| author | wenzelm | 
| Sat, 01 Oct 2016 19:29:48 +0200 | |
| changeset 63981 | 6f7db4f8df4c | 
| parent 63952 | 354808e9f44b | 
| child 64267 | b9a1486e79be | 
| permissions | -rw-r--r-- | 
| 63558 | 1 | (* Title: HOL/Deriv.thy | 
| 2 | Author: Jacques D. Fleuriot, University of Cambridge, 1998 | |
| 3 | Author: Brian Huffman | |
| 4 | Author: Lawrence C Paulson, 2004 | |
| 5 | Author: Benjamin Porter, 2005 | |
| 21164 | 6 | *) | 
| 7 | ||
| 63558 | 8 | section \<open>Differentiation\<close> | 
| 21164 | 9 | |
| 10 | theory Deriv | |
| 63558 | 11 | imports Limits | 
| 21164 | 12 | begin | 
| 13 | ||
| 60758 | 14 | subsection \<open>Frechet derivative\<close> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 15 | |
| 63558 | 16 | definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
 | 
| 17 |     ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool"  (infix "(has'_derivative)" 50)
 | |
| 18 | where "(f has_derivative f') F \<longleftrightarrow> | |
| 19 | bounded_linear f' \<and> | |
| 20 | ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 21 | |
| 60758 | 22 | text \<open> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 23 |   Usually the filter @{term F} is @{term "at x within s"}.  @{term "(f has_derivative D)
 | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 24 |   (at x within s)"} means: @{term D} is the derivative of function @{term f} at point @{term x}
 | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 25 |   within the set @{term s}. Where @{term s} is used to express left or right sided derivatives. In
 | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 26 |   most cases @{term s} is either a variable or @{term UNIV}.
 | 
| 60758 | 27 | \<close> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 28 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 29 | lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F" | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 30 | by simp | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 31 | |
| 63558 | 32 | definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
| 33 | (infix "(has'_field'_derivative)" 50) | |
| 34 | where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative op * D) F" | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 35 | |
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 36 | lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F" | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 37 | by simp | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 38 | |
| 63558 | 39 | definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool" | 
| 40 | (infix "has'_vector'_derivative" 50) | |
| 41 | where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net" | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 42 | |
| 63558 | 43 | lemma has_vector_derivative_eq_rhs: | 
| 44 | "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F" | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 45 | by simp | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 46 | |
| 57953 | 47 | named_theorems derivative_intros "structural introduction rules for derivatives" | 
| 60758 | 48 | setup \<open> | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 49 | let | 
| 57953 | 50 |     val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
 | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 51 | fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 52 | in | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 53 | Global_Theory.add_thms_dynamic | 
| 57953 | 54 |       (@{binding derivative_eq_intros},
 | 
| 55 | fn context => | |
| 56 |           Named_Theorems.get (Context.proof_of context) @{named_theorems derivative_intros}
 | |
| 57 | |> map_filter eq_rule) | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 58 | end; | 
| 60758 | 59 | \<close> | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 60 | |
| 60758 | 61 | text \<open> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 62 | The following syntax is only used as a legacy syntax. | 
| 60758 | 63 | \<close> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 64 | abbreviation (input) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 65 |   FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 66 |   ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
 | 
| 63558 | 67 | where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 68 | |
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 69 | lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 70 | by (simp add: has_derivative_def) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 71 | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56289diff
changeset | 72 | lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56289diff
changeset | 73 | using bounded_linear.linear[OF has_derivative_bounded_linear] . | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56289diff
changeset | 74 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 75 | lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 76 | by (simp add: has_derivative_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 77 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63299diff
changeset | 78 | lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63299diff
changeset | 79 | by (metis eq_id_iff has_derivative_ident) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63299diff
changeset | 80 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 81 | lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 82 | by (simp add: has_derivative_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 83 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 84 | lemma (in bounded_linear) bounded_linear: "bounded_linear f" .. | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 85 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 86 | lemma (in bounded_linear) has_derivative: | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 87 | "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F" | 
| 63092 | 88 | unfolding has_derivative_def | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 89 | apply safe | 
| 63558 | 90 | apply (erule bounded_linear_compose [OF bounded_linear]) | 
| 56219 | 91 | apply (drule tendsto) | 
| 92 | apply (simp add: scaleR diff add zero) | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 93 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 94 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 95 | lemmas has_derivative_scaleR_right [derivative_intros] = | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 96 | bounded_linear.has_derivative [OF bounded_linear_scaleR_right] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 97 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 98 | lemmas has_derivative_scaleR_left [derivative_intros] = | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 99 | bounded_linear.has_derivative [OF bounded_linear_scaleR_left] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 100 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 101 | lemmas has_derivative_mult_right [derivative_intros] = | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 102 | bounded_linear.has_derivative [OF bounded_linear_mult_right] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 103 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 104 | lemmas has_derivative_mult_left [derivative_intros] = | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 105 | bounded_linear.has_derivative [OF bounded_linear_mult_left] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 106 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 107 | lemma has_derivative_add[simp, derivative_intros]: | 
| 63558 | 108 | assumes f: "(f has_derivative f') F" | 
| 109 | and g: "(g has_derivative g') F" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 110 | shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 111 | unfolding has_derivative_def | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 112 | proof safe | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 113 | let ?x = "Lim F (\<lambda>x. x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 114 | let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)" | 
| 61973 | 115 | have "((\<lambda>x. ?D f f' x + ?D g g' x) \<longlongrightarrow> (0 + 0)) F" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 116 | using f g by (intro tendsto_add) (auto simp: has_derivative_def) | 
| 61973 | 117 | then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) \<longlongrightarrow> 0) F" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 118 | by (simp add: field_simps scaleR_add_right scaleR_diff_right) | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 119 | qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 120 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 121 | lemma has_derivative_setsum[simp, derivative_intros]: | 
| 63915 | 122 | "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F) \<Longrightarrow> | 
| 123 | ((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F" | |
| 124 | by (induct I rule: infinite_finite_induct) simp_all | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 125 | |
| 63558 | 126 | lemma has_derivative_minus[simp, derivative_intros]: | 
| 127 | "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 128 | using has_derivative_scaleR_right[of f f' F "-1"] by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 129 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 130 | lemma has_derivative_diff[simp, derivative_intros]: | 
| 63558 | 131 | "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow> | 
| 132 | ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 133 | by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 134 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 135 | lemma has_derivative_at_within: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 136 | "(f has_derivative f') (at x within s) \<longleftrightarrow> | 
| 61973 | 137 | (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s))" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 138 | by (cases "at x within s = bot") (simp_all add: has_derivative_def Lim_ident_at) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 139 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 140 | lemma has_derivative_iff_norm: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 141 | "(f has_derivative f') (at x within s) \<longleftrightarrow> | 
| 63558 | 142 | bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 143 | using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric] | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 144 | by (simp add: has_derivative_at_within divide_inverse ac_simps) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 145 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 146 | lemma has_derivative_at: | 
| 63558 | 147 | "(f has_derivative D) (at x) \<longleftrightarrow> | 
| 148 | (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) \<midarrow>0\<rightarrow> 0)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 149 | unfolding has_derivative_iff_norm LIM_offset_zero_iff[of _ _ x] by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 150 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 151 | lemma field_has_derivative_at: | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 152 | fixes x :: "'a::real_normed_field" | 
| 61976 | 153 | shows "(f has_derivative op * D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 154 | apply (unfold has_derivative_at) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 155 | apply (simp add: bounded_linear_mult_right) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 156 | apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 157 | apply (subst diff_divide_distrib) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 158 | apply (subst times_divide_eq_left [symmetric]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 159 | apply (simp cong: LIM_cong) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 160 | apply (simp add: tendsto_norm_zero_iff LIM_zero_iff) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 161 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 162 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 163 | lemma has_derivativeI: | 
| 63558 | 164 | "bounded_linear f' \<Longrightarrow> | 
| 165 | ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s) \<Longrightarrow> | |
| 166 | (f has_derivative f') (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 167 | by (simp add: has_derivative_at_within) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 168 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 169 | lemma has_derivativeI_sandwich: | 
| 63558 | 170 | assumes e: "0 < e" | 
| 171 | and bounded: "bounded_linear f'" | |
| 172 | and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow> | |
| 173 | norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)" | |
| 61973 | 174 | and "(H \<longlongrightarrow> 0) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 175 | shows "(f has_derivative f') (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 176 | unfolding has_derivative_iff_norm | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 177 | proof safe | 
| 61973 | 178 | show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 179 | proof (rule tendsto_sandwich[where f="\<lambda>x. 0"]) | 
| 61973 | 180 | show "(H \<longlongrightarrow> 0) (at x within s)" by fact | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 181 | show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 182 | unfolding eventually_at using e sandwich by auto | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 183 | qed (auto simp: le_divide_eq) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 184 | qed fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 185 | |
| 63558 | 186 | lemma has_derivative_subset: | 
| 187 | "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 188 | by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 189 | |
| 63558 | 190 | lemmas has_derivative_within_subset = has_derivative_subset | 
| 56261 | 191 | |
| 192 | ||
| 60758 | 193 | subsection \<open>Continuity\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 194 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 195 | lemma has_derivative_continuous: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 196 | assumes f: "(f has_derivative f') (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 197 | shows "continuous (at x within s) f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 198 | proof - | 
| 63558 | 199 | from f interpret F: bounded_linear f' | 
| 200 | by (rule has_derivative_bounded_linear) | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 201 | note F.tendsto[tendsto_intros] | 
| 61973 | 202 | let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 203 | have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 204 | using f unfolding has_derivative_iff_norm by blast | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 205 | then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 206 | by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 207 | also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 208 | by (intro filterlim_cong) (simp_all add: eventually_at_filter) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 209 | finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 210 | by (rule tendsto_norm_zero_cancel) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 211 | then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 212 | by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 213 | then have "?L (\<lambda>y. f y - f x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 214 | by simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 215 | from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 216 | by (simp add: continuous_within) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 217 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 218 | |
| 63558 | 219 | |
| 60758 | 220 | subsection \<open>Composition\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 221 | |
| 63558 | 222 | lemma tendsto_at_iff_tendsto_nhds_within: | 
| 223 | "f x = y \<Longrightarrow> (f \<longlongrightarrow> y) (at x within s) \<longleftrightarrow> (f \<longlongrightarrow> y) (inf (nhds x) (principal s))" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 224 | unfolding tendsto_def eventually_inf_principal eventually_at_filter | 
| 61810 | 225 | by (intro ext all_cong imp_cong) (auto elim!: eventually_mono) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 226 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 227 | lemma has_derivative_in_compose: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 228 | assumes f: "(f has_derivative f') (at x within s)" | 
| 63558 | 229 | and g: "(g has_derivative g') (at (f x) within (f`s))" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 230 | shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 231 | proof - | 
| 63558 | 232 | from f interpret F: bounded_linear f' | 
| 233 | by (rule has_derivative_bounded_linear) | |
| 234 | from g interpret G: bounded_linear g' | |
| 235 | by (rule has_derivative_bounded_linear) | |
| 236 | from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF" | |
| 237 | by fast | |
| 238 | from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG" | |
| 239 | by fast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 240 | note G.tendsto[tendsto_intros] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 241 | |
| 61973 | 242 | let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 243 | let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 244 | let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 245 | let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)" | 
| 63040 | 246 | define Nf where "Nf = ?N f f' x" | 
| 247 | define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 248 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 249 | show ?thesis | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 250 | proof (rule has_derivativeI_sandwich[of 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 251 | show "bounded_linear (\<lambda>x. g' (f' x))" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 252 | using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 253 | next | 
| 63558 | 254 | fix y :: 'a | 
| 255 | assume neq: "y \<noteq> x" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 256 | have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 257 | by (simp add: G.diff G.add field_simps) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 258 | also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 259 | by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 260 | also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 261 | proof (intro add_mono mult_left_mono) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 262 | have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 263 | by simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 264 | also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 265 | by (rule norm_triangle_ineq) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 266 | also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 267 | using kF by (intro add_mono) simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 268 | finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 269 | by (simp add: neq Nf_def field_simps) | 
| 63558 | 270 | qed (use kG in \<open>simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\<close>) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 271 | finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 272 | next | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 273 | have [tendsto_intros]: "?L Nf" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 274 | using f unfolding has_derivative_iff_norm Nf_def .. | 
| 61973 | 275 | from f have "(f \<longlongrightarrow> f x) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 276 | by (blast intro: has_derivative_continuous continuous_within[THEN iffD1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 277 | then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 278 | unfolding filterlim_def | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 279 | by (simp add: eventually_filtermap eventually_at_filter le_principal) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 280 | |
| 61973 | 281 | have "((?N g g' (f x)) \<longlongrightarrow> 0) (at (f x) within f`s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 282 | using g unfolding has_derivative_iff_norm .. | 
| 61973 | 283 | then have g': "((?N g g' (f x)) \<longlongrightarrow> 0) (inf (nhds (f x)) (principal (f`s)))" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 284 | by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 285 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 286 | have [tendsto_intros]: "?L Ng" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 287 | unfolding Ng_def by (rule filterlim_compose[OF g' f']) | 
| 61973 | 288 | show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 289 | by (intro tendsto_eq_intros) auto | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 290 | qed simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 291 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 292 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 293 | lemma has_derivative_compose: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 294 | "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow> | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 295 | ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 296 | by (blast intro: has_derivative_in_compose has_derivative_subset) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 297 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 298 | lemma (in bounded_bilinear) FDERIV: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 299 | assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 300 | shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 301 | proof - | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 302 | from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 303 | obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 304 | |
| 63558 | 305 | from pos_bounded obtain K | 
| 306 | where K: "0 < K" and norm_prod: "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | |
| 307 | by fast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 308 | let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 309 | let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)" | 
| 63040 | 310 | define Ng where "Ng = ?N g g'" | 
| 311 | define Nf where "Nf = ?N f f'" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 312 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 313 | let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 314 | let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 315 | let ?F = "at x within s" | 
| 21164 | 316 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 317 | show ?thesis | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 318 | proof (rule has_derivativeI_sandwich[of 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 319 | show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 320 | by (intro bounded_linear_add | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 321 | bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left] | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 322 | has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 323 | next | 
| 61973 | 324 | from g have "(g \<longlongrightarrow> g x) ?F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 325 | by (intro continuous_within[THEN iffD1] has_derivative_continuous) | 
| 61973 | 326 | moreover from f g have "(Nf \<longlongrightarrow> 0) ?F" "(Ng \<longlongrightarrow> 0) ?F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 327 | by (simp_all add: has_derivative_iff_norm Ng_def Nf_def) | 
| 61973 | 328 | ultimately have "(?fun2 \<longlongrightarrow> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 329 | by (intro tendsto_intros) (simp_all add: LIM_zero_iff) | 
| 61973 | 330 | then show "(?fun2 \<longlongrightarrow> 0) ?F" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 331 | by simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 332 | next | 
| 63558 | 333 | fix y :: 'd | 
| 334 | assume "y \<noteq> x" | |
| 335 | have "?fun1 y = | |
| 336 | norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 337 | by (simp add: diff_left diff_right add_left add_right field_simps) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 338 | also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K + | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 339 | norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 340 | by (intro divide_right_mono mult_mono' | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 341 | order_trans [OF norm_triangle_ineq add_mono] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 342 | order_trans [OF norm_prod mult_right_mono] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 343 | mult_nonneg_nonneg order_refl norm_ge_zero norm_F | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 344 | K [THEN order_less_imp_le]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 345 | also have "\<dots> = ?fun2 y" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 346 | by (simp add: add_divide_distrib Ng_def Nf_def) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 347 | finally show "?fun1 y \<le> ?fun2 y" . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 348 | qed simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 349 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 350 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 351 | lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 352 | lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR] | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 353 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 354 | lemma has_derivative_setprod[simp, derivative_intros]: | 
| 63558 | 355 | fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_field" | 
| 63915 | 356 | shows "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within s)) \<Longrightarrow> | 
| 357 |     ((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within s)"
 | |
| 358 | proof (induct I rule: infinite_finite_induct) | |
| 359 | case infinite | |
| 360 | then show ?case by simp | |
| 361 | next | |
| 362 | case empty | |
| 363 | then show ?case by simp | |
| 63558 | 364 | next | 
| 63915 | 365 | case (insert i I) | 
| 366 |   let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
 | |
| 367 | have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within s)" | |
| 368 | using insert by (intro has_derivative_mult) auto | |
| 369 |   also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
 | |
| 370 | using insert(1,2) | |
| 63918 
6bf55e6e0b75
left_distrib ~> distrib_right, right_distrib ~> distrib_left
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63915diff
changeset | 371 | by (auto simp add: setsum_distrib_left insert_Diff_if intro!: ext setsum.cong) | 
| 63915 | 372 | finally show ?case | 
| 373 | using insert by simp | |
| 63558 | 374 | qed | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 375 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 376 | lemma has_derivative_power[simp, derivative_intros]: | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 377 | fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 378 | assumes f: "(f has_derivative f') (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 379 | shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 380 |   using has_derivative_setprod[OF f, of "{..< n}"] by (simp add: setprod_constant ac_simps)
 | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 381 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 382 | lemma has_derivative_inverse': | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 383 | fixes x :: "'a::real_normed_div_algebra" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 384 | assumes x: "x \<noteq> 0" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 385 | shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within s)" | 
| 63558 | 386 | (is "(?inv has_derivative ?f) _") | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 387 | proof (rule has_derivativeI_sandwich) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 388 | show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 389 | apply (rule bounded_linear_minus) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 390 | apply (rule bounded_linear_mult_const) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 391 | apply (rule bounded_linear_const_mult) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 392 | apply (rule bounded_linear_ident) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 393 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 394 | show "0 < norm x" using x by simp | 
| 61973 | 395 | show "((\<lambda>y. norm (?inv y - ?inv x) * norm (?inv x)) \<longlongrightarrow> 0) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 396 | apply (rule tendsto_mult_left_zero) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 397 | apply (rule tendsto_norm_zero) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 398 | apply (rule LIM_zero) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 399 | apply (rule tendsto_inverse) | 
| 63558 | 400 | apply (rule tendsto_ident_at) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 401 | apply (rule x) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 402 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 403 | next | 
| 63558 | 404 | fix y :: 'a | 
| 405 | assume h: "y \<noteq> x" "dist y x < norm x" | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
61976diff
changeset | 406 | then have "y \<noteq> 0" by auto | 
| 63558 | 407 | have "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) = | 
| 408 | norm ((?inv y - ?inv x) * (y - x) * ?inv x) / norm (y - x)" | |
| 60758 | 409 | apply (subst inverse_diff_inverse [OF \<open>y \<noteq> 0\<close> x]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 410 | apply (subst minus_diff_minus) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 411 | apply (subst norm_minus_cancel) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 412 | apply (simp add: left_diff_distrib) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 413 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 414 | also have "\<dots> \<le> norm (?inv y - ?inv x) * norm (y - x) * norm (?inv x) / norm (y - x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 415 | apply (rule divide_right_mono [OF _ norm_ge_zero]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 416 | apply (rule order_trans [OF norm_mult_ineq]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 417 | apply (rule mult_right_mono [OF _ norm_ge_zero]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 418 | apply (rule norm_mult_ineq) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 419 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 420 | also have "\<dots> = norm (?inv y - ?inv x) * norm (?inv x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 421 | by simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 422 | finally show "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) \<le> | 
| 63558 | 423 | norm (?inv y - ?inv x) * norm (?inv x)" . | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 424 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 425 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 426 | lemma has_derivative_inverse[simp, derivative_intros]: | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 427 | fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra" | 
| 63558 | 428 | assumes x: "f x \<noteq> 0" | 
| 429 | and f: "(f has_derivative f') (at x within s)" | |
| 430 | shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x)))) | |
| 431 | (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 432 | using has_derivative_compose[OF f has_derivative_inverse', OF x] . | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 433 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 434 | lemma has_derivative_divide[simp, derivative_intros]: | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 435 | fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra" | 
| 63558 | 436 | assumes f: "(f has_derivative f') (at x within s)" | 
| 437 | and g: "(g has_derivative g') (at x within s)" | |
| 55967 | 438 | assumes x: "g x \<noteq> 0" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 439 | shows "((\<lambda>x. f x / g x) has_derivative | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 440 | (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 441 | using has_derivative_mult[OF f has_derivative_inverse[OF x g]] | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56479diff
changeset | 442 | by (simp add: field_simps) | 
| 55967 | 443 | |
| 63558 | 444 | |
| 445 | text \<open>Conventional form requires mult-AC laws. Types real and complex only.\<close> | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 446 | |
| 63558 | 447 | lemma has_derivative_divide'[derivative_intros]: | 
| 55967 | 448 | fixes f :: "_ \<Rightarrow> 'a::real_normed_field" | 
| 63558 | 449 | assumes f: "(f has_derivative f') (at x within s)" | 
| 450 | and g: "(g has_derivative g') (at x within s)" | |
| 451 | and x: "g x \<noteq> 0" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 452 | shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within s)" | 
| 55967 | 453 | proof - | 
| 63558 | 454 | have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) = | 
| 455 | (f' h * g x - f x * g' h) / (g x * g x)" for h | |
| 456 | by (simp add: field_simps x) | |
| 55967 | 457 | then show ?thesis | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 458 | using has_derivative_divide [OF f g] x | 
| 55967 | 459 | by simp | 
| 460 | qed | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 461 | |
| 63558 | 462 | |
| 60758 | 463 | subsection \<open>Uniqueness\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 464 | |
| 60758 | 465 | text \<open> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 466 | This can not generally shown for @{const has_derivative}, as we need to approach the point from
 | 
| 63627 | 467 | all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>. | 
| 60758 | 468 | \<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 469 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 470 | lemma has_derivative_zero_unique: | 
| 63558 | 471 | assumes "((\<lambda>x. 0) has_derivative F) (at x)" | 
| 472 | shows "F = (\<lambda>h. 0)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 473 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 474 | interpret F: bounded_linear F | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 475 | using assms by (rule has_derivative_bounded_linear) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 476 | let ?r = "\<lambda>h. norm (F h) / norm h" | 
| 61976 | 477 | have *: "?r \<midarrow>0\<rightarrow> 0" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 478 | using assms unfolding has_derivative_at by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 479 | show "F = (\<lambda>h. 0)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 480 | proof | 
| 63558 | 481 | show "F h = 0" for h | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 482 | proof (rule ccontr) | 
| 63558 | 483 | assume **: "\<not> ?thesis" | 
| 484 | then have h: "h \<noteq> 0" | |
| 485 | by (auto simp add: F.zero) | |
| 486 | with ** have "0 < ?r h" | |
| 487 | by simp | |
| 488 | from LIM_D [OF * this] obtain s | |
| 489 | where s: "0 < s" and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> ?r x < ?r h" | |
| 490 | by auto | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 491 | from dense [OF s] obtain t where t: "0 < t \<and> t < s" .. | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 492 | let ?x = "scaleR (t / norm h) h" | 
| 63558 | 493 | have "?x \<noteq> 0" and "norm ?x < s" | 
| 494 | using t h by simp_all | |
| 495 | then have "?r ?x < ?r h" | |
| 496 | by (rule r) | |
| 497 | then show False | |
| 498 | using t h by (simp add: F.scaleR) | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 499 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 500 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 501 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 502 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 503 | lemma has_derivative_unique: | 
| 63558 | 504 | assumes "(f has_derivative F) (at x)" | 
| 505 | and "(f has_derivative F') (at x)" | |
| 506 | shows "F = F'" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 507 | proof - | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 508 | have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 509 | using has_derivative_diff [OF assms] by simp | 
| 63558 | 510 | then have "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 511 | by (rule has_derivative_zero_unique) | 
| 63558 | 512 | then show "F = F'" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 513 | unfolding fun_eq_iff right_minus_eq . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 514 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 515 | |
| 63558 | 516 | |
| 60758 | 517 | subsection \<open>Differentiability predicate\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 518 | |
| 63558 | 519 | definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
| 520 | (infix "differentiable" 50) | |
| 521 | where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 522 | |
| 63558 | 523 | lemma differentiable_subset: | 
| 524 | "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 525 | unfolding differentiable_def by (blast intro: has_derivative_subset) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 526 | |
| 56261 | 527 | lemmas differentiable_within_subset = differentiable_subset | 
| 528 | ||
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 529 | lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 530 | unfolding differentiable_def by (blast intro: has_derivative_ident) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 531 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 532 | lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 533 | unfolding differentiable_def by (blast intro: has_derivative_const) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 534 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 535 | lemma differentiable_in_compose: | 
| 63558 | 536 | "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> | 
| 537 | (\<lambda>x. f (g x)) differentiable (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 538 | unfolding differentiable_def by (blast intro: has_derivative_in_compose) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 539 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 540 | lemma differentiable_compose: | 
| 63558 | 541 | "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> | 
| 542 | (\<lambda>x. f (g x)) differentiable (at x within s)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 543 | by (blast intro: differentiable_in_compose differentiable_subset) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 544 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 545 | lemma differentiable_sum [simp, derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 546 | "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 547 | unfolding differentiable_def by (blast intro: has_derivative_add) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 548 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 549 | lemma differentiable_minus [simp, derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 550 | "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 551 | unfolding differentiable_def by (blast intro: has_derivative_minus) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 552 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 553 | lemma differentiable_diff [simp, derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 554 | "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 555 | unfolding differentiable_def by (blast intro: has_derivative_diff) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 556 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 557 | lemma differentiable_mult [simp, derivative_intros]: | 
| 63558 | 558 | fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | 
| 559 | shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> | |
| 560 | (\<lambda>x. f x * g x) differentiable (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 561 | unfolding differentiable_def by (blast intro: has_derivative_mult) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 562 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 563 | lemma differentiable_inverse [simp, derivative_intros]: | 
| 63558 | 564 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field" | 
| 565 | shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> | |
| 566 | (\<lambda>x. inverse (f x)) differentiable (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 567 | unfolding differentiable_def by (blast intro: has_derivative_inverse) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 568 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 569 | lemma differentiable_divide [simp, derivative_intros]: | 
| 63558 | 570 | fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field" | 
| 571 | shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> | |
| 572 | g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)" | |
| 63092 | 573 | unfolding divide_inverse by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 574 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 575 | lemma differentiable_power [simp, derivative_intros]: | 
| 63558 | 576 | fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 577 | shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 578 | unfolding differentiable_def by (blast intro: has_derivative_power) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 579 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 580 | lemma differentiable_scaleR [simp, derivative_intros]: | 
| 63558 | 581 | "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> | 
| 582 | (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 583 | unfolding differentiable_def by (blast intro: has_derivative_scaleR) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 584 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 585 | lemma has_derivative_imp_has_field_derivative: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 586 | "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F" | 
| 63558 | 587 | unfolding has_field_derivative_def | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 588 | by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute) | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 589 | |
| 63558 | 590 | lemma has_field_derivative_imp_has_derivative: | 
| 591 | "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative op * D) F" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 592 | by (simp add: has_field_derivative_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 593 | |
| 63558 | 594 | lemma DERIV_subset: | 
| 595 | "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> | |
| 596 | (f has_field_derivative f') (at x within t)" | |
| 56261 | 597 | by (simp add: has_field_derivative_def has_derivative_within_subset) | 
| 598 | ||
| 59862 | 599 | lemma has_field_derivative_at_within: | 
| 63558 | 600 | "(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)" | 
| 59862 | 601 | using DERIV_subset by blast | 
| 602 | ||
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 603 | abbreviation (input) | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 604 |   DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 63558 | 605 |     ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
 | 
| 606 | where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 607 | |
| 63558 | 608 | abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool" | 
| 609 | (infix "(has'_real'_derivative)" 50) | |
| 610 | where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 611 | |
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 612 | lemma real_differentiable_def: | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 613 | "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 614 | proof safe | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 615 | assume "f differentiable at x within s" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 616 | then obtain f' where *: "(f has_derivative f') (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 617 | unfolding differentiable_def by auto | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 618 | then obtain c where "f' = (op * c)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 619 | by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff) | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 620 | with * show "\<exists>D. (f has_real_derivative D) (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 621 | unfolding has_field_derivative_def by auto | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 622 | qed (auto simp: differentiable_def has_field_derivative_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 623 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 624 | lemma real_differentiableE [elim?]: | 
| 63558 | 625 | assumes f: "f differentiable (at x within s)" | 
| 626 | obtains df where "(f has_real_derivative df) (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 627 | using assms by (auto simp: real_differentiable_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 628 | |
| 63558 | 629 | lemma differentiableD: | 
| 630 | "f differentiable (at x within s) \<Longrightarrow> \<exists>D. (f has_real_derivative D) (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 631 | by (auto elim: real_differentiableE) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 632 | |
| 63558 | 633 | lemma differentiableI: | 
| 634 | "(f has_real_derivative D) (at x within s) \<Longrightarrow> f differentiable (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 635 | by (force simp add: real_differentiable_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 636 | |
| 63079 | 637 | lemma has_field_derivative_iff: | 
| 638 | "(f has_field_derivative D) (at x within S) \<longleftrightarrow> | |
| 639 | ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)" | |
| 640 | apply (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right | |
| 63558 | 641 | LIM_zero_iff[symmetric, of _ D]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 642 | apply (subst (2) tendsto_norm_zero_iff[symmetric]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 643 | apply (rule filterlim_cong) | 
| 63558 | 644 | apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 645 | done | 
| 21164 | 646 | |
| 63079 | 647 | lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" | 
| 648 | unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff .. | |
| 649 | ||
| 63558 | 650 | lemma mult_commute_abs: "(\<lambda>x. x * c) = op * c" | 
| 651 | for c :: "'a::ab_semigroup_mult" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 652 | by (simp add: fun_eq_iff mult.commute) | 
| 21164 | 653 | |
| 63558 | 654 | |
| 60758 | 655 | subsection \<open>Vector derivative\<close> | 
| 60177 | 656 | |
| 657 | lemma has_field_derivative_iff_has_vector_derivative: | |
| 658 | "(f has_field_derivative y) F \<longleftrightarrow> (f has_vector_derivative y) F" | |
| 659 | unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs .. | |
| 660 | ||
| 661 | lemma has_field_derivative_subset: | |
| 63558 | 662 | "(f has_field_derivative y) (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> | 
| 663 | (f has_field_derivative y) (at x within t)" | |
| 60177 | 664 | unfolding has_field_derivative_def by (rule has_derivative_subset) | 
| 665 | ||
| 666 | lemma has_vector_derivative_const[simp, derivative_intros]: "((\<lambda>x. c) has_vector_derivative 0) net" | |
| 667 | by (auto simp: has_vector_derivative_def) | |
| 668 | ||
| 669 | lemma has_vector_derivative_id[simp, derivative_intros]: "((\<lambda>x. x) has_vector_derivative 1) net" | |
| 670 | by (auto simp: has_vector_derivative_def) | |
| 671 | ||
| 672 | lemma has_vector_derivative_minus[derivative_intros]: | |
| 673 | "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. - f x) has_vector_derivative (- f')) net" | |
| 674 | by (auto simp: has_vector_derivative_def) | |
| 675 | ||
| 676 | lemma has_vector_derivative_add[derivative_intros]: | |
| 677 | "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow> | |
| 678 | ((\<lambda>x. f x + g x) has_vector_derivative (f' + g')) net" | |
| 679 | by (auto simp: has_vector_derivative_def scaleR_right_distrib) | |
| 680 | ||
| 681 | lemma has_vector_derivative_setsum[derivative_intros]: | |
| 682 | "(\<And>i. i \<in> I \<Longrightarrow> (f i has_vector_derivative f' i) net) \<Longrightarrow> | |
| 683 | ((\<lambda>x. \<Sum>i\<in>I. f i x) has_vector_derivative (\<Sum>i\<in>I. f' i)) net" | |
| 684 | by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_setsum_right intro!: derivative_eq_intros) | |
| 685 | ||
| 686 | lemma has_vector_derivative_diff[derivative_intros]: | |
| 687 | "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow> | |
| 688 | ((\<lambda>x. f x - g x) has_vector_derivative (f' - g')) net" | |
| 689 | by (auto simp: has_vector_derivative_def scaleR_diff_right) | |
| 690 | ||
| 61204 | 691 | lemma has_vector_derivative_add_const: | 
| 63558 | 692 | "((\<lambda>t. g t + z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net" | 
| 693 | apply (intro iffI) | |
| 694 | apply (drule has_vector_derivative_diff [where g = "\<lambda>t. z", OF _ has_vector_derivative_const]) | |
| 695 | apply simp | |
| 696 | apply (drule has_vector_derivative_add [OF _ has_vector_derivative_const]) | |
| 697 | apply simp | |
| 698 | done | |
| 61204 | 699 | |
| 700 | lemma has_vector_derivative_diff_const: | |
| 63558 | 701 | "((\<lambda>t. g t - z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net" | 
| 702 | using has_vector_derivative_add_const [where z = "-z"] | |
| 703 | by simp | |
| 61204 | 704 | |
| 60177 | 705 | lemma (in bounded_linear) has_vector_derivative: | 
| 706 | assumes "(g has_vector_derivative g') F" | |
| 707 | shows "((\<lambda>x. f (g x)) has_vector_derivative f g') F" | |
| 708 | using has_derivative[OF assms[unfolded has_vector_derivative_def]] | |
| 709 | by (simp add: has_vector_derivative_def scaleR) | |
| 710 | ||
| 711 | lemma (in bounded_bilinear) has_vector_derivative: | |
| 712 | assumes "(f has_vector_derivative f') (at x within s)" | |
| 713 | and "(g has_vector_derivative g') (at x within s)" | |
| 714 | shows "((\<lambda>x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)" | |
| 715 | using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]] | |
| 716 | by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib) | |
| 717 | ||
| 718 | lemma has_vector_derivative_scaleR[derivative_intros]: | |
| 719 | "(f has_field_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow> | |
| 720 | ((\<lambda>x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)" | |
| 721 | unfolding has_field_derivative_iff_has_vector_derivative | |
| 722 | by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR]) | |
| 723 | ||
| 724 | lemma has_vector_derivative_mult[derivative_intros]: | |
| 725 | "(f has_vector_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow> | |
| 63558 | 726 | ((\<lambda>x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)" | 
| 727 | for f g :: "real \<Rightarrow> 'a::real_normed_algebra" | |
| 60177 | 728 | by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult]) | 
| 729 | ||
| 730 | lemma has_vector_derivative_of_real[derivative_intros]: | |
| 731 | "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_vector_derivative (of_real D)) F" | |
| 732 | by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real]) | |
| 63558 | 733 | (simp add: has_field_derivative_iff_has_vector_derivative) | 
| 60177 | 734 | |
| 63558 | 735 | lemma has_vector_derivative_continuous: | 
| 736 | "(f has_vector_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f" | |
| 60177 | 737 | by (auto intro: has_derivative_continuous simp: has_vector_derivative_def) | 
| 738 | ||
| 739 | lemma has_vector_derivative_mult_right[derivative_intros]: | |
| 63558 | 740 | fixes a :: "'a::real_normed_algebra" | 
| 60177 | 741 | shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. a * f x) has_vector_derivative (a * x)) F" | 
| 742 | by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right]) | |
| 743 | ||
| 744 | lemma has_vector_derivative_mult_left[derivative_intros]: | |
| 63558 | 745 | fixes a :: "'a::real_normed_algebra" | 
| 60177 | 746 | shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. f x * a) has_vector_derivative (x * a)) F" | 
| 747 | by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left]) | |
| 748 | ||
| 749 | ||
| 60758 | 750 | subsection \<open>Derivatives\<close> | 
| 21164 | 751 | |
| 61976 | 752 | lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 753 | by (simp add: DERIV_def) | 
| 21164 | 754 | |
| 63079 | 755 | lemma has_field_derivativeD: | 
| 756 | "(f has_field_derivative D) (at x within S) \<Longrightarrow> | |
| 757 | ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)" | |
| 758 | by (simp add: has_field_derivative_iff) | |
| 759 | ||
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 760 | lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 761 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 762 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 763 | lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 764 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto | 
| 21164 | 765 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 766 | lemma field_differentiable_add[derivative_intros]: | 
| 63558 | 767 | "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow> | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 768 | ((\<lambda>z. f z + g z) has_field_derivative f' + g') F" | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 769 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add]) | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 770 | (auto simp: has_field_derivative_def field_simps mult_commute_abs) | 
| 56261 | 771 | |
| 772 | corollary DERIV_add: | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 773 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow> | 
| 63558 | 774 | ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)" | 
| 56261 | 775 | by (rule field_differentiable_add) | 
| 776 | ||
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 777 | lemma field_differentiable_minus[derivative_intros]: | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 778 | "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F" | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 779 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus]) | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 780 | (auto simp: has_field_derivative_def field_simps mult_commute_abs) | 
| 21164 | 781 | |
| 63558 | 782 | corollary DERIV_minus: | 
| 783 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | |
| 784 | ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)" | |
| 56261 | 785 | by (rule field_differentiable_minus) | 
| 21164 | 786 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 787 | lemma field_differentiable_diff[derivative_intros]: | 
| 63558 | 788 | "(f has_field_derivative f') F \<Longrightarrow> | 
| 789 | (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F" | |
| 63092 | 790 | by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus) | 
| 56261 | 791 | |
| 792 | corollary DERIV_diff: | |
| 63558 | 793 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 794 | (g has_field_derivative E) (at x within s) \<Longrightarrow> | |
| 795 | ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)" | |
| 56261 | 796 | by (rule field_differentiable_diff) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 797 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 798 | lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 799 | by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp | 
| 21164 | 800 | |
| 56261 | 801 | corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x" | 
| 802 | by (rule DERIV_continuous) | |
| 803 | ||
| 804 | lemma DERIV_continuous_on: | |
| 63299 | 805 | "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x within s)) \<Longrightarrow> continuous_on s f" | 
| 806 | unfolding continuous_on_eq_continuous_within | |
| 63558 | 807 | by (intro continuous_at_imp_continuous_on ballI DERIV_continuous) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 808 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 809 | lemma DERIV_mult': | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 810 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow> | 
| 63558 | 811 | ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 812 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult]) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 813 | (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative) | 
| 21164 | 814 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 815 | lemma DERIV_mult[derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 816 | "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow> | 
| 63558 | 817 | ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 818 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult]) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 819 | (auto simp: field_simps dest: has_field_derivative_imp_has_derivative) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 820 | |
| 60758 | 821 | text \<open>Derivative of linear multiplication\<close> | 
| 21164 | 822 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 823 | lemma DERIV_cmult: | 
| 63558 | 824 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 825 | ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)" | |
| 826 | by (drule DERIV_mult' [OF DERIV_const]) simp | |
| 21164 | 827 | |
| 55967 | 828 | lemma DERIV_cmult_right: | 
| 63558 | 829 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 830 | ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)" | |
| 831 | using DERIV_cmult by (auto simp add: ac_simps) | |
| 55967 | 832 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 833 | lemma DERIV_cmult_Id [simp]: "(op * c has_field_derivative c) (at x within s)" | 
| 63558 | 834 | using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 835 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 836 | lemma DERIV_cdivide: | 
| 63558 | 837 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 838 | ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 839 | using DERIV_cmult_right[of f D x s "1 / c"] by simp | 
| 21164 | 840 | |
| 63558 | 841 | lemma DERIV_unique: "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E" | 
| 842 | unfolding DERIV_def by (rule LIM_unique) | |
| 21164 | 843 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 844 | lemma DERIV_setsum[derivative_intros]: | 
| 63558 | 845 | "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 846 | ((\<lambda>x. setsum (f x) S) has_field_derivative setsum (f' x) S) F" | 
| 63558 | 847 | by (rule has_derivative_imp_has_field_derivative [OF has_derivative_setsum]) | 
| 63918 
6bf55e6e0b75
left_distrib ~> distrib_right, right_distrib ~> distrib_left
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63915diff
changeset | 848 | (auto simp: setsum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 849 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 850 | lemma DERIV_inverse'[derivative_intros]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 851 | assumes "(f has_field_derivative D) (at x within s)" | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 852 | and "f x \<noteq> 0" | 
| 63558 | 853 | shows "((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x))) | 
| 854 | (at x within s)" | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 855 | proof - | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 856 | have "(f has_derivative (\<lambda>x. x * D)) = (f has_derivative op * D)" | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 857 | by (rule arg_cong [of "\<lambda>x. x * D"]) (simp add: fun_eq_iff) | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 858 | with assms have "(f has_derivative (\<lambda>x. x * D)) (at x within s)" | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 859 | by (auto dest!: has_field_derivative_imp_has_derivative) | 
| 60758 | 860 | then show ?thesis using \<open>f x \<noteq> 0\<close> | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 861 | by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse) | 
| 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 862 | qed | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 863 | |
| 61799 | 864 | text \<open>Power of \<open>-1\<close>\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 865 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 866 | lemma DERIV_inverse: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 867 | "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 868 | by (drule DERIV_inverse' [OF DERIV_ident]) simp | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 869 | |
| 60758 | 870 | text \<open>Derivative of inverse\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 871 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 872 | lemma DERIV_inverse_fun: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 873 | "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> | 
| 63558 | 874 | ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 875 | by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 876 | |
| 60758 | 877 | text \<open>Derivative of quotient\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 878 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 879 | lemma DERIV_divide[derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 880 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 63558 | 881 | (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> | 
| 882 | ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 883 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide]) | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56479diff
changeset | 884 | (auto dest: has_field_derivative_imp_has_derivative simp: field_simps) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 885 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 886 | lemma DERIV_quotient: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 887 | "(f has_field_derivative d) (at x within s) \<Longrightarrow> | 
| 63558 | 888 | (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> | 
| 889 | ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 890 | by (drule (2) DERIV_divide) (simp add: mult.commute) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 891 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 892 | lemma DERIV_power_Suc: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 893 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 63558 | 894 | ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 895 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power]) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 896 | (auto simp: has_field_derivative_def) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 897 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 898 | lemma DERIV_power[derivative_intros]: | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 899 | "(f has_field_derivative D) (at x within s) \<Longrightarrow> | 
| 63558 | 900 | ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 901 | by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power]) | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 902 | (auto simp: has_field_derivative_def) | 
| 31880 | 903 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 904 | lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61552diff
changeset | 905 | using DERIV_power [OF DERIV_ident] by simp | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 906 | |
| 63558 | 907 | lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow> | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 908 | ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)" | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 909 | using has_derivative_compose[of f "op * D" x s g "op * E"] | 
| 63170 | 910 | by (simp only: has_field_derivative_def mult_commute_abs ac_simps) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 911 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 912 | corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow> | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 913 | ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)" | 
| 55967 | 914 | by (rule DERIV_chain') | 
| 915 | ||
| 60758 | 916 | text \<open>Standard version\<close> | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 917 | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 918 | lemma DERIV_chain: | 
| 63558 | 919 | "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow> | 
| 920 | (f \<circ> g has_field_derivative Da * Db) (at x within s)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 921 | by (drule (1) DERIV_chain', simp add: o_def mult.commute) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 922 | |
| 63558 | 923 | lemma DERIV_image_chain: | 
| 924 | "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow> | |
| 925 | (g has_field_derivative Db) (at x within s) \<Longrightarrow> | |
| 926 | (f \<circ> g has_field_derivative Da * Db) (at x within s)" | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 927 | using has_derivative_in_compose [of g "op * Db" x s f "op * Da "] | 
| 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 928 | by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps) | 
| 55967 | 929 | |
| 930 | (*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*) | |
| 931 | lemma DERIV_chain_s: | |
| 932 | assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))" | |
| 63558 | 933 | and "DERIV f x :> f'" | 
| 934 | and "f x \<in> s" | |
| 935 | shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 936 | by (metis (full_types) DERIV_chain' mult.commute assms) | 
| 55967 | 937 | |
| 938 | lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*) | |
| 939 | assumes "(\<And>x. DERIV g x :> g'(x))" | |
| 63558 | 940 | and "DERIV f x :> f'" | 
| 941 | shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)" | |
| 55967 | 942 | by (metis UNIV_I DERIV_chain_s [of UNIV] assms) | 
| 943 | ||
| 63558 | 944 | text \<open>Alternative definition for differentiability\<close> | 
| 21164 | 945 | |
| 946 | lemma DERIV_LIM_iff: | |
| 63558 | 947 |   fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a"
 | 
| 948 | shows "((\<lambda>h. (f (a + h) - f a) / h) \<midarrow>0\<rightarrow> D) = ((\<lambda>x. (f x - f a) / (x - a)) \<midarrow>a\<rightarrow> D)" | |
| 949 | apply (rule iffI) | |
| 950 | apply (drule_tac k="- a" in LIM_offset) | |
| 951 | apply simp | |
| 952 | apply (drule_tac k="a" in LIM_offset) | |
| 953 | apply (simp add: add.commute) | |
| 954 | done | |
| 21164 | 955 | |
| 63079 | 956 | lemmas DERIV_iff2 = has_field_derivative_iff | 
| 957 | ||
| 958 | lemma has_field_derivative_cong_ev: | |
| 959 | assumes "x = y" | |
| 960 | and *: "eventually (\<lambda>x. x \<in> s \<longrightarrow> f x = g x) (nhds x)" | |
| 961 | and "u = v" "s = t" "x \<in> s" | |
| 63558 | 962 | shows "(f has_field_derivative u) (at x within s) = (g has_field_derivative v) (at y within t)" | 
| 63079 | 963 | unfolding DERIV_iff2 | 
| 964 | proof (rule filterlim_cong) | |
| 63558 | 965 | from assms have "f y = g y" | 
| 966 | by (auto simp: eventually_nhds) | |
| 63079 | 967 | with * show "\<forall>\<^sub>F xa in at x within s. (f xa - f x) / (xa - x) = (g xa - g y) / (xa - y)" | 
| 968 | unfolding eventually_at_filter | |
| 969 | by eventually_elim (auto simp: assms \<open>f y = g y\<close>) | |
| 970 | qed (simp_all add: assms) | |
| 21164 | 971 | |
| 63558 | 972 | lemma DERIV_cong_ev: | 
| 973 | "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow> | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 974 | DERIV f x :> u \<longleftrightarrow> DERIV g y :> v" | 
| 63079 | 975 | by (rule has_field_derivative_cong_ev) simp_all | 
| 21164 | 976 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 977 | lemma DERIV_shift: | 
| 63079 | 978 | "(f has_field_derivative y) (at (x + z)) = ((\<lambda>x. f (x + z)) has_field_derivative y) (at x)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 979 | by (simp add: DERIV_def field_simps) | 
| 21164 | 980 | |
| 63558 | 981 | lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)" | 
| 982 | for f :: "real \<Rightarrow> real" and x y :: real | |
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 983 | by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right | 
| 63558 | 984 | tendsto_minus_cancel_left field_simps conj_commute) | 
| 21164 | 985 | |
| 63263 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 986 | lemma floor_has_real_derivative: | 
| 63558 | 987 |   fixes f :: "real \<Rightarrow> 'a::{floor_ceiling,order_topology}"
 | 
| 63263 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 988 | assumes "isCont f x" | 
| 63558 | 989 | and "f x \<notin> \<int>" | 
| 63263 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 990 | shows "((\<lambda>x. floor (f x)) has_real_derivative 0) (at x)" | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 991 | proof (subst DERIV_cong_ev[OF refl _ refl]) | 
| 63558 | 992 | show "((\<lambda>_. floor (f x)) has_real_derivative 0) (at x)" | 
| 993 | by simp | |
| 63263 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 994 | have "\<forall>\<^sub>F y in at x. \<lfloor>f y\<rfloor> = \<lfloor>f x\<rfloor>" | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 995 | by (rule eventually_floor_eq[OF assms[unfolded continuous_at]]) | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 996 | then show "\<forall>\<^sub>F y in nhds x. real_of_int \<lfloor>f y\<rfloor> = real_of_int \<lfloor>f x\<rfloor>" | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 997 | unfolding eventually_at_filter | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 998 | by eventually_elim auto | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 999 | qed | 
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 1000 | |
| 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 immler parents: 
63170diff
changeset | 1001 | |
| 60758 | 1002 | text \<open>Caratheodory formulation of derivative at a point\<close> | 
| 21164 | 1003 | |
| 55970 
6d123f0ae358
Some new proofs. Tidying up, esp to remove "apply rule".
 paulson <lp15@cam.ac.uk> parents: 
55967diff
changeset | 1004 | lemma CARAT_DERIV: (*FIXME: SUPERSEDED BY THE ONE IN Deriv.thy. But still used by NSA/HDeriv.thy*) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1005 | "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)" | 
| 63558 | 1006 | (is "?lhs = ?rhs") | 
| 21164 | 1007 | proof | 
| 63558 | 1008 | assume ?lhs | 
| 1009 | show "\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l" | |
| 21164 | 1010 | proof (intro exI conjI) | 
| 63558 | 1011 | let ?g = "(\<lambda>z. if z = x then l else (f z - f x) / (z-x))" | 
| 1012 | show "\<forall>z. f z - f x = ?g z * (z - x)" | |
| 1013 | by simp | |
| 1014 | show "isCont ?g x" | |
| 1015 | using \<open>?lhs\<close> by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format]) | |
| 1016 | show "?g x = l" | |
| 1017 | by simp | |
| 21164 | 1018 | qed | 
| 1019 | next | |
| 63558 | 1020 | assume ?rhs | 
| 1021 | then obtain g where "(\<forall>z. f z - f x = g z * (z - x))" and "isCont g x" and "g x = l" | |
| 1022 | by blast | |
| 1023 | then show ?lhs | |
| 1024 | by (auto simp add: isCont_iff DERIV_def cong: LIM_cong) | |
| 21164 | 1025 | qed | 
| 1026 | ||
| 1027 | ||
| 60758 | 1028 | subsection \<open>Local extrema\<close> | 
| 29975 | 1029 | |
| 63558 | 1030 | text \<open>If @{term "0 < f' x"} then @{term x} is Locally Strictly Increasing At The Right.\<close>
 | 
| 21164 | 1031 | |
| 63079 | 1032 | lemma has_real_derivative_pos_inc_right: | 
| 63558 | 1033 | fixes f :: "real \<Rightarrow> real" | 
| 63079 | 1034 | assumes der: "(f has_real_derivative l) (at x within S)" | 
| 63558 | 1035 | and l: "0 < l" | 
| 63079 | 1036 | shows "\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x + h)" | 
| 1037 | using assms | |
| 1038 | proof - | |
| 1039 | from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at] | |
| 63558 | 1040 | obtain s where s: "0 < s" | 
| 1041 | and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < l" | |
| 63079 | 1042 | by (auto simp: dist_real_def) | 
| 1043 | then show ?thesis | |
| 1044 | proof (intro exI conjI strip) | |
| 63558 | 1045 | show "0 < s" by (rule s) | 
| 1046 | next | |
| 1047 | fix h :: real | |
| 63079 | 1048 | assume "0 < h" "h < s" "x + h \<in> S" | 
| 1049 | with all [of "x + h"] show "f x < f (x+h)" | |
| 1050 | proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm) | |
| 63558 | 1051 | assume "\<not> (f (x + h) - f x) / h < l" and h: "0 < h" | 
| 1052 | with l have "0 < (f (x + h) - f x) / h" | |
| 1053 | by arith | |
| 1054 | then show "f x < f (x + h)" | |
| 63079 | 1055 | by (simp add: pos_less_divide_eq h) | 
| 1056 | qed | |
| 1057 | qed | |
| 1058 | qed | |
| 1059 | ||
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1060 | lemma DERIV_pos_inc_right: | 
| 63558 | 1061 | fixes f :: "real \<Rightarrow> real" | 
| 21164 | 1062 | assumes der: "DERIV f x :> l" | 
| 63558 | 1063 | and l: "0 < l" | 
| 1064 | shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x + h)" | |
| 63079 | 1065 | using has_real_derivative_pos_inc_right[OF assms] | 
| 1066 | by auto | |
| 1067 | ||
| 1068 | lemma has_real_derivative_neg_dec_left: | |
| 63558 | 1069 | fixes f :: "real \<Rightarrow> real" | 
| 63079 | 1070 | assumes der: "(f has_real_derivative l) (at x within S)" | 
| 63558 | 1071 | and "l < 0" | 
| 63079 | 1072 | shows "\<exists>d > 0. \<forall>h > 0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x - h)" | 
| 21164 | 1073 | proof - | 
| 63558 | 1074 | from \<open>l < 0\<close> have l: "- l > 0" | 
| 1075 | by simp | |
| 63079 | 1076 | from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at] | 
| 63558 | 1077 | obtain s where s: "0 < s" | 
| 1078 | and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < - l" | |
| 63079 | 1079 | by (auto simp: dist_real_def) | 
| 63558 | 1080 | then show ?thesis | 
| 21164 | 1081 | proof (intro exI conjI strip) | 
| 63558 | 1082 | show "0 < s" by (rule s) | 
| 1083 | next | |
| 1084 | fix h :: real | |
| 63079 | 1085 | assume "0 < h" "h < s" "x - h \<in> S" | 
| 1086 | with all [of "x - h"] show "f x < f (x-h)" | |
| 63648 | 1087 | proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm) | 
| 63558 | 1088 | assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h" | 
| 1089 | with l have "0 < (f (x-h) - f x) / h" | |
| 1090 | by arith | |
| 1091 | then show "f x < f (x - h)" | |
| 63079 | 1092 | by (simp add: pos_less_divide_eq h) | 
| 21164 | 1093 | qed | 
| 1094 | qed | |
| 1095 | qed | |
| 1096 | ||
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1097 | lemma DERIV_neg_dec_left: | 
| 63558 | 1098 | fixes f :: "real \<Rightarrow> real" | 
| 21164 | 1099 | assumes der: "DERIV f x :> l" | 
| 63558 | 1100 | and l: "l < 0" | 
| 1101 | shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x - h)" | |
| 63079 | 1102 | using has_real_derivative_neg_dec_left[OF assms] | 
| 1103 | by auto | |
| 1104 | ||
| 1105 | lemma has_real_derivative_pos_inc_left: | |
| 63558 | 1106 | fixes f :: "real \<Rightarrow> real" | 
| 1107 | shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> 0 < l \<Longrightarrow> | |
| 1108 | \<exists>d>0. \<forall>h>0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f (x - h) < f x" | |
| 1109 | by (rule has_real_derivative_neg_dec_left [of "\<lambda>x. - f x" "-l" x S, simplified]) | |
| 63079 | 1110 | (auto simp add: DERIV_minus) | 
| 21164 | 1111 | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1112 | lemma DERIV_pos_inc_left: | 
| 63558 | 1113 | fixes f :: "real \<Rightarrow> real" | 
| 1114 | shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f (x - h) < f x" | |
| 63079 | 1115 | using has_real_derivative_pos_inc_left | 
| 1116 | by blast | |
| 1117 | ||
| 1118 | lemma has_real_derivative_neg_dec_right: | |
| 63558 | 1119 | fixes f :: "real \<Rightarrow> real" | 
| 1120 | shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> l < 0 \<Longrightarrow> | |
| 1121 | \<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x > f (x + h)" | |
| 1122 | by (rule has_real_derivative_pos_inc_right [of "\<lambda>x. - f x" "-l" x S, simplified]) | |
| 63079 | 1123 | (auto simp add: DERIV_minus) | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1124 | |
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1125 | lemma DERIV_neg_dec_right: | 
| 63558 | 1126 | fixes f :: "real \<Rightarrow> real" | 
| 1127 | shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x > f (x + h)" | |
| 63079 | 1128 | using has_real_derivative_neg_dec_right by blast | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1129 | |
| 21164 | 1130 | lemma DERIV_local_max: | 
| 63558 | 1131 | fixes f :: "real \<Rightarrow> real" | 
| 21164 | 1132 | assumes der: "DERIV f x :> l" | 
| 63558 | 1133 | and d: "0 < d" | 
| 1134 | and le: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x" | |
| 21164 | 1135 | shows "l = 0" | 
| 1136 | proof (cases rule: linorder_cases [of l 0]) | |
| 63558 | 1137 | case equal | 
| 1138 | then show ?thesis . | |
| 21164 | 1139 | next | 
| 1140 | case less | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1141 | from DERIV_neg_dec_left [OF der less] | 
| 63558 | 1142 | obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x - h)" | 
| 1143 | by blast | |
| 1144 | obtain e where "0 < e \<and> e < d \<and> e < d'" | |
| 1145 | using real_lbound_gt_zero [OF d d'] .. | |
| 1146 | with lt le [THEN spec [where x="x - e"]] show ?thesis | |
| 1147 | by (auto simp add: abs_if) | |
| 21164 | 1148 | next | 
| 1149 | case greater | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1150 | from DERIV_pos_inc_right [OF der greater] | 
| 63558 | 1151 | obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" | 
| 1152 | by blast | |
| 1153 | obtain e where "0 < e \<and> e < d \<and> e < d'" | |
| 1154 | using real_lbound_gt_zero [OF d d'] .. | |
| 1155 | with lt le [THEN spec [where x="x + e"]] show ?thesis | |
| 1156 | by (auto simp add: abs_if) | |
| 21164 | 1157 | qed | 
| 1158 | ||
| 63558 | 1159 | text \<open>Similar theorem for a local minimum\<close> | 
| 21164 | 1160 | lemma DERIV_local_min: | 
| 63558 | 1161 | fixes f :: "real \<Rightarrow> real" | 
| 1162 | shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x \<le> f y \<Longrightarrow> l = 0" | |
| 1163 | by (drule DERIV_minus [THEN DERIV_local_max]) auto | |
| 21164 | 1164 | |
| 1165 | ||
| 60758 | 1166 | text\<open>In particular, if a function is locally flat\<close> | 
| 21164 | 1167 | lemma DERIV_local_const: | 
| 63558 | 1168 | fixes f :: "real \<Rightarrow> real" | 
| 1169 | shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x = f y \<Longrightarrow> l = 0" | |
| 1170 | by (auto dest!: DERIV_local_max) | |
| 21164 | 1171 | |
| 29975 | 1172 | |
| 60758 | 1173 | subsection \<open>Rolle's Theorem\<close> | 
| 29975 | 1174 | |
| 63558 | 1175 | text \<open>Lemma about introducing open ball in open interval\<close> | 
| 1176 | lemma lemma_interval_lt: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a < y \<and> y < b)" | |
| 1177 | for a b x :: real | |
| 1178 | apply (simp add: abs_less_iff) | |
| 1179 | apply (insert linorder_linear [of "x - a" "b - x"]) | |
| 1180 | apply safe | |
| 1181 | apply (rule_tac x = "x - a" in exI) | |
| 1182 | apply (rule_tac [2] x = "b - x" in exI) | |
| 1183 | apply auto | |
| 1184 | done | |
| 27668 | 1185 | |
| 63558 | 1186 | lemma lemma_interval: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b)" | 
| 1187 | for a b x :: real | |
| 1188 | apply (drule lemma_interval_lt) | |
| 1189 | apply auto | |
| 1190 | apply force | |
| 1191 | done | |
| 21164 | 1192 | |
| 63558 | 1193 | text \<open>Rolle's Theorem. | 
| 21164 | 1194 |    If @{term f} is defined and continuous on the closed interval
 | 
| 61799 | 1195 | \<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>, | 
| 63558 | 1196 |    and @{term "f a = f b"},
 | 
| 1197 |    then there exists \<open>x0 \<in> (a,b)\<close> such that @{term "f' x0 = 0"}\<close>
 | |
| 21164 | 1198 | theorem Rolle: | 
| 63558 | 1199 | fixes a b :: real | 
| 21164 | 1200 | assumes lt: "a < b" | 
| 63558 | 1201 | and eq: "f a = f b" | 
| 1202 | and con: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" | |
| 1203 | and dif [rule_format]: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)" | |
| 1204 | shows "\<exists>z. a < z \<and> z < b \<and> DERIV f z :> 0" | |
| 21164 | 1205 | proof - | 
| 63558 | 1206 | have le: "a \<le> b" | 
| 1207 | using lt by simp | |
| 21164 | 1208 | from isCont_eq_Ub [OF le con] | 
| 63558 | 1209 | obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" and "a \<le> x" "x \<le> b" | 
| 21164 | 1210 | by blast | 
| 1211 | from isCont_eq_Lb [OF le con] | |
| 63558 | 1212 | obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" and "a \<le> x'" "x' \<le> b" | 
| 21164 | 1213 | by blast | 
| 63558 | 1214 | consider "a < x" "x < b" | "x = a \<or> x = b" | 
| 1215 | using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by arith | |
| 1216 | then show ?thesis | |
| 21164 | 1217 | proof cases | 
| 63558 | 1218 | case 1 | 
| 1219 |     \<comment>\<open>@{term f} attains its maximum within the interval\<close>
 | |
| 1220 | obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" | |
| 1221 | using lemma_interval [OF 1] by blast | |
| 1222 | then have bound': "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x" | |
| 1223 | using x_max by blast | |
| 1224 | obtain l where der: "DERIV f x :> l" | |
| 1225 | using differentiableD [OF dif [OF conjI [OF 1]]] .. | |
| 1226 | \<comment>\<open>the derivative at a local maximum is zero\<close> | |
| 1227 | have "l = 0" | |
| 1228 | by (rule DERIV_local_max [OF der d bound']) | |
| 1229 | with 1 der show ?thesis by auto | |
| 21164 | 1230 | next | 
| 63558 | 1231 | case 2 | 
| 1232 | then have fx: "f b = f x" by (auto simp add: eq) | |
| 1233 | consider "a < x'" "x' < b" | "x' = a \<or> x' = b" | |
| 1234 | using \<open>a \<le> x'\<close> \<open>x' \<le> b\<close> by arith | |
| 1235 | then show ?thesis | |
| 21164 | 1236 | proof cases | 
| 63558 | 1237 | case 1 | 
| 1238 |         \<comment> \<open>@{term f} attains its minimum within the interval\<close>
 | |
| 1239 | from lemma_interval [OF 1] | |
| 21164 | 1240 | obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" | 
| 63558 | 1241 | by blast | 
| 1242 | then have bound': "\<forall>y. \<bar>x' - y\<bar> < d \<longrightarrow> f x' \<le> f y" | |
| 1243 | using x'_min by blast | |
| 1244 | from differentiableD [OF dif [OF conjI [OF 1]]] | |
| 21164 | 1245 | obtain l where der: "DERIV f x' :> l" .. | 
| 63558 | 1246 | have "l = 0" by (rule DERIV_local_min [OF der d bound']) | 
| 1247 | \<comment> \<open>the derivative at a local minimum is zero\<close> | |
| 1248 | then show ?thesis using 1 der by auto | |
| 21164 | 1249 | next | 
| 63558 | 1250 | case 2 | 
| 1251 |         \<comment> \<open>@{term f} is constant throughout the interval\<close>
 | |
| 1252 | then have fx': "f b = f x'" by (auto simp: eq) | |
| 1253 | from dense [OF lt] obtain r where r: "a < r" "r < b" by blast | |
| 1254 | obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" | |
