doc-src/TutorialI/Inductive/document/Star.tex
author wenzelm
Sat, 22 May 2010 20:02:26 +0200
changeset 37060 6f2731bdba11
parent 27190 431f695fc865
child 40406 313a24b66a8d
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Star}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     9
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    10
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    16
\endisadelimtheory
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    18
\isamarkupsection{The Reflexive Transitive Closure%
10395
7ef380745743 updated;
wenzelm
parents: 10363
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    20
\isamarkuptrue%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    21
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    23
\label{sec:rtc}
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
    24
\index{reflexive transitive closure!defining inductively|(}%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    25
An inductive definition may accept parameters, so it can express 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    26
functions that yield sets.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    27
Relations too can be defined inductively, since they are just sets of pairs.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    28
A perfect example is the function that maps a relation to its
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    29
reflexive transitive closure.  This concept was already
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10950
diff changeset
    30
introduced in \S\ref{sec:Relations}, where the operator \isa{\isactrlsup {\isacharasterisk}} was
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    31
defined as a least fixed point because inductive definitions were not yet
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    32
available. But now they are:%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    33
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    34
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    35
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    36
\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    37
\ \ rtc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharunderscore}{\isacharasterisk}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    38
\ \ \isakeyword{for}\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    39
\isakeyword{where}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    40
\ \ rtc{\isacharunderscore}refl{\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    41
{\isacharbar}\ rtc{\isacharunderscore}step{\isacharcolon}\ \ \ \ \ \ \ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    42
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    43
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    44
The function \isa{rtc} is annotated with concrete syntax: instead of
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
    45
\isa{rtc\ r} we can write \isa{r{\isacharasterisk}}. The actual definition
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    46
consists of two rules. Reflexivity is obvious and is immediately given the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    47
\isa{iff} attribute to increase automation. The
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    48
second rule, \isa{rtc{\isacharunderscore}step}, says that we can always add one more
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    49
\isa{r}-step to the left. Although we could make \isa{rtc{\isacharunderscore}step} an
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    50
introduction rule, this is dangerous: the recursion in the second premise
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    51
slows down and may even kill the automatic tactics.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    52
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    53
The above definition of the concept of reflexive transitive closure may
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    54
be sufficiently intuitive but it is certainly not the only possible one:
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    55
for a start, it does not even mention transitivity.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    56
The rest of this section is devoted to proving that it is equivalent to
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    57
the standard definition. We start with a simple lemma:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    58
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    59
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    60
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    61
\ {\isacharbrackleft}intro{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    62
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    63
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    64
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    65
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    66
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    67
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    68
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    69
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    70
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    71
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    72
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    73
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    74
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    75
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    76
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    77
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    78
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    79
Although the lemma itself is an unremarkable consequence of the basic rules,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    80
it has the advantage that it can be declared an introduction rule without the
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    81
danger of killing the automatic tactics because \isa{r{\isacharasterisk}} occurs only in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    82
the conclusion and not in the premise. Thus some proofs that would otherwise
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    83
need \isa{rtc{\isacharunderscore}step} can now be found automatically. The proof also
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    84
shows that \isa{blast} is able to handle \isa{rtc{\isacharunderscore}step}. But
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    85
some of the other automatic tactics are more sensitive, and even \isa{blast} can be lead astray in the presence of large numbers of rules.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    86
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    87
To prove transitivity, we need rule induction, i.e.\ theorem
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    88
\isa{rtc{\isachardot}induct}:
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    89
\begin{isabelle}%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    90
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}{\isacharcomma}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
14379
ea10a8c3e9cf updated links to the old ftp site
paulson
parents: 13778
diff changeset
    91
\isaindent{\ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    92
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}%
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    93
\end{isabelle}
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    94
It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}{\isacharcomma}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    95
if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    96
i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    97
premises. In general, rule induction for an $n$-ary inductive relation $R$
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    98
expects a premise of the form $(x@1,\dots,x@n) \in R$.
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    99
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   100
Now we turn to the inductive proof of transitivity:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   101
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   102
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   103
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   104
\ rtc{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   105
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   106
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   107
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   108
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   109
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   110
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   111
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   112
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   113
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   114
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   115
Unfortunately, even the base case is a problem:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   116
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   117
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   118
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   119
We have to abandon this proof attempt.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   120
To understand what is going on, let us look again at \isa{rtc{\isachardot}induct}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   121
In the above application of \isa{erule}, the first premise of
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   122
\isa{rtc{\isachardot}induct} is unified with the first suitable assumption, which
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   123
is \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} rather than \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}. Although that
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   124
is what we want, it is merely due to the order in which the assumptions occur
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   125
in the subgoal, which it is not good practice to rely on. As a result,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   126
\isa{{\isacharquery}xb} becomes \isa{x}, \isa{{\isacharquery}xa} becomes
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   127
\isa{y} and \isa{{\isacharquery}P} becomes \isa{{\isasymlambda}u\ v{\isachardot}\ {\isacharparenleft}u{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}, thus
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   128
yielding the above subgoal. So what went wrong?
