" by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1624 |
moreover |
34915 | 1625 |
{assume "b + a - b < a + b" |
1626 |
also have th0: "b + a - b = b + (a - b)" using lt by arith |
|
1627 |
finally have "b + (a - b) < a + b" . |
|
1628 |
then have "P b (b + (a - b))" by (rule add[rule_format, OF less]) |
|
1629 |
then have "P b a" by (simp add: th0[symmetric]) |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1630 |
hence "P a b" using c by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1631 |
ultimately have "P a b" by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1632 |
ultimately show "P a b" by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1633 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1634 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1635 |
lemma bezout_lemma_nat: |
31706 | 1636 |
assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
1637 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
|
1638 |
shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> |
|
1639 |
(a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" |
|
1640 |
using ex |
|
1641 |
apply clarsimp |
|
35216 | 1642 |
apply (rule_tac x="d" in exI, simp) |
31706 | 1643 |
apply (case_tac "a * x = b * y + d" , simp_all) |
1644 |
apply (rule_tac x="x + y" in exI) |
|
1645 |
apply (rule_tac x="y" in exI) |
|
1646 |
apply algebra |
|
1647 |
apply (rule_tac x="x" in exI) |
|
1648 |
apply (rule_tac x="x + y" in exI) |
|
1649 |
apply algebra |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1650 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1651 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1652 |
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 1653 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
1654 |
apply(induct a b rule: ind_euclid) |
|
1655 |
apply blast |
|
1656 |
apply clarify |
|
35216 | 1657 |
apply (rule_tac x="a" in exI, simp) |
31706 | 1658 |
apply clarsimp |
1659 |
apply (rule_tac x="d" in exI) |
|
35216 | 1660 |
apply (case_tac "a * x = b * y + d", simp_all) |
31706 | 1661 |
apply (rule_tac x="x+y" in exI) |
1662 |
apply (rule_tac x="y" in exI) |
|
1663 |
apply algebra |
|
1664 |
apply (rule_tac x="x" in exI) |
|
1665 |
apply (rule_tac x="x+y" in exI) |
|
1666 |
apply algebra |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1667 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1668 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1669 |
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 1670 |
(a * x - b * y = d \<or> b * x - a * y = d)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1671 |
using bezout_add_nat[of a b] |
31706 | 1672 |
apply clarsimp |
1673 |
apply (rule_tac x="d" in exI, simp) |
|
1674 |
apply (rule_tac x="x" in exI) |
|
1675 |
apply (rule_tac x="y" in exI) |
|
1676 |
apply auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1677 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1678 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1679 |
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)" |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1680 |
shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1681 |
proof- |
31706 | 1682 |
from nz have ap: "a > 0" by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1683 |
from bezout_add_nat[of a b] |
31706 | 1684 |
have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> |
1685 |
(\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1686 |
moreover |
31706 | 1687 |
{fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d" |
1688 |
from H have ?thesis by blast } |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1689 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1690 |
{fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1691 |
{assume b0: "b = 0" with H have ?thesis by simp} |
31706 | 1692 |
moreover |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1693 |
{assume b: "b \<noteq> 0" hence bp: "b > 0" by simp |
31706 | 1694 |
from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b" |
1695 |
by auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1696 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1697 |
{assume db: "d=b" |
41550 | 1698 |
with nz H have ?thesis apply simp |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1699 |
apply (rule exI[where x = b], simp) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1700 |
apply (rule exI[where x = b]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1701 |
by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1702 |
moreover |
31706 | 1703 |
{assume db: "d < b" |
41550 | 1704 |
{assume "x=0" hence ?thesis using nz H by simp } |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1705 |
moreover |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1706 |
{assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1707 |
from db have "d \<le> b - 1" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1708 |
hence "d*b \<le> b*(b - 1)" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1709 |
with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1710 |
have dble: "d*b \<le> x*b*(b - 1)" using bp by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1711 |
from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)" |
31706 | 1712 |
by simp |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1713 |
hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
1714 |
by (simp only: mult.assoc distrib_left) |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1715 |
hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" |
31706 | 1716 |
by algebra |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1717 |
hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1718 |
hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1719 |
by (simp only: diff_add_assoc[OF dble, of d, symmetric]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1720 |
hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" |
59008 | 1721 |
by (simp only: diff_mult_distrib2 ac_simps) |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1722 |
hence ?thesis using H(1,2) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1723 |
apply - |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1724 |
apply (rule exI[where x=d], simp) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1725 |
apply (rule exI[where x="(b - 1) * y"]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1726 |
by (rule exI[where x="x*(b - 1) - d"], simp)} |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1727 |
ultimately have ?thesis by blast} |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1728 |
ultimately have ?thesis by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1729 |
ultimately have ?thesis by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1730 |
ultimately show ?thesis by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1731 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1732 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1733 |
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0" |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1734 |
shows "\<exists>x y. a * x = b * y + gcd a b" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1735 |
proof- |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1736 |
let ?g = "gcd a b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1737 |
from bezout_add_strong_nat[OF a, of b] |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1738 |
obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1739 |
from d(1,2) have "d dvd ?g" by simp |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1740 |
then obtain k where k: "?g = d*k" unfolding dvd_def by blast |
31706 | 1741 |
from d(3) have "a * x * k = (b * y + d) *k " by auto |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1742 |
hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1743 |
thus ?thesis by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1744 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1745 |
|
31706 | 1746 |
|
60758 | 1747 |
subsection \<open>LCM properties\<close> |
31706 | 1748 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1749 |
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b" |
31706 | 1750 |
by (simp add: lcm_int_def lcm_nat_def zdiv_int |
44821 | 1751 |
of_nat_mult gcd_int_def) |
31706 | 1752 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1753 |
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n" |
31706 | 1754 |
unfolding lcm_nat_def |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1755 |
by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat]) |
31706 | 1756 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1757 |
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n" |
31706 | 1758 |
unfolding lcm_int_def gcd_int_def |
1759 |
apply (subst int_mult [symmetric]) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1760 |
apply (subst prod_gcd_lcm_nat [symmetric]) |
31706 | 1761 |
apply (subst nat_abs_mult_distrib [symmetric]) |
1762 |
apply (simp, simp add: abs_mult) |
|
1763 |
done |
|
1764 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1765 |
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0" |
31706 | 1766 |
unfolding lcm_nat_def by simp |
1767 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1768 |
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0" |
31706 | 1769 |
unfolding lcm_int_def by simp |
1770 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1771 |
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0" |
31706 | 1772 |
unfolding lcm_nat_def by simp |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1773 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1774 |
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0" |
31706 | 1775 |
unfolding lcm_int_def by simp |
1776 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1777 |
lemma lcm_pos_nat: |
31798 | 1778 |
"(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1779 |
by (metis gr0I mult_is_0 prod_gcd_lcm_nat) |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1780 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1781 |
lemma lcm_pos_int: |
31798 | 1782 |
"(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1783 |
apply (subst lcm_abs_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1784 |
apply (rule lcm_pos_nat [transferred]) |
31798 | 1785 |
apply auto |
31706 | 1786 |
done |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1787 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1788 |
lemma dvd_pos_nat: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1789 |
fixes n m :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1790 |
assumes "n > 0" and "m dvd n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1791 |
shows "m > 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1792 |
using assms by (cases m) auto |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1793 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1794 |
lemma lcm_least_nat: |
31706 | 1795 |
assumes "(m::nat) dvd k" and "n dvd k" |
27556 | 1796 |
shows "lcm m n dvd k" |
60686 | 1797 |
using assms by (rule lcm_least) |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1798 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1799 |
lemma lcm_least_int: |
31798 | 1800 |
"(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k" |
60686 | 1801 |
by (rule lcm_least) |
31706 | 1802 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1803 |
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n" |
60689 | 1804 |
by (fact dvd_lcm1) |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1805 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1806 |
lemma lcm_dvd1_int: "(m::int) dvd lcm m n" |
60689 | 1807 |
by (fact dvd_lcm1) |
31706 | 1808 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1809 |
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n" |
60689 | 1810 |
by (fact dvd_lcm2) |
31706 | 1811 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1812 |
lemma lcm_dvd2_int: "(n::int) dvd lcm m n" |
60689 | 1813 |
by (fact dvd_lcm2) |
31706 | 1814 |
|
31730 | 1815 |
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1816 |
by(metis lcm_dvd1_nat dvd_trans) |
31729 | 1817 |
|
31730 | 1818 |
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1819 |
by(metis lcm_dvd2_nat dvd_trans) |
31729 | 1820 |
|
31730 | 1821 |
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1822 |
by(metis lcm_dvd1_int dvd_trans) |
31729 | 1823 |
|
31730 | 1824 |
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1825 |
by(metis lcm_dvd2_int dvd_trans) |
31729 | 1826 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1827 |
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and> |
31706 | 1828 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
33657 | 1829 |
by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) |
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
1830 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1831 |
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and> |
31706 | 1832 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
60357 | 1833 |
using lcm_least_int zdvd_antisym_nonneg by auto |
31706 | 1834 |
|
37770
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
haftmann
parents:
36350
diff
changeset
|
1835 |
interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
1836 |
+ lcm_nat: semilattice_neutr "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" 1 |
60690 | 1837 |
by standard (simp_all del: One_nat_def) |
60686 | 1838 |
|
1839 |
interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int" .. |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1840 |
|
60686 | 1841 |
lemmas lcm_assoc_nat = lcm.assoc [where ?'a = nat] |
1842 |
lemmas lcm_commute_nat = lcm.commute [where ?'a = nat] |
|
1843 |
lemmas lcm_left_commute_nat = lcm.left_commute [where ?'a = nat] |
|
1844 |
lemmas lcm_assoc_int = lcm.assoc [where ?'a = int] |
|
1845 |
lemmas lcm_commute_int = lcm.commute [where ?'a = int] |
|
1846 |
lemmas lcm_left_commute_int = lcm.left_commute [where ?'a = int] |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1847 |
|
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1848 |
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1849 |
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1850 |
|
31798 | 1851 |
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y" |
31706 | 1852 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1853 |
apply (subst lcm_unique_nat [symmetric]) |
31706 | 1854 |
apply auto |
1855 |
done |
|
1856 |
||
31798 | 1857 |
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y" |
31706 | 1858 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1859 |
apply (subst lcm_unique_int [symmetric]) |
31706 | 1860 |
apply auto |
1861 |
done |
|
1862 |
||
31798 | 1863 |
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1864 |
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat) |
31706 | 1865 |
|
31798 | 1866 |
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1867 |
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int) |
31706 | 1868 |
|
31992 | 1869 |
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m" |
1870 |
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) |
|
1871 |
||
1872 |
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n" |
|
1873 |
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) |
|
1874 |
||
1875 |
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m" |
|
1876 |
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) |
|
1877 |
||
1878 |
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n" |
|
1879 |
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) |
|
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
1880 |
|
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1881 |
lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)" |
31992 | 1882 |
proof qed (auto simp add: gcd_ac_nat) |
1883 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1884 |
lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)" |
31992 | 1885 |
proof qed (auto simp add: gcd_ac_int) |
1886 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1887 |
lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)" |
31992 | 1888 |
proof qed (auto simp add: lcm_ac_nat) |
1889 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1890 |
lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)" |
31992 | 1891 |
proof qed (auto simp add: lcm_ac_int) |
1892 |
||
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1893 |
|
31995 | 1894 |
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *) |
1895 |
||
1896 |
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0" |
|
1897 |
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat) |
|
1898 |
||
1899 |
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0" |
|
44766 | 1900 |
by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le) |
31995 | 1901 |
|
1902 |
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1" |
|
1903 |
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat) |
|
1904 |
||
1905 |
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)" |
|
31996
1d93369079c4
Tuned proof of lcm_1_iff_int, because metis produced enormous proof term.
berghofe
parents:
31995
diff
changeset
|
1906 |
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff) |
31995 | 1907 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1908 |
|
60758 | 1909 |
subsection \<open>The complete divisibility lattice\<close> |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1910 |
|
60580 | 1911 |
interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(\<lambda>m n::nat. m dvd n \<and> \<not> n dvd m)" |
60686 | 1912 |
by standard simp_all |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1913 |
|
60580 | 1914 |
interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(\<lambda>m n::nat. m dvd n \<and> \<not> n dvd m)" |
60686 | 1915 |
by standard simp_all |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1916 |
|
60580 | 1917 |
interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(\<lambda>m n::nat. m dvd n & ~ n dvd m)" lcm .. |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1918 |
|
60758 | 1919 |
text\<open>Lifting gcd and lcm to sets (Gcd/Lcm). |
45264 | 1920 |
Gcd is defined via Lcm to facilitate the proof that we have a complete lattice. |
60758 | 1921 |
\<close> |
45264 | 1922 |
|
1923 |
instantiation nat :: Gcd |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1924 |
begin |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1925 |
|
45264 | 1926 |
definition |
51489 | 1927 |
"Lcm (M::nat set) = (if finite M then semilattice_neutr_set.F lcm 1 M else 0)" |
1928 |
||
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
1929 |
interpretation semilattice_neutr_set lcm "1::nat" .. |
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
1930 |
|
51489 | 1931 |
lemma Lcm_nat_infinite: |
1932 |
"\<not> finite M \<Longrightarrow> Lcm M = (0::nat)" |
|
1933 |
by (simp add: Lcm_nat_def) |
|
1934 |
||
1935 |
lemma Lcm_nat_empty: |
|
1936 |
"Lcm {} = (1::nat)" |
|
60690 | 1937 |
by (simp add: Lcm_nat_def del: One_nat_def) |
51489 | 1938 |
|
1939 |
lemma Lcm_nat_insert: |
|
1940 |
"Lcm (insert n M) = lcm (n::nat) (Lcm M)" |
|
60690 | 1941 |
by (cases "finite M") (simp_all add: Lcm_nat_def Lcm_nat_infinite del: One_nat_def) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1942 |
|
45264 | 1943 |
definition |
1944 |
"Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}" |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1945 |
|
45264 | 1946 |
instance .. |
51489 | 1947 |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1948 |
end |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1949 |
|
45264 | 1950 |
lemma dvd_Lcm_nat [simp]: |
51489 | 1951 |
fixes M :: "nat set" |
1952 |
assumes "m \<in> M" |
|
1953 |
shows "m dvd Lcm M" |
|
1954 |
proof (cases "finite M") |
|
1955 |
case False then show ?thesis by (simp add: Lcm_nat_infinite) |
|
1956 |
next |
|
1957 |
case True then show ?thesis using assms by (induct M) (auto simp add: Lcm_nat_insert) |
|
1958 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1959 |
|
45264 | 1960 |
lemma Lcm_dvd_nat [simp]: |
51489 | 1961 |
fixes M :: "nat set" |
1962 |
assumes "\<forall>m\<in>M. m dvd n" |
|
1963 |
shows "Lcm M dvd n" |
|
45264 | 1964 |
proof (cases "n = 0") |
1965 |
assume "n \<noteq> 0" |
|
1966 |
hence "finite {d. d dvd n}" by (rule finite_divisors_nat) |
|
1967 |
moreover have "M \<subseteq> {d. d dvd n}" using assms by fast |
|
1968 |
ultimately have "finite M" by (rule rev_finite_subset) |
|
51489 | 1969 |
then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) |
45264 | 1970 |
qed simp |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1971 |
|
45264 | 1972 |
interpretation gcd_lcm_complete_lattice_nat: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1973 |
complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" |
61566
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
ballarin
parents:
61169
diff
changeset
|
1974 |
rewrites "Inf.INFIMUM Gcd A f = Gcd (f ` A :: nat set)" |
56218
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents:
56166
diff
changeset
|
1975 |
and "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1976 |
proof - |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1977 |
show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)" |
61169 | 1978 |
by standard (auto simp add: Gcd_nat_def Lcm_nat_empty Lcm_nat_infinite) |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1979 |
then interpret gcd_lcm_complete_lattice_nat: |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1980 |
complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" . |
56218
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents:
56166
diff
changeset
|
1981 |
from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFIMUM Gcd A f = Gcd (f ` A)" . |
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents:
56166
diff
changeset
|
1982 |
from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" . |
45264 | 1983 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1984 |
|
56166 | 1985 |
declare gcd_lcm_complete_lattice_nat.Inf_image_eq [simp del] |
1986 |
declare gcd_lcm_complete_lattice_nat.Sup_image_eq [simp del] |
|
1987 |
||
45264 | 1988 |
lemma Lcm_empty_nat: "Lcm {} = (1::nat)" |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
1989 |
by (fact Lcm_nat_empty) |
45264 | 1990 |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1991 |
lemma Lcm_insert_nat [simp]: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1992 |
shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)" |
45264 | 1993 |
by (fact gcd_lcm_complete_lattice_nat.Sup_insert) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1994 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1995 |
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1996 |
by(induct rule:finite_ne_induct) auto |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1997 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1998 |
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1999 |
by (metis Lcm0_iff empty_iff) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2000 |
|
60596 | 2001 |
instance nat :: semiring_Gcd |
2002 |
proof |
|
2003 |
show "Gcd N dvd n" if "n \<in> N" for N and n :: nat |
|
2004 |
using that by (fact gcd_lcm_complete_lattice_nat.Inf_lower) |
|
2005 |
next |
|
60686 | 2006 |
show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" for N and n :: nat |
60596 | 2007 |
using that by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest) |
2008 |
next |
|
60686 | 2009 |
show "normalize (Gcd N) = Gcd N" for N :: "nat set" |
60596 | 2010 |
by simp |
2011 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2012 |
|
60686 | 2013 |
instance nat :: semiring_Lcm |
2014 |
proof |
|
2015 |
have uf: "unit_factor (Lcm N) = 1" if "0 < Lcm N" for N :: "nat set" |
|
2016 |
proof (cases "finite N") |
|
2017 |
case False with that show ?thesis by (simp add: Lcm_nat_infinite) |
|
2018 |
next |
|
2019 |
case True then show ?thesis |
|
2020 |
using that proof (induct N) |
|
2021 |
case empty then show ?case by simp |
|
2022 |
next |
|
2023 |
case (insert n N) |
|
2024 |
have "lcm n (Lcm N) \<noteq> 0 \<longleftrightarrow> n \<noteq> 0 \<and> Lcm N \<noteq> 0" |
|
2025 |
using lcm_eq_0_iff [of n "Lcm N"] by simp |
|
2026 |
then have "lcm n (Lcm N) > 0 \<longleftrightarrow> n > 0 \<and> Lcm N > 0" |
|
2027 |
unfolding neq0_conv . |
|
2028 |
with insert show ?case |
|
2029 |
by (simp add: Lcm_nat_insert unit_factor_lcm) |
|
2030 |
qed |
|
2031 |
qed |
|
2032 |
show "Lcm N = Gcd {m. \<forall>n\<in>N. n dvd m}" for N :: "nat set" |
|
2033 |
by (rule associated_eqI) (auto intro!: associatedI Gcd_dvd Gcd_greatest |
|
2034 |
simp add: unit_factor_Gcd uf) |
|
2035 |
qed |
|
2036 |
||
60758 | 2037 |
text\<open>Alternative characterizations of Gcd:\<close> |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2038 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2039 |
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2040 |
apply(rule antisym) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2041 |
apply(rule Max_ge) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2042 |
apply (metis all_not_in_conv finite_divisors_nat finite_INT) |
60596 | 2043 |
apply (simp add: Gcd_dvd) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2044 |
apply (rule Max_le_iff[THEN iffD2]) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2045 |
apply (metis all_not_in_conv finite_divisors_nat finite_INT) |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44845
diff
changeset
|
2046 |
apply fastforce |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2047 |
apply clarsimp |
60596 | 2048 |
apply (metis Gcd_dvd Max_in dvd_0_left dvd_Gcd dvd_imp_le linorder_antisym_conv3 not_less0) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2049 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2050 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2051 |
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2052 |
apply(induct pred:finite) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2053 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2054 |
apply(case_tac "x=0") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2055 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2056 |
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2057 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2058 |
apply blast |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2059 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2060 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2061 |
lemma Lcm_in_lcm_closed_set_nat: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2062 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2063 |
apply(induct rule:finite_linorder_min_induct) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2064 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2065 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2066 |
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2067 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2068 |
apply(case_tac "A={}") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2069 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2070 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2071 |
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2072 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2073 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2074 |
lemma Lcm_eq_Max_nat: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2075 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2076 |
apply(rule antisym) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2077 |
apply(rule Max_ge, assumption) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2078 |
apply(erule (2) Lcm_in_lcm_closed_set_nat) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2079 |
apply clarsimp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2080 |
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2081 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2082 |
|
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
2083 |
lemma Lcm_set_nat [code, code_unfold]: |
45992 | 2084 |
"Lcm (set ns) = fold lcm ns (1::nat)" |
45264 | 2085 |
by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2086 |
|
60597 | 2087 |
lemma Gcd_set_nat [code]: |
45992 | 2088 |
"Gcd (set ns) = fold gcd ns (0::nat)" |
45264 | 2089 |
by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold) |
34222 | 2090 |
|
2091 |
lemma mult_inj_if_coprime_nat: |
|
2092 |
"inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b) |
|
2093 |
\<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)" |
|
60690 | 2094 |
apply (auto simp add: inj_on_def simp del: One_nat_def) |
35216 | 2095 |
apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left) |
34223 | 2096 |
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
2097 |
dvd.neq_le_trans dvd_triv_right mult.commute) |
34222 | 2098 |
done |
2099 |
||
60758 | 2100 |
text\<open>Nitpick:\<close> |
34222 | 2101 |
|
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
2102 |
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y" |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
2103 |
by (induct x y rule: nat_gcd.induct) |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
2104 |
(simp add: gcd_nat.simps Nitpick.nat_gcd.simps) |
33197
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
2105 |
|
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
2106 |
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y" |
33197
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
2107 |
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) |
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
2108 |
|
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
2109 |
|
60758 | 2110 |
subsubsection \<open>Setwise gcd and lcm for integers\<close> |
45264 | 2111 |
|
2112 |
instantiation int :: Gcd |
|
2113 |
begin |
|
2114 |
||
2115 |
definition |
|
2116 |
"Lcm M = int (Lcm (nat ` abs ` M))" |
|
2117 |
||
2118 |
definition |
|
2119 |
"Gcd M = int (Gcd (nat ` abs ` M))" |
|
2120 |
||
2121 |
instance .. |
|
60686 | 2122 |
|
21256 | 2123 |
end |
45264 | 2124 |
|
60686 | 2125 |
instance int :: semiring_Gcd |
2126 |
by standard (auto intro!: Gcd_dvd Gcd_greatest simp add: Gcd_int_def Lcm_int_def int_dvd_iff dvd_int_iff |
|
2127 |
dvd_int_unfold_dvd_nat [symmetric]) |
|
2128 |
||
2129 |
instance int :: semiring_Lcm |
|
2130 |
proof |
|
2131 |
fix K :: "int set" |
|
2132 |
have "{n. \<forall>k\<in>K. nat \<bar>k\<bar> dvd n} = ((\<lambda>k. nat \<bar>k\<bar>) ` {l. \<forall>k\<in>K. k dvd l})" |
|
2133 |
proof (rule set_eqI) |
|
2134 |
fix n |
|
2135 |
have "(\<forall>k\<in>K. nat \<bar>k\<bar> dvd n) \<longleftrightarrow> (\<exists>l. (\<forall>k\<in>K. k dvd l) \<and> n = nat \<bar>l\<bar>)" (is "?P \<longleftrightarrow> ?Q") |
|
2136 |
proof |
|
2137 |
assume ?P |
|
2138 |
then have "(\<forall>k\<in>K. k dvd int n) \<and> n = nat \<bar>int n\<bar>" |
|
2139 |
by (auto simp add: dvd_int_unfold_dvd_nat) |
|
2140 |
then show ?Q by blast |
|
2141 |
next |
|
2142 |
assume ?Q then show ?P |
|
2143 |
by (auto simp add: dvd_int_unfold_dvd_nat) |
|
2144 |
qed |
|
2145 |
then show "n \<in> {n. \<forall>k\<in>K. nat \<bar>k\<bar> dvd n} \<longleftrightarrow> n \<in> (\<lambda>k. nat \<bar>k\<bar>) ` {l. \<forall>k\<in>K. k dvd l}" |
|
2146 |
by auto |
|
2147 |
qed |
|
2148 |
then show "Lcm K = Gcd {l. \<forall>k\<in>K. k dvd l}" |
|
2149 |
by (simp add: Gcd_int_def Lcm_int_def Lcm_Gcd) |
|
2150 |
qed |
|
2151 |
||
45264 | 2152 |
lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)" |
2153 |
by (simp add: Lcm_int_def) |
|
2154 |
||
2155 |
lemma Lcm_insert_int [simp]: |
|
2156 |
shows "Lcm (insert (n::int) N) = lcm n (Lcm N)" |
|
2157 |
by (simp add: Lcm_int_def lcm_int_def) |
|
2158 |
||
2159 |
lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)" |
|
60686 | 2160 |
by (fact dvd_int_unfold_dvd_nat) |
45264 | 2161 |
|
2162 |
lemma dvd_Lcm_int [simp]: |
|
2163 |
fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M" |
|
2164 |
using assms by (simp add: Lcm_int_def dvd_int_iff) |
|
2165 |
||
2166 |
lemma Lcm_dvd_int [simp]: |
|
2167 |
fixes M :: "int set" |
|
2168 |
assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n" |
|
2169 |
using assms by (simp add: Lcm_int_def dvd_int_iff) |
|
2170 |
||
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
2171 |
lemma Lcm_set_int [code, code_unfold]: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
2172 |
"Lcm (set xs) = fold lcm xs (1::int)" |
56166 | 2173 |
by (induct xs rule: rev_induct) (simp_all add: lcm_commute_int) |
45264 | 2174 |
|
60597 | 2175 |
lemma Gcd_set_int [code]: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
2176 |
"Gcd (set xs) = fold gcd xs (0::int)" |
56166 | 2177 |
by (induct xs rule: rev_induct) (simp_all add: gcd_commute_int) |
45264 | 2178 |
|
59008 | 2179 |
|
2180 |
text \<open>Fact aliasses\<close> |
|
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
2181 |
|
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
2182 |
lemmas gcd_dvd1_nat = gcd_dvd1 [where ?'a = nat] |
59008 | 2183 |
and gcd_dvd2_nat = gcd_dvd2 [where ?'a = nat] |
2184 |
and gcd_greatest_nat = gcd_greatest [where ?'a = nat] |
|
2185 |
||
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
2186 |
lemmas gcd_dvd1_int = gcd_dvd1 [where ?'a = int] |
59008 | 2187 |
and gcd_dvd2_int = gcd_dvd2 [where ?'a = int] |
2188 |
and gcd_greatest_int = gcd_greatest [where ?'a = int] |
|
2189 |
||
60596 | 2190 |
lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] |
2191 |
and dvd_Gcd_nat [simp] = dvd_Gcd [where ?'a = nat] |
|
2192 |
||
2193 |
lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] |
|
2194 |
and dvd_Gcd_int [simp] = dvd_Gcd [where ?'a = int] |
|
2195 |
||
2196 |
lemmas Gcd_empty_nat = Gcd_empty [where ?'a = nat] |
|
2197 |
and Gcd_insert_nat = Gcd_insert [where ?'a = nat] |
|
2198 |
||
2199 |
lemmas Gcd_empty_int = Gcd_empty [where ?'a = int] |
|
2200 |
and Gcd_insert_int = Gcd_insert [where ?'a = int] |
|
2201 |
||
45264 | 2202 |
end |