| 1255 | using lemma_interval [OF r] by blast | |
| 1256 | have eq_fb: "f z = f b" if "a \<le> z" and "z \<le> b" for z | |
| 1257 | proof (rule order_antisym) | |
| 1258 | show "f z \<le> f b" by (simp add: fx x_max that) | |
| 1259 | show "f b \<le> f z" by (simp add: fx' x'_min that) | |
| 21164 | 1260 | qed | 
| 63558 | 1261 | have bound': "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> f r = f y" | 
| 21164 | 1262 | proof (intro strip) | 
| 63558 | 1263 | fix y :: real | 
| 1264 | assume lt: "\<bar>r - y\<bar> < d" | |
| 1265 | then have "f y = f b" by (simp add: eq_fb bound) | |
| 1266 | then show "f r = f y" by (simp add: eq_fb r order_less_imp_le) | |
| 21164 | 1267 | qed | 
| 63558 | 1268 | obtain l where der: "DERIV f r :> l" | 
| 1269 | using differentiableD [OF dif [OF conjI [OF r]]] .. | |
| 1270 | have "l = 0" | |
| 1271 | by (rule DERIV_local_const [OF der d bound']) | |
| 1272 | \<comment> \<open>the derivative of a constant function is zero\<close> | |
| 1273 | with r der show ?thesis by auto | |
| 21164 | 1274 | qed | 
| 1275 | qed | |
| 1276 | qed | |
| 1277 | ||
| 1278 | ||
| 63558 | 1279 | subsection \<open>Mean Value Theorem\<close> | 
| 21164 | 1280 | |
| 63558 | 1281 | lemma lemma_MVT: "f a - (f b - f a) / (b - a) * a = f b - (f b - f a) / (b - a) * b" | 
| 1282 | for a b :: real | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1283 | by (cases "a = b") (simp_all add: field_simps) | 
| 21164 | 1284 | |
| 1285 | theorem MVT: | |
| 63558 | 1286 | fixes a b :: real | 
| 1287 | assumes lt: "a < b" | |
| 1288 | and con: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" | |
| 1289 | and dif [rule_format]: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)" | |
| 1290 | shows "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l" | |
| 21164 | 1291 | proof - | 
| 63558 | 1292 | let ?F = "\<lambda>x. f x - ((f b - f a) / (b - a)) * x" | 
| 1293 | have cont_f: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x" | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56369diff
changeset | 1294 | using con by (fast intro: continuous_intros) | 
| 63558 | 1295 | have dif_f: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable (at x)" | 
| 1296 | proof clarify | |
| 1297 | fix x :: real | |
| 1298 | assume x: "a < x" "x < b" | |
| 1299 | obtain l where der: "DERIV f x :> l" | |
| 1300 | using differentiableD [OF dif [OF conjI [OF x]]] .. | |
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1301 | show "?F differentiable (at x)" | 
| 63558 | 1302 | by (rule differentiableI [where D = "l - (f b - f a) / (b - a)"], | 
| 21164 | 1303 | blast intro: DERIV_diff DERIV_cmult_Id der) | 
| 1304 | qed | |
| 63558 | 1305 | from Rolle [where f = ?F, OF lt lemma_MVT cont_f dif_f] | 
| 1306 | obtain z where z: "a < z" "z < b" and der: "DERIV ?F z :> 0" | |
| 21164 | 1307 | by blast | 
| 63558 | 1308 | have "DERIV (\<lambda>x. ((f b - f a) / (b - a)) * x) z :> (f b - f a) / (b - a)" | 
| 21164 | 1309 | by (rule DERIV_cmult_Id) | 
| 63558 | 1310 | then have der_f: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z :> 0 + (f b - f a) / (b - a)" | 
| 21164 | 1311 | by (rule DERIV_add [OF der]) | 
| 1312 | show ?thesis | |
| 1313 | proof (intro exI conjI) | |
| 63558 | 1314 | show "a < z" and "z < b" using z . | 
| 1315 | show "f b - f a = (b - a) * ((f b - f a) / (b - a))" by simp | |
| 1316 | show "DERIV f z :> ((f b - f a) / (b - a))" using der_f by simp | |
| 21164 | 1317 | qed | 
| 1318 | qed | |
| 1319 | ||
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1320 | lemma MVT2: | 
| 63558 | 1321 | "a < b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> DERIV f x :> f' x \<Longrightarrow> | 
| 1322 | \<exists>z::real. a < z \<and> z < b \<and> (f b - f a = (b - a) * f' z)" | |
| 1323 | apply (drule MVT) | |
| 1324 | apply (blast intro: DERIV_isCont) | |
| 1325 | apply (force dest: order_less_imp_le simp add: real_differentiable_def) | |
| 1326 | apply (blast dest: DERIV_unique order_less_imp_le) | |
| 1327 | done | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1328 | |
| 21164 | 1329 | |
| 63558 | 1330 | text \<open>A function is constant if its derivative is 0 over an interval.\<close> | 
| 21164 | 1331 | |
| 1332 | lemma DERIV_isconst_end: | |
| 63558 | 1333 | fixes f :: "real \<Rightarrow> real" | 
| 1334 | shows "a < b \<Longrightarrow> | |
| 1335 | \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> | |
| 1336 | \<forall>x. a < x \<and> x < b \<longrightarrow> DERIV f x :> 0 \<Longrightarrow> f b = f a" | |
| 1337 | apply (drule (1) MVT) | |
| 1338 | apply (blast intro: differentiableI) | |
| 1339 | apply (auto dest!: DERIV_unique simp add: diff_eq_eq) | |
| 1340 | done | |
| 21164 | 1341 | |
| 1342 | lemma DERIV_isconst1: | |
| 63558 | 1343 | fixes f :: "real \<Rightarrow> real" | 
| 1344 | shows "a < b \<Longrightarrow> | |
| 1345 | \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> | |
| 1346 | \<forall>x. a < x \<and> x < b \<longrightarrow> DERIV f x :> 0 \<Longrightarrow> | |
| 1347 | \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x = f a" | |
| 1348 | apply safe | |
| 1349 | apply (drule_tac x = a in order_le_imp_less_or_eq) | |
| 1350 | apply safe | |
| 1351 | apply (drule_tac b = x in DERIV_isconst_end) | |
| 1352 | apply auto | |
| 1353 | done | |
| 21164 | 1354 | |
| 1355 | lemma DERIV_isconst2: | |
| 63558 | 1356 | fixes f :: "real \<Rightarrow> real" | 
| 1357 | shows "a < b \<Longrightarrow> | |
| 1358 | \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> | |
| 1359 | \<forall>x. a < x \<and> x < b \<longrightarrow> DERIV f x :> 0 \<Longrightarrow> | |
| 1360 | a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> f x = f a" | |
| 1361 | by (blast dest: DERIV_isconst1) | |
| 21164 | 1362 | |
| 63558 | 1363 | lemma DERIV_isconst3: | 
| 1364 | fixes a b x y :: real | |
| 1365 | assumes "a < b" | |
| 1366 |     and "x \<in> {a <..< b}"
 | |
| 1367 |     and "y \<in> {a <..< b}"
 | |
| 1368 |     and derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1369 | shows "f x = f y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1370 | proof (cases "x = y") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1371 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1372 | let ?a = "min x y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1373 | let ?b = "max x y" | 
| 63558 | 1374 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1375 | have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1376 | proof (rule allI, rule impI) | 
| 63558 | 1377 | fix z :: real | 
| 1378 | assume "?a \<le> z \<and> z \<le> ?b" | |
| 1379 | then have "a < z" and "z < b" | |
| 1380 |       using \<open>x \<in> {a <..< b}\<close> and \<open>y \<in> {a <..< b}\<close> by auto
 | |
| 1381 |     then have "z \<in> {a<..<b}" by auto
 | |
| 1382 | then show "DERIV f z :> 0" by (rule derivable) | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1383 | qed | 
| 63558 | 1384 | then have isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z" | 
| 1385 | and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" | |
| 1386 | using DERIV_isCont by auto | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1387 | |
| 60758 | 1388 | have "?a < ?b" using \<open>x \<noteq> y\<close> by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1389 | from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1390 | show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1391 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29667diff
changeset | 1392 | |
| 21164 | 1393 | lemma DERIV_isconst_all: | 
| 63558 | 1394 | fixes f :: "real \<Rightarrow> real" | 
| 1395 | shows "\<forall>x. DERIV f x :> 0 \<Longrightarrow> f x = f y" | |
| 1396 | apply (rule linorder_cases [of x y]) | |
| 1397 | apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+ | |
| 1398 | done | |
| 21164 | 1399 | |
| 1400 | lemma DERIV_const_ratio_const: | |
| 63558 | 1401 | fixes f :: "real \<Rightarrow> real" | 
| 1402 | shows "a \<noteq> b \<Longrightarrow> \<forall>x. DERIV f x :> k \<Longrightarrow> f b - f a = (b - a) * k" | |
| 1403 | apply (rule linorder_cases [of a b]) | |
| 1404 | apply auto | |
| 1405 | apply (drule_tac [!] f = f in MVT) | |
| 1406 | apply (auto dest: DERIV_isCont DERIV_unique simp: real_differentiable_def) | |
| 1407 | apply (auto dest: DERIV_unique simp: ring_distribs) | |
| 1408 | done | |
| 21164 | 1409 | |
| 1410 | lemma DERIV_const_ratio_const2: | |
| 63558 | 1411 | fixes f :: "real \<Rightarrow> real" | 
| 1412 | shows "a \<noteq> b \<Longrightarrow> \<forall>x. DERIV f x :> k \<Longrightarrow> (f b - f a) / (b - a) = k" | |
| 1413 | apply (rule_tac c1 = "b-a" in mult_right_cancel [THEN iffD1]) | |
| 1414 | apply (auto dest!: DERIV_const_ratio_const simp add: mult.assoc) | |
| 1415 | done | |
| 21164 | 1416 | |
| 63558 | 1417 | lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2" | 
| 1418 | for a b :: real | |
| 1419 | by simp | |
| 21164 | 1420 | |
| 63558 | 1421 | lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2" | 
| 1422 | for a b :: real | |
| 1423 | by simp | |
| 21164 | 1424 | |
| 63558 | 1425 | text \<open>Gallileo's "trick": average velocity = av. of end velocities.\<close> | 
| 21164 | 1426 | |
| 1427 | lemma DERIV_const_average: | |
| 63558 | 1428 | fixes v :: "real \<Rightarrow> real" | 
| 1429 | and a b :: real | |
| 1430 | assumes neq: "a \<noteq> b" | |
| 1431 | and der: "\<forall>x. DERIV v x :> k" | |
| 1432 | shows "v ((a + b) / 2) = (v a + v b) / 2" | |
| 21164 | 1433 | proof (cases rule: linorder_cases [of a b]) | 
| 63558 | 1434 | case equal | 
| 1435 | with neq show ?thesis by simp | |
| 21164 | 1436 | next | 
| 1437 | case less | |
| 1438 | have "(v b - v a) / (b - a) = k" | |
| 1439 | by (rule DERIV_const_ratio_const2 [OF neq der]) | |
| 63558 | 1440 | then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k" | 
| 1441 | by simp | |
| 21164 | 1442 | moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k" | 
| 63558 | 1443 | by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq) | 
| 1444 | ultimately show ?thesis | |
| 1445 | using neq by force | |
| 21164 | 1446 | next | 
| 1447 | case greater | |
| 1448 | have "(v b - v a) / (b - a) = k" | |
| 1449 | by (rule DERIV_const_ratio_const2 [OF neq der]) | |
| 63558 | 1450 | then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k" | 
| 1451 | by simp | |
| 21164 | 1452 | moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k" | 
| 63558 | 1453 | by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq) | 
| 1454 | ultimately show ?thesis | |
| 1455 | using neq by (force simp add: add.commute) | |
| 21164 | 1456 | qed | 
| 1457 | ||
| 63558 | 1458 | text \<open> | 
| 1459 | A function with positive derivative is increasing. | |
| 1460 | A simple proof using the MVT, by Jeremy Avigad. And variants. | |
| 1461 | \<close> | |
| 56261 | 1462 | lemma DERIV_pos_imp_increasing_open: | 
| 63558 | 1463 | fixes a b :: real | 
| 1464 | and f :: "real \<Rightarrow> real" | |
| 1465 | assumes "a < b" | |
| 1466 | and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)" | |
| 1467 | and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x" | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1468 | shows "f a < f b" | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1469 | proof (rule ccontr) | 
| 63558 | 1470 | assume f: "\<not> ?thesis" | 
| 1471 | have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l" | |
| 1472 | by (rule MVT) (use assms Deriv.differentiableI in \<open>force+\<close>) | |
| 1473 | then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l" | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1474 | by auto | 
| 63558 | 1475 | with assms f have "\<not> l > 0" | 
| 36777 
be5461582d0f
avoid using real-specific versions of generic lemmas
 huffman parents: 
35216diff
changeset | 1476 | by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le) | 
| 41550 | 1477 | with assms z show False | 
| 56261 | 1478 | by (metis DERIV_unique) | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1479 | qed | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1480 | |
| 56261 | 1481 | lemma DERIV_pos_imp_increasing: | 
| 63558 | 1482 | fixes a b :: real | 
| 1483 | and f :: "real \<Rightarrow> real" | |
| 1484 | assumes "a < b" | |
| 1485 | and "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)" | |
| 56261 | 1486 | shows "f a < f b" | 
| 63558 | 1487 | by (metis DERIV_pos_imp_increasing_open [of a b f] assms DERIV_continuous less_imp_le) | 
| 56261 | 1488 | |
| 45791 | 1489 | lemma DERIV_nonneg_imp_nondecreasing: | 
| 63558 | 1490 | fixes a b :: real | 
| 1491 | and f :: "real \<Rightarrow> real" | |
| 1492 | assumes "a \<le> b" | |
| 1493 | and "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> (\<exists>y. DERIV f x :> y \<and> y \<ge> 0)" | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1494 | shows "f a \<le> f b" | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1495 | proof (rule ccontr, cases "a = b") | 
| 63558 | 1496 | assume "\<not> ?thesis" and "a = b" | 
| 41550 | 1497 | then show False by auto | 
| 37891 | 1498 | next | 
| 63558 | 1499 | assume *: "\<not> ?thesis" | 
| 1500 | assume "a \<noteq> b" | |
| 1501 | with assms have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l" | |
| 33690 | 1502 | apply - | 
| 1503 | apply (rule MVT) | |
| 1504 | apply auto | |
| 63558 | 1505 | apply (metis DERIV_isCont) | 
| 1506 | apply (metis differentiableI less_le) | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1507 | done | 
| 63558 | 1508 | then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l" | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1509 | by auto | 
| 63558 | 1510 | with * have "a < b" "f b < f a" by auto | 
| 1511 | with ** have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps) | |
| 1512 | (metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl) | |
| 1513 | with assms lz show False | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1514 | by (metis DERIV_unique order_less_imp_le) | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1515 | qed | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1516 | |
| 56261 | 1517 | lemma DERIV_neg_imp_decreasing_open: | 
| 63558 | 1518 | fixes a b :: real | 
| 1519 | and f :: "real \<Rightarrow> real" | |
| 1520 | assumes "a < b" | |
| 1521 | and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y < 0)" | |
| 1522 | and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x" | |
| 56261 | 1523 | shows "f a > f b" | 
| 1524 | proof - | |
| 63558 | 1525 | have "(\<lambda>x. -f x) a < (\<lambda>x. -f x) b" | 
| 1526 | apply (rule DERIV_pos_imp_increasing_open [of a b "\<lambda>x. -f x"]) | |
| 56261 | 1527 | using assms | 
| 63558 | 1528 | apply auto | 
| 56261 | 1529 | apply (metis field_differentiable_minus neg_0_less_iff_less) | 
| 1530 | done | |
| 63558 | 1531 | then show ?thesis | 
| 56261 | 1532 | by simp | 
| 1533 | qed | |
| 1534 | ||
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1535 | lemma DERIV_neg_imp_decreasing: | 
| 63558 | 1536 | fixes a b :: real | 
| 1537 | and f :: "real \<Rightarrow> real" | |
| 1538 | assumes "a < b" | |
| 1539 | and "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> (\<exists>y. DERIV f x :> y \<and> y < 0)" | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1540 | shows "f a > f b" | 
| 63558 | 1541 | by (metis DERIV_neg_imp_decreasing_open [of a b f] assms DERIV_continuous less_imp_le) | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1542 | |
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1543 | lemma DERIV_nonpos_imp_nonincreasing: | 
| 63558 | 1544 | fixes a b :: real | 
| 1545 | and f :: "real \<Rightarrow> real" | |
| 1546 | assumes "a \<le> b" | |
| 1547 | and "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> (\<exists>y. DERIV f x :> y \<and> y \<le> 0)" | |
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1548 | shows "f a \<ge> f b" | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1549 | proof - | 
| 63558 | 1550 | have "(\<lambda>x. -f x) a \<le> (\<lambda>x. -f x) b" | 
| 1551 | apply (rule DERIV_nonneg_imp_nondecreasing [of a b "\<lambda>x. -f x"]) | |
| 33690 | 1552 | using assms | 
| 63558 | 1553 | apply auto | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1554 | apply (metis DERIV_minus neg_0_le_iff_le) | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1555 | done | 
| 63558 | 1556 | then show ?thesis | 
| 33654 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1557 | by simp | 
| 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 paulson parents: 
31902diff
changeset | 1558 | qed | 
| 21164 | 1559 | |
| 56289 | 1560 | lemma DERIV_pos_imp_increasing_at_bot: | 
| 63558 | 1561 | fixes f :: "real \<Rightarrow> real" | 
| 1562 | assumes "\<And>x. x \<le> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)" | |
| 1563 | and lim: "(f \<longlongrightarrow> flim) at_bot" | |
| 56289 | 1564 | shows "flim < f b" | 
| 1565 | proof - | |
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1566 | have "\<exists>N. \<forall>n\<le>N. f n \<le> f (b - 1)" | 
| 56289 | 1567 | apply (rule_tac x="b - 2" in exI) | 
| 1568 | apply (force intro: order.strict_implies_order DERIV_pos_imp_increasing [where f=f] assms) | |
| 1569 | done | |
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1570 | then have "flim \<le> f (b - 1)" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1571 | by (auto simp: trivial_limit_at_bot_linorder eventually_at_bot_linorder tendsto_upperbound [OF lim]) | 
| 63558 | 1572 | also have "\<dots> < f b" | 
| 56289 | 1573 | by (force intro: DERIV_pos_imp_increasing [where f=f] assms) | 
| 1574 | finally show ?thesis . | |
| 1575 | qed | |
| 1576 | ||
| 1577 | lemma DERIV_neg_imp_decreasing_at_top: | |
| 63558 | 1578 | fixes f :: "real \<Rightarrow> real" | 
| 1579 | assumes der: "\<And>x. x \<ge> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y < 0)" | |
| 1580 | and lim: "(f \<longlongrightarrow> flim) at_top" | |
| 56289 | 1581 | shows "flim < f b" | 
| 1582 | apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified]) | |
| 63558 | 1583 | apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less) | 
| 56289 | 1584 | apply (metis filterlim_at_top_mirror lim) | 
| 1585 | done | |
| 1586 | ||
| 60758 | 1587 | text \<open>Derivative of inverse function\<close> | 
| 23041 | 1588 | |
| 1589 | lemma DERIV_inverse_function: | |
| 1590 | fixes f g :: "real \<Rightarrow> real" | |
| 1591 | assumes der: "DERIV f (g x) :> D" | |
| 63558 | 1592 | and neq: "D \<noteq> 0" | 
| 1593 | and x: "a < x" "x < b" | |
| 1594 | and inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y" | |
| 1595 | and cont: "isCont g x" | |
| 23041 | 1596 | shows "DERIV g x :> inverse D" | 
| 1597 | unfolding DERIV_iff2 | |
| 23044 | 1598 | proof (rule LIM_equal2) | 
| 1599 | show "0 < min (x - a) (b - x)" | |
| 63558 | 1600 | using x by arith | 
| 23044 | 1601 | next | 
| 23041 | 1602 | fix y | 
| 23044 | 1603 | assume "norm (y - x) < min (x - a) (b - x)" | 
| 63558 | 1604 | then have "a < y" and "y < b" | 
| 23044 | 1605 | by (simp_all add: abs_less_iff) | 
| 63558 | 1606 | then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))" | 
| 23041 | 1607 | by (simp add: inj) | 
| 1608 | next | |
| 61976 | 1609 | have "(\<lambda>z. (f z - f (g x)) / (z - g x)) \<midarrow>g x\<rightarrow> D" | 
| 23041 | 1610 | by (rule der [unfolded DERIV_iff2]) | 
| 63558 | 1611 | then have 1: "(\<lambda>z. (f z - x) / (z - g x)) \<midarrow>g x\<rightarrow> D" | 
| 1612 | using inj x by simp | |
| 23041 | 1613 | have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x" | 
| 56219 | 1614 | proof (rule exI, safe) | 
| 23044 | 1615 | show "0 < min (x - a) (b - x)" | 
| 63558 | 1616 | using x by simp | 
| 23041 | 1617 | next | 
| 1618 | fix y | |
| 23044 | 1619 | assume "norm (y - x) < min (x - a) (b - x)" | 
| 63558 | 1620 | then have y: "a < y" "y < b" | 
| 23044 | 1621 | by (simp_all add: abs_less_iff) | 
| 23041 | 1622 | assume "g y = g x" | 
| 63558 | 1623 | then have "f (g y) = f (g x)" by simp | 
| 1624 | then have "y = x" using inj y x by simp | |
| 23041 | 1625 | also assume "y \<noteq> x" | 
| 1626 | finally show False by simp | |
| 1627 | qed | |
| 61976 | 1628 | have "(\<lambda>y. (f (g y) - x) / (g y - g x)) \<midarrow>x\<rightarrow> D" | 
| 23041 | 1629 | using cont 1 2 by (rule isCont_LIM_compose2) | 
| 63558 | 1630 | then show "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) \<midarrow>x\<rightarrow> inverse D" | 
| 44568 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 huffman parents: 
44317diff
changeset | 1631 | using neq by (rule tendsto_inverse) | 
| 23041 | 1632 | qed | 
| 1633 | ||
| 60758 | 1634 | subsection \<open>Generalized Mean Value Theorem\<close> | 
| 29975 | 1635 | |
| 21164 | 1636 | theorem GMVT: | 
| 21784 
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
 huffman parents: 
21404diff
changeset | 1637 | fixes a b :: real | 
| 21164 | 1638 | assumes alb: "a < b" | 
| 41550 | 1639 | and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1640 | and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)" | 
| 41550 | 1641 | and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1642 | and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)" | 
| 53381 | 1643 | shows "\<exists>g'c f'c c. | 
| 63558 | 1644 | DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c" | 
| 21164 | 1645 | proof - | 
| 63558 | 1646 | let ?h = "\<lambda>x. (f b - f a) * g x - (g b - g a) * f x" | 
| 1647 | have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" | |
| 1648 | proof (rule MVT) | |
| 1649 | from assms show "a < b" by simp | |
| 1650 | show "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x" | |
| 1651 | using fc gc by simp | |
| 1652 | show "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable (at x)" | |
| 1653 | using fd gd by simp | |
| 1654 | qed | |
| 1655 | then obtain l where l: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" .. | |
| 1656 | then obtain c where c: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" .. | |
| 21164 | 1657 | |
| 63558 | 1658 | from c have cint: "a < c \<and> c < b" by auto | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1659 | with gd have "g differentiable (at c)" by simp | 
| 63558 | 1660 | then have "\<exists>D. DERIV g c :> D" by (rule differentiableD) | 
| 1661 | then obtain g'c where g'c: "DERIV g c :> g'c" .. | |
| 21164 | 1662 | |
| 63558 | 1663 | from c have "a < c \<and> c < b" by auto | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1664 | with fd have "f differentiable (at c)" by simp | 
| 63558 | 1665 | then have "\<exists>D. DERIV f c :> D" by (rule differentiableD) | 
| 1666 | then obtain f'c where f'c: "DERIV f c :> f'c" .. | |
| 21164 | 1667 | |
| 63558 | 1668 | from c have "DERIV ?h c :> l" by auto | 
| 41368 | 1669 | moreover have "DERIV ?h c :> g'c * (f b - f a) - f'c * (g b - g a)" | 
| 63558 | 1670 | using g'c f'c by (auto intro!: derivative_eq_intros) | 
| 21164 | 1671 | ultimately have leq: "l = g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique) | 
| 1672 | ||
| 63558 | 1673 | have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" | 
| 1674 | proof - | |
| 1675 | from c have "?h b - ?h a = (b - a) * l" by auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51642diff
changeset | 1676 | also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp | 
| 63558 | 1677 | finally show ?thesis by simp | 
| 1678 | qed | |
| 1679 | moreover have "?h b - ?h a = 0" | |
| 1680 | proof - | |
| 21164 | 1681 | have "?h b - ?h a = | 
| 63558 | 1682 | ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) - | 
| 1683 | ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))" | |
| 29667 | 1684 | by (simp add: algebra_simps) | 
| 63558 | 1685 | then show ?thesis by auto | 
| 1686 | qed | |
| 21164 | 1687 | ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto | 
| 1688 | with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp | |
| 63558 | 1689 | then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp | 
| 1690 | then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps) | |
| 1691 | with g'c f'c cint show ?thesis by auto | |
| 21164 | 1692 | qed | 
| 1693 | ||
| 50327 | 1694 | lemma GMVT': | 
| 1695 | fixes f g :: "real \<Rightarrow> real" | |
| 1696 | assumes "a < b" | |
| 63558 | 1697 | and isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z" | 
| 1698 | and isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z" | |
| 1699 | and DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)" | |
| 1700 | and DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)" | |
| 50327 | 1701 | shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c" | 
| 1702 | proof - | |
| 1703 | have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> | |
| 63558 | 1704 | a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c" | 
| 56181 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 hoelzl parents: 
55970diff
changeset | 1705 | using assms by (intro GMVT) (force simp: real_differentiable_def)+ | 
| 50327 | 1706 | then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c" | 
| 1707 | using DERIV_f DERIV_g by (force dest: DERIV_unique) | |
| 1708 | then show ?thesis | |
| 1709 | by auto | |
| 1710 | qed | |
| 1711 | ||
| 51529 
2d2f59e6055a
move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
 hoelzl parents: 
51526diff
changeset | 1712 | |
| 60758 | 1713 | subsection \<open>L'Hopitals rule\<close> | 
| 51529 
2d2f59e6055a
move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
 hoelzl parents: 
51526diff
changeset | 1714 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1715 | lemma isCont_If_ge: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1716 | fixes a :: "'a :: linorder_topology" | 
| 63558 | 1717 | shows "continuous (at_left a) g \<Longrightarrow> (f \<longlongrightarrow> g a) (at_right a) \<Longrightarrow> | 
| 1718 | isCont (\<lambda>x. if x \<le> a then g x else f x) a" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1719 | unfolding isCont_def continuous_within | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1720 | apply (intro filterlim_split_at) | 
| 63558 | 1721 | apply (subst filterlim_cong[OF refl refl, where g=g]) | 
| 1722 | apply (simp_all add: eventually_at_filter less_le) | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1723 | apply (subst filterlim_cong[OF refl refl, where g=f]) | 
| 63558 | 1724 | apply (simp_all add: eventually_at_filter less_le) | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1725 | done | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1726 | |
| 50327 | 1727 | lemma lhopital_right_0: | 
| 50329 | 1728 | fixes f0 g0 :: "real \<Rightarrow> real" | 
| 61973 | 1729 | assumes f_0: "(f0 \<longlongrightarrow> 0) (at_right 0)" | 
| 63558 | 1730 | and g_0: "(g0 \<longlongrightarrow> 0) (at_right 0)" | 
| 1731 | and ev: | |
| 1732 | "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)" | |
| 1733 | "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)" | |
| 1734 | "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)" | |
| 1735 | "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)" | |
| 63713 | 1736 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) F (at_right 0)" | 
| 1737 | shows "filterlim (\<lambda> x. f0 x / g0 x) F (at_right 0)" | |
| 50327 | 1738 | proof - | 
| 63040 | 1739 | define f where [abs_def]: "f x = (if x \<le> 0 then 0 else f0 x)" for x | 
| 50329 | 1740 | then have "f 0 = 0" by simp | 
| 1741 | ||
| 63040 | 1742 | define g where [abs_def]: "g x = (if x \<le> 0 then 0 else g0 x)" for x | 
| 50329 | 1743 | then have "g 0 = 0" by simp | 
| 1744 | ||
| 1745 | have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and> | |
| 1746 | DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)" | |
| 1747 | using ev by eventually_elim auto | |
| 1748 | then obtain a where [arith]: "0 < a" | |
| 1749 | and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0" | |
| 50327 | 1750 | and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0" | 
| 50329 | 1751 | and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)" | 
| 1752 | and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)" | |
| 56219 | 1753 | unfolding eventually_at by (auto simp: dist_real_def) | 
| 50327 | 1754 | |
| 50329 | 1755 | have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0" | 
| 1756 | using g0_neq_0 by (simp add: g_def) | |
| 1757 | ||
| 63558 | 1758 | have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x | 
| 1759 | using that | |
| 1760 | by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]]) | |
| 1761 | (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) | |
| 50329 | 1762 | |
| 63558 | 1763 | have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x | 
| 1764 | using that | |
| 1765 | by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]]) | |
| 1766 | (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) | |
| 50329 | 1767 | |
| 1768 | have "isCont f 0" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1769 | unfolding f_def by (intro isCont_If_ge f_0 continuous_const) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1770 | |
| 50329 | 1771 | have "isCont g 0" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1772 | unfolding g_def by (intro isCont_If_ge g_0 continuous_const) | 
| 50329 | 1773 | |
| 50327 | 1774 |   have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
 | 
| 63558 | 1775 | proof (rule bchoice, rule ballI) | 
| 1776 | fix x | |
| 1777 |     assume "x \<in> {0 <..< a}"
 | |
| 50327 | 1778 | then have x[arith]: "0 < x" "x < a" by auto | 
| 60758 | 1779 | with g'_neq_0 g_neq_0 \<open>g 0 = 0\<close> have g': "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x" | 
| 50327 | 1780 | by auto | 
| 50328 | 1781 | have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x" | 
| 60758 | 1782 | using \<open>isCont f 0\<close> f by (auto intro: DERIV_isCont simp: le_less) | 
| 50328 | 1783 | moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x" | 
| 60758 | 1784 | using \<open>isCont g 0\<close> g by (auto intro: DERIV_isCont simp: le_less) | 
| 50328 | 1785 | ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c" | 
| 60758 | 1786 | using f g \<open>x < a\<close> by (intro GMVT') auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51642diff
changeset | 1787 | then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c" | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51642diff
changeset | 1788 | by blast | 
| 50327 | 1789 | moreover | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51642diff
changeset | 1790 | from * g'(1)[of c] g'(2) have "(f x - f 0) / (g x - g 0) = f' c / g' c" | 
| 50327 | 1791 | by (simp add: field_simps) | 
| 1792 | ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y" | |
| 60758 | 1793 | using \<open>f 0 = 0\<close> \<open>g 0 = 0\<close> by (auto intro!: exI[of _ c]) | 
| 50327 | 1794 | qed | 
| 53381 | 1795 |   then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
 | 
| 50327 | 1796 | then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1797 | unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def) | 
| 50327 | 1798 | moreover | 
| 1799 | from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)" | |
| 1800 | by eventually_elim auto | |
| 61973 | 1801 | then have "((\<lambda>x. norm (\<zeta> x)) \<longlongrightarrow> 0) (at_right 0)" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1802 | by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"]) auto | 
| 61973 | 1803 | then have "(\<zeta> \<longlongrightarrow> 0) (at_right 0)" | 
| 50327 | 1804 | by (rule tendsto_norm_zero_cancel) | 
| 1805 | with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)" | |
| 61810 | 1806 | by (auto elim!: eventually_mono simp: filterlim_at) | 
| 63713 | 1807 | from this lim have "filterlim (\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) F (at_right 0)" | 
| 50327 | 1808 | by (rule_tac filterlim_compose[of _ _ _ \<zeta>]) | 
| 63713 | 1809 | ultimately have "filterlim (\<lambda>t. f t / g t) F (at_right 0)" (is ?P) | 
| 50328 | 1810 | by (rule_tac filterlim_cong[THEN iffD1, OF refl refl]) | 
| 61810 | 1811 | (auto elim: eventually_mono) | 
| 50329 | 1812 | also have "?P \<longleftrightarrow> ?thesis" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1813 | by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter) | 
| 50329 | 1814 | finally show ?thesis . | 
| 50327 | 1815 | qed | 
| 1816 | ||
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1817 | lemma lhopital_right: | 
| 63558 | 1818 | "(f \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1819 | eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1820 | eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1821 | eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1822 | eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow> | 
| 63713 | 1823 | filterlim (\<lambda> x. (f' x / g' x)) F (at_right x) \<Longrightarrow> | 
| 1824 | filterlim (\<lambda> x. f x / g x) F (at_right x)" | |
| 63558 | 1825 | for x :: real | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1826 | unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1827 | by (rule lhopital_right_0) | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1828 | |
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1829 | lemma lhopital_left: | 
| 63558 | 1830 | "(f \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1831 | eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1832 | eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1833 | eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1834 | eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow> | 
| 63713 | 1835 | filterlim (\<lambda> x. (f' x / g' x)) F (at_left x) \<Longrightarrow> | 
| 1836 | filterlim (\<lambda> x. f x / g x) F (at_left x)" | |
| 63558 | 1837 | for x :: real | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1838 | unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1839 | by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror) | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1840 | |
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1841 | lemma lhopital: | 
| 63558 | 1842 | "(f \<longlongrightarrow> 0) (at x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at x) \<Longrightarrow> | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1843 | eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1844 | eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1845 | eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1846 | eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow> | 
| 63713 | 1847 | filterlim (\<lambda> x. (f' x / g' x)) F (at x) \<Longrightarrow> | 
| 1848 | filterlim (\<lambda> x. f x / g x) F (at x)" | |
| 63558 | 1849 | for x :: real | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1850 | unfolding eventually_at_split filterlim_at_split | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1851 | by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f']) | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1852 | |
| 63713 | 1853 | |
| 50327 | 1854 | lemma lhopital_right_0_at_top: | 
| 1855 | fixes f g :: "real \<Rightarrow> real" | |
| 1856 | assumes g_0: "LIM x at_right 0. g x :> at_top" | |
| 63558 | 1857 | and ev: | 
| 1858 | "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)" | |
| 1859 | "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)" | |
| 1860 | "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)" | |
| 1861 | and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) (at_right 0)" | |
| 61973 | 1862 | shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) (at_right 0)" | 
| 50327 | 1863 | unfolding tendsto_iff | 
| 1864 | proof safe | |
| 63558 | 1865 | fix e :: real | 
| 1866 | assume "0 < e" | |
| 50327 | 1867 | with lim[unfolded tendsto_iff, rule_format, of "e / 4"] | 
| 63558 | 1868 | have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)" | 
| 1869 | by simp | |
| 50327 | 1870 | from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]] | 
| 1871 | obtain a where [arith]: "0 < a" | |
| 1872 | and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0" | |
| 1873 | and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)" | |
| 1874 | and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)" | |
| 1875 | and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1876 | unfolding eventually_at_le by (auto simp: dist_real_def) | 
| 50327 | 1877 | |
| 63558 | 1878 | from Df have "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51529diff
changeset | 1879 | unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def) | 
| 50327 | 1880 | |
| 1881 | moreover | |
| 50328 | 1882 | have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)" | 
| 61810 | 1883 | using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense) | 
| 50327 | 1884 | |
| 1885 | moreover | |
| 61973 | 1886 | have inv_g: "((\<lambda>x. inverse (g x)) \<longlongrightarrow> 0) (at_right 0)" | 
| 50327 | 1887 | using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl] | 
| 1888 | by (rule filterlim_compose) | |
| 61973 | 1889 | then have "((\<lambda>x. norm (1 - g a * inverse (g x))) \<longlongrightarrow> norm (1 - g a * 0)) (at_right 0)" | 
| 50327 | 1890 | by (intro tendsto_intros) | 
| 61973 | 1891 | then have "((\<lambda>x. norm (1 - g a / g x)) \<longlongrightarrow> 1) (at_right 0)" | 
| 50327 | 1892 | by (simp add: inverse_eq_divide) | 
| 1893 | from this[unfolded tendsto_iff, rule_format, of 1] | |
| 1894 | have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)" | |
| 61810 | 1895 | by (auto elim!: eventually_mono simp: dist_real_def) | 
| 50327 | 1896 | |
| 1897 | moreover | |
| 63558 | 1898 | from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) \<longlongrightarrow> norm ((f a - x * g a) * 0)) | 
| 1899 | (at_right 0)" | |
| 50327 | 1900 | by (intro tendsto_intros) | 
| 61973 | 1901 | then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) \<longlongrightarrow> 0) (at_right 0)" | 
| 50327 | 1902 | by (simp add: inverse_eq_divide) | 
| 60758 | 1903 | from this[unfolded tendsto_iff, rule_format, of "e / 2"] \<open>0 < e\<close> | 
| 50327 | 1904 | have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)" | 
| 1905 | by (auto simp: dist_real_def) | |
| 1906 | ||
| 1907 | ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)" | |
| 1908 | proof eventually_elim | |
| 1909 | fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t" | |
| 1910 | assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2" | |
| 1911 | ||
| 1912 | have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y" | |
| 1913 | using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+ | |
| 53381 | 1914 | then obtain y where [arith]: "t < y" "y < a" | 
| 1915 | and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y" | |
| 1916 | by blast | |
| 1917 | from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y" | |
| 60758 | 1918 | using \<open>g a < g t\<close> g'_neq_0[of y] by (auto simp add: field_simps) | 
| 50327 | 1919 | |
| 1920 | have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t" | |
| 1921 | by (simp add: field_simps) | |
| 1922 | have "norm (f t / g t - x) \<le> | |
| 1923 | norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)" | |
| 1924 | unfolding * by (rule norm_triangle_ineq) | |
| 1925 | also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)" | |
| 1926 | by (simp add: abs_mult D_eq dist_real_def) | |
| 1927 | also have "\<dots> < (e / 4) * 2 + e / 2" | |
| 60758 | 1928 | using ineq Df[of y] \<open>0 < e\<close> by (intro add_le_less_mono mult_mono) auto | 
| 50327 | 1929 | finally show "dist (f t / g t) x < e" | 
| 1930 | by (simp add: dist_real_def) | |
| 1931 | qed | |
| 1932 | qed | |
| 1933 | ||
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1934 | lemma lhopital_right_at_top: | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1935 | "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1936 | eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1937 | eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1938 | eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow> | 
| 61973 | 1939 | ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_right x) \<Longrightarrow> | 
| 1940 | ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_right x)" | |
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1941 | unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1942 | by (rule lhopital_right_0_at_top) | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1943 | |
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1944 | lemma lhopital_left_at_top: | 
| 63558 | 1945 | "LIM x at_left x. g x :> at_top \<Longrightarrow> | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1946 | eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1947 | eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1948 | eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow> | 
| 61973 | 1949 | ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_left x) \<Longrightarrow> | 
| 1950 | ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_left x)" | |
| 63558 | 1951 | for x :: real | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1952 | unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1953 | by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror) | 
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1954 | |
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1955 | lemma lhopital_at_top: | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1956 | "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1957 | eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1958 | eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow> | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1959 | eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow> | 
| 61973 | 1960 | ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at x) \<Longrightarrow> | 
| 1961 | ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at x)" | |
| 50330 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1962 | unfolding eventually_at_split filterlim_at_split | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1963 | by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f']) | 
| 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 hoelzl parents: 
50329diff
changeset | 1964 | |
| 50347 | 1965 | lemma lhospital_at_top_at_top: | 
| 1966 | fixes f g :: "real \<Rightarrow> real" | |
| 1967 | assumes g_0: "LIM x at_top. g x :> at_top" | |
| 63558 | 1968 | and g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top" | 
| 1969 | and Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top" | |
| 1970 | and Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top" | |
| 1971 | and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) at_top" | |
| 61973 | 1972 | shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) at_top" | 
| 50347 | 1973 | unfolding filterlim_at_top_to_right | 
| 1974 | proof (rule lhopital_right_0_at_top) | |
| 1975 | let ?F = "\<lambda>x. f (inverse x)" | |
| 1976 | let ?G = "\<lambda>x. g (inverse x)" | |
| 1977 | let ?R = "at_right (0::real)" | |
| 1978 | let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))" | |
| 1979 | show "LIM x ?R. ?G x :> at_top" | |
| 1980 | using g_0 unfolding filterlim_at_top_to_right . | |
| 1981 | show "eventually (\<lambda>x. DERIV ?G x :> ?D g' x) ?R" | |
| 1982 | unfolding eventually_at_right_to_top | |
| 63558 | 1983 | using Dg eventually_ge_at_top[where c=1] | 
| 50347 | 1984 | apply eventually_elim | 
| 1985 | apply (rule DERIV_cong) | |
| 63558 | 1986 | apply (rule DERIV_chain'[where f=inverse]) | 
| 1987 | apply (auto intro!: DERIV_inverse) | |
| 50347 | 1988 | done | 
| 1989 | show "eventually (\<lambda>x. DERIV ?F x :> ?D f' x) ?R" | |
| 1990 | unfolding eventually_at_right_to_top | |
| 63558 | 1991 | using Df eventually_ge_at_top[where c=1] | 
| 50347 | 1992 | apply eventually_elim | 
| 1993 | apply (rule DERIV_cong) | |
| 63558 | 1994 | apply (rule DERIV_chain'[where f=inverse]) | 
| 1995 | apply (auto intro!: DERIV_inverse) | |
| 50347 | 1996 | done | 
| 1997 | show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R" | |
| 1998 | unfolding eventually_at_right_to_top | |
| 63558 | 1999 | using g' eventually_ge_at_top[where c=1] | 
| 50347 | 2000 | by eventually_elim auto | 
| 61973 | 2001 | show "((\<lambda>x. ?D f' x / ?D g' x) \<longlongrightarrow> x) ?R" | 
| 50347 | 2002 | unfolding filterlim_at_right_to_top | 
| 2003 | apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim]) | |
| 63558 | 2004 | using eventually_ge_at_top[where c=1] | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 2005 | by eventually_elim simp | 
| 50347 | 2006 | qed | 
| 2007 | ||
| 63713 | 2008 | lemma lhopital_right_at_top_at_top: | 
| 2009 | fixes f g :: "real \<Rightarrow> real" | |
| 2010 | assumes f_0: "LIM x at_right a. f x :> at_top" | |
| 2011 | assumes g_0: "LIM x at_right a. g x :> at_top" | |
| 2012 | and ev: | |
| 2013 | "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)" | |
| 2014 | "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)" | |
| 2015 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_right a)" | |
| 2016 | shows "filterlim (\<lambda> x. f x / g x) at_top (at_right a)" | |
| 2017 | proof - | |
| 2018 | from lim have pos: "eventually (\<lambda>x. f' x / g' x > 0) (at_right a)" | |
| 2019 | unfolding filterlim_at_top_dense by blast | |
| 2020 | have "((\<lambda>x. g x / f x) \<longlongrightarrow> 0) (at_right a)" | |
| 2021 | proof (rule lhopital_right_at_top) | |
| 2022 | from pos show "eventually (\<lambda>x. f' x \<noteq> 0) (at_right a)" by eventually_elim auto | |
| 2023 | from tendsto_inverse_0_at_top[OF lim] | |
| 2024 | show "((\<lambda>x. g' x / f' x) \<longlongrightarrow> 0) (at_right a)" by simp | |
| 2025 | qed fact+ | |
| 2026 | moreover from f_0 g_0 | |
| 2027 | have "eventually (\<lambda>x. f x > 0) (at_right a)" "eventually (\<lambda>x. g x > 0) (at_right a)" | |
| 2028 | unfolding filterlim_at_top_dense by blast+ | |
| 2029 | hence "eventually (\<lambda>x. g x / f x > 0) (at_right a)" by eventually_elim simp | |
| 2030 | ultimately have "filterlim (\<lambda>x. inverse (g x / f x)) at_top (at_right a)" | |
| 2031 | by (rule filterlim_inverse_at_top) | |
| 2032 | thus ?thesis by simp | |
| 2033 | qed | |
| 63717 | 2034 | |
| 63713 | 2035 | lemma lhopital_right_at_top_at_bot: | 
| 2036 | fixes f g :: "real \<Rightarrow> real" | |
| 2037 | assumes f_0: "LIM x at_right a. f x :> at_top" | |
| 2038 | assumes g_0: "LIM x at_right a. g x :> at_bot" | |
| 2039 | and ev: | |
| 2040 | "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)" | |
| 2041 | "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)" | |
| 2042 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_right a)" | |
| 2043 | shows "filterlim (\<lambda> x. f x / g x) at_bot (at_right a)" | |
| 2044 | proof - | |
| 2045 | from ev(2) have ev': "eventually (\<lambda>x. DERIV (\<lambda>x. -g x) x :> -g' x) (at_right a)" | |
| 2046 | by eventually_elim (auto intro: derivative_intros) | |
| 2047 | have "filterlim (\<lambda>x. f x / (-g x)) at_top (at_right a)" | |
| 2048 | by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\<lambda>x. -g' x"]) | |
| 2049 | (insert assms ev', auto simp: filterlim_uminus_at_bot) | |
| 2050 | hence "filterlim (\<lambda>x. -(f x / g x)) at_top (at_right a)" by simp | |
| 2051 | thus ?thesis by (simp add: filterlim_uminus_at_bot) | |
| 2052 | qed | |
| 2053 | ||
| 2054 | lemma lhopital_left_at_top_at_top: | |
| 2055 | fixes f g :: "real \<Rightarrow> real" | |
| 2056 | assumes f_0: "LIM x at_left a. f x :> at_top" | |
| 2057 | assumes g_0: "LIM x at_left a. g x :> at_top" | |
| 2058 | and ev: | |
| 2059 | "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)" | |
| 2060 | "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)" | |
| 2061 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_left a)" | |
| 2062 | shows "filterlim (\<lambda> x. f x / g x) at_top (at_left a)" | |
| 2063 | by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror, | |
| 2064 | rule lhopital_right_at_top_at_top[where f'="\<lambda>x. - f' (- x)"]) | |
| 2065 | (insert assms, auto simp: DERIV_mirror) | |
| 2066 | ||
| 2067 | lemma lhopital_left_at_top_at_bot: | |
| 2068 | fixes f g :: "real \<Rightarrow> real" | |
| 2069 | assumes f_0: "LIM x at_left a. f x :> at_top" | |
| 2070 | assumes g_0: "LIM x at_left a. g x :> at_bot" | |
| 2071 | and ev: | |
| 2072 | "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)" | |
| 2073 | "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)" | |
| 2074 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_left a)" | |
| 2075 | shows "filterlim (\<lambda> x. f x / g x) at_bot (at_left a)" | |
| 2076 | by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror, | |
| 2077 | rule lhopital_right_at_top_at_bot[where f'="\<lambda>x. - f' (- x)"]) | |
| 2078 | (insert assms, auto simp: DERIV_mirror) | |
| 2079 | ||
| 2080 | lemma lhopital_at_top_at_top: | |
| 2081 | fixes f g :: "real \<Rightarrow> real" | |
| 2082 | assumes f_0: "LIM x at a. f x :> at_top" | |
| 2083 | assumes g_0: "LIM x at a. g x :> at_top" | |
| 2084 | and ev: | |
| 2085 | "eventually (\<lambda>x. DERIV f x :> f' x) (at a)" | |
| 2086 | "eventually (\<lambda>x. DERIV g x :> g' x) (at a)" | |
| 2087 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at a)" | |
| 2088 | shows "filterlim (\<lambda> x. f x / g x) at_top (at a)" | |
| 2089 | using assms unfolding eventually_at_split filterlim_at_split | |
| 2090 | by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g'] | |
| 2091 | lhopital_left_at_top_at_top[of f a g f' g']) | |
| 2092 | ||
| 2093 | lemma lhopital_at_top_at_bot: | |
| 2094 | fixes f g :: "real \<Rightarrow> real" | |
| 2095 | assumes f_0: "LIM x at a. f x :> at_top" | |
| 2096 | assumes g_0: "LIM x at a. g x :> at_bot" | |
| 2097 | and ev: | |
| 2098 | "eventually (\<lambda>x. DERIV f x :> f' x) (at a)" | |
| 2099 | "eventually (\<lambda>x. DERIV g x :> g' x) (at a)" | |
| 2100 | and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at a)" | |
| 2101 | shows "filterlim (\<lambda> x. f x / g x) at_bot (at a)" | |
| 2102 | using assms unfolding eventually_at_split filterlim_at_split | |
| 2103 | by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g'] | |
| 2104 | lhopital_left_at_top_at_bot[of f a g f' g']) | |
| 2105 | ||
| 21164 | 2106 | end |