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   129
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   130
When looking at the instantiation of \isa{{\isacharquery}P} we see that it does not
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   131
depend on its second parameter at all. The reason is that in our original
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   132
goal, of the pair \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}} only \isa{x} appears also in the
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   133
conclusion, but not \isa{y}. Thus our induction statement is too
27190
431f695fc865 updated generated file;
wenzelm
parents: 23848
diff changeset
   134
general. Fortunately, it can easily be specialized:
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   135
transfer the additional premise \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} into the conclusion:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   136
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   137
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   138
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   139
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   140
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   141
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   142
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   143
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   144
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   145
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   146
\ rtc{\isacharunderscore}trans{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   147
\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   148
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   149
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   150
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   151
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   152
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   153
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   154
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   155
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   156
This is not an obscure trick but a generally applicable heuristic:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   157
\begin{quote}\em
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   158
When proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   159
pull all other premises containing any of the $x@i$ into the conclusion
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   160
using $\longrightarrow$.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   161
\end{quote}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   162
A similar heuristic for other kinds of inductions is formulated in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   163
\S\ref{sec:ind-var-in-prems}. The \isa{rule{\isacharunderscore}format} directive turns
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   164
\isa{{\isasymlongrightarrow}} back into \isa{{\isasymLongrightarrow}}: in the end we obtain the original
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   165
statement of our lemma.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   166
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   167
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   168
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   169
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   170
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   171
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   172
Now induction produces two subgoals which are both proved automatically:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   173
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   174
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   175
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y\ za{\isachardot}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   176
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ za{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isasymrbrakk}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   177
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymLongrightarrow}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   178
\end{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   179
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   180
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   181
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   182
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   183
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   184
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   185
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   186
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   187
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   188
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   189
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   190
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   191
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   192
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   193
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   194
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   195
Let us now prove that \isa{r{\isacharasterisk}} is really the reflexive transitive closure
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   196
of \isa{r}, i.e.\ the least reflexive and transitive
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   197
relation containing \isa{r}. The latter is easily formalized%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   198
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   199
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   200
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   201
\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   202
\ \ rtc{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   203
\ \ \isakeyword{for}\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   204
\isakeyword{where}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   205
\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   206
{\isacharbar}\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   207
{\isacharbar}\ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}%
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   208
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   209
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   210
and the equivalence of the two definitions is easily shown by the obvious rule
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   211
inductions:%
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   212
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   213
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   214
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   215
\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   216
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   217
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   218
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   219
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   220
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   221
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   222
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   223
{\isacharparenleft}erule\ rtc{\isadigit{2}}{\isachardot}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   224
\ \ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   225
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   226
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   227
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   228
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   229
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}trans{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   230
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   231
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   232
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   233
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   234
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   235
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   236
\isanewline
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   237
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   238
\endisadelimproof
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14379
diff changeset
   239
\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   240
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   241
\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   242
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   243
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   244
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   245
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   246
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   247
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   248
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   249
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   250
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   251
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   252
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   253
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   254
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   255
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   256
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   257
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   258
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   259
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   260
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   261
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   262
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   263
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   264
So why did we start with the first definition? Because it is simpler. It
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   265
contains only two rules, and the single step rule is simpler than
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   266
transitivity.  As a consequence, \isa{rtc{\isachardot}induct} is simpler than
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   267
\isa{rtc{\isadigit{2}}{\isachardot}induct}. Since inductive proofs are hard enough
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10950
diff changeset
   268
anyway, we should always pick the simplest induction schema available.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   269
Hence \isa{rtc} is the definition of choice.
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
   270
\index{reflexive transitive closure!defining inductively|)}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   271
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   272
\begin{exercise}\label{ex:converse-rtc-step}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   273
Show that the converse of \isa{rtc{\isacharunderscore}step} also holds:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   274
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   275
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   276
\end{isabelle}
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   277
\end{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   278
\begin{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   279
Repeat the development of this section, but starting with a definition of
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   280
\isa{rtc} where \isa{rtc{\isacharunderscore}step} is replaced by its converse as shown
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   281
in exercise~\ref{ex:converse-rtc-step}.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   282
\end{exercise}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   283
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   284
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   285
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   286
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   287
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   288
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   289
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   290
\isatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   291
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   292
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   293
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   294
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   295
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   296
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   297
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   298
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   299
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   300
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   301
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   302
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   303
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   304
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   305
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   306
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   307
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   308
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   309
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   310
\endisadelimtheory
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   311
\end{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   312
%%% Local Variables:
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   313
%%% mode: latex
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   314
%%% TeX-master: "root"
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   315
%%% End: