doc-src/TutorialI/Inductive/document/Star.tex
author wenzelm
Sun, 21 Jan 2001 19:50:43 +0100
changeset 10950 aa788fcb75a5
parent 10878 b254d5ad6dd4
child 11147 d848c6693185
permissions -rw-r--r--
updated;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Star}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     4
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
     5
\isamarkupsection{The Reflexive Transitive Closure%
10395
7ef380745743 updated;
wenzelm
parents: 10363
diff changeset
     6
}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     7
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     8
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     9
\label{sec:rtc}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    10
An inductive definition may accept parameters, so it can express 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    11
functions that yield sets.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    12
Relations too can be defined inductively, since they are just sets of pairs.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    13
A perfect example is the function that maps a relation to its
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    14
reflexive transitive closure.  This concept was already
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    15
introduced in \S\ref{sec:Relations}, where the operator \isa{{\isacharcircum}{\isacharasterisk}} was
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    16
defined as a least fixed point because inductive definitions were not yet
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    17
available. But now they are:%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    18
\end{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    19
\isacommand{consts}\ rtc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharunderscore}{\isacharasterisk}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    20
\isacommand{inductive}\ {\isachardoublequote}r{\isacharasterisk}{\isachardoublequote}\isanewline
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    21
\isakeyword{intros}\isanewline
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    22
rtc{\isacharunderscore}refl{\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    23
rtc{\isacharunderscore}step{\isacharcolon}\ \ \ \ \ \ \ {\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    24
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    25
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    26
The function \isa{rtc} is annotated with concrete syntax: instead of
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    27
\isa{rtc\ r} we can read and write \isa{r{\isacharasterisk}}. The actual definition
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    28
consists of two rules. Reflexivity is obvious and is immediately given the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    29
\isa{iff} attribute to increase automation. The
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    30
second rule, \isa{rtc{\isacharunderscore}step}, says that we can always add one more
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    31
\isa{r}-step to the left. Although we could make \isa{rtc{\isacharunderscore}step} an
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    32
introduction rule, this is dangerous: the recursion in the second premise
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    33
slows down and may even kill the automatic tactics.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    34
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    35
The above definition of the concept of reflexive transitive closure may
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    36
be sufficiently intuitive but it is certainly not the only possible one:
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    37
for a start, it does not even mention transitivity.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    38
The rest of this section is devoted to proving that it is equivalent to
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    39
the standard definition. We start with a simple lemma:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    40
\end{isamarkuptext}%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    41
\isacommand{lemma}\ {\isacharbrackleft}intro{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isacharcolon}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    42
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    43
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    44
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    45
Although the lemma itself is an unremarkable consequence of the basic rules,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    46
it has the advantage that it can be declared an introduction rule without the
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    47
danger of killing the automatic tactics because \isa{r{\isacharasterisk}} occurs only in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    48
the conclusion and not in the premise. Thus some proofs that would otherwise
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    49
need \isa{rtc{\isacharunderscore}step} can now be found automatically. The proof also
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    50
shows that \isa{blast} is able to handle \isa{rtc{\isacharunderscore}step}. But
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    51
some of the other automatic tactics are more sensitive, and even \isa{blast} can be lead astray in the presence of large numbers of rules.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    52
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    53
To prove transitivity, we need rule induction, i.e.\ theorem
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    54
\isa{rtc{\isachardot}induct}:
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    55
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
    56
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}xb{\isacharcomma}\ {\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
10950
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
    57
\isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
    58
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}xb\ {\isacharquery}xa%
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    59
\end{isabelle}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    60
It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}xb{\isacharcomma}{\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}} if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    61
i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    62
premises. In general, rule induction for an $n$-ary inductive relation $R$
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    63
expects a premise of the form $(x@1,\dots,x@n) \in R$.
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    64
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    65
Now we turn to the inductive proof of transitivity:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    66
\end{isamarkuptext}%
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    67
\isacommand{lemma}\ rtc{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    68
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    69
\begin{isamarkuptxt}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    70
\noindent
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    71
Unfortunately, even the resulting base case is a problem
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    72
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    73
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    74
\end{isabelle}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    75
and maybe not what you had expected. We have to abandon this proof attempt.
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    76
To understand what is going on, let us look again at \isa{rtc{\isachardot}induct}.
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    77
In the above application of \isa{erule}, the first premise of
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    78
\isa{rtc{\isachardot}induct} is unified with the first suitable assumption, which
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    79
is \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} rather than \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}. Although that
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    80
is what we want, it is merely due to the order in which the assumptions occur
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    81
in the subgoal, which it is not good practice to rely on. As a result,
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    82
\isa{{\isacharquery}xb} becomes \isa{x}, \isa{{\isacharquery}xa} becomes
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    83
\isa{y} and \isa{{\isacharquery}P} becomes \isa{{\isasymlambda}u\ v{\isachardot}\ {\isacharparenleft}u{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}, thus
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    84
yielding the above subgoal. So what went wrong?
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    85
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    86
When looking at the instantiation of \isa{{\isacharquery}P} we see that it does not
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    87
depend on its second parameter at all. The reason is that in our original
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    88
goal, of the pair \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}} only \isa{x} appears also in the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    89
conclusion, but not \isa{y}. Thus our induction statement is too
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    90
weak. Fortunately, it can easily be strengthened:
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    91
transfer the additional premise \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} into the conclusion:%
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    92
\end{isamarkuptxt}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    93
\isacommand{lemma}\ rtc{\isacharunderscore}trans{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    94
\ \ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    95
\begin{isamarkuptxt}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    96
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    97
This is not an obscure trick but a generally applicable heuristic:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    98
\begin{quote}\em
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    99
Whe proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   100
pull all other premises containing any of the $x@i$ into the conclusion
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   101
using $\longrightarrow$.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   102
\end{quote}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   103
A similar heuristic for other kinds of inductions is formulated in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   104
\S\ref{sec:ind-var-in-prems}. The \isa{rule{\isacharunderscore}format} directive turns
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   105
\isa{{\isasymlongrightarrow}} back into \isa{{\isasymLongrightarrow}}. Thus in the end we obtain the original
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   106
statement of our lemma.%
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   107
\end{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   108
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   109
\begin{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   110
\noindent
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   111
Now induction produces two subgoals which are both proved automatically:
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
   112
\begin{isabelle}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   113
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   114
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y\ za{\isachardot}\isanewline
10950
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
   115
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ za{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isasymrbrakk}\isanewline
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
   116
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymLongrightarrow}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   117
\end{isabelle}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   118
\end{isamarkuptxt}%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   119
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   120
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}\isanewline
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   121
\isacommand{done}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   122
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   123
Let us now prove that \isa{r{\isacharasterisk}} is really the reflexive transitive closure
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   124
of \isa{r}, i.e.\ the least reflexive and transitive
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   125
relation containing \isa{r}. The latter is easily formalized%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   126
\end{isamarkuptext}%
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   127
\isacommand{consts}\ rtc{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   128
\isacommand{inductive}\ {\isachardoublequote}rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   129
\isakeyword{intros}\isanewline
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   130
{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   131
{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   132
{\isachardoublequote}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}%
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   133
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   134
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   135
and the equivalence of the two definitions is easily shown by the obvious rule
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   136
inductions:%
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   137
\end{isamarkuptext}%
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   138
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequote}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   139
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isadigit{2}}{\isachardot}induct{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   140
\ \ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   141
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   142
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}trans{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   143
\isacommand{done}\isanewline
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   144
\isanewline
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   145
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequote}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   146
\isacommand{apply}{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   147
\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   148
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   149
\isacommand{done}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   150
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   151
So why did we start with the first definition? Because it is simpler. It
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   152
contains only two rules, and the single step rule is simpler than
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   153
transitivity.  As a consequence, \isa{rtc{\isachardot}induct} is simpler than
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   154
\isa{rtc{\isadigit{2}}{\isachardot}induct}. Since inductive proofs are hard enough
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   155
anyway, we should
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   156
certainly pick the simplest induction schema available.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   157
Hence \isa{rtc} is the definition of choice.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   158
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   159
\begin{exercise}\label{ex:converse-rtc-step}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   160
Show that the converse of \isa{rtc{\isacharunderscore}step} also holds:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   161
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   162
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   163
\end{isabelle}
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   164
\end{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   165
\begin{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   166
Repeat the development of this section, but starting with a definition of
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   167
\isa{rtc} where \isa{rtc{\isacharunderscore}step} is replaced by its converse as shown
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   168
in exercise~\ref{ex:converse-rtc-step}.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   169
\end{exercise}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   170
\end{isamarkuptext}%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   171
\end{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   172
%%% Local Variables:
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   173
%%% mode: latex
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   174
%%% TeX-master: "root"
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   175
%%% End: