| author | paulson | 
| Wed, 19 Jul 2006 11:55:26 +0200 | |
| changeset 20153 | 6ff5d35749b0 | 
| parent 16417 | 9bc16273c2d4 | 
| child 23281 | e26ec695c9b3 | 
| permissions | -rw-r--r-- | 
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 1 | (* Title: HOL/MicroJava/BV/LBVSpec.thy | 
| 8245 | 2 | ID: $Id$ | 
| 3 | Author: Gerwin Klein | |
| 4 | Copyright 1999 Technische Universitaet Muenchen | |
| 9054 | 5 | *) | 
| 8245 | 6 | |
| 12911 | 7 | header {* \isaheader{The Lightweight Bytecode Verifier} *}
 | 
| 9054 | 8 | |
| 16417 | 9 | theory LBVSpec imports SemilatAlg Opt begin | 
| 13062 | 10 | |
| 8245 | 11 | types | 
| 13078 | 12 | 's certificate = "'s list" | 
| 8245 | 13 | |
| 12516 | 14 | consts | 
| 13078 | 15 | merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's \<Rightarrow> 's" | 
| 12516 | 16 | primrec | 
| 13078 | 17 | "merge cert f r T pc [] x = x" | 
| 18 | "merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in | |
| 19 | if pc'=pc+1 then s' +_f x | |
| 20 | else if s' <=_r (cert!pc') then x | |
| 21 | else T)" | |
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 22 | |
| 13062 | 23 | constdefs | 
| 13078 | 24 | wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> | 
| 25 | 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" | |
| 26 | "wtl_inst cert f r T step pc s \<equiv> merge cert f r T pc (step pc s) (cert!(pc+1))" | |
| 8245 | 27 | |
| 13078 | 28 | wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> | 
| 29 | 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" | |
| 30 | "wtl_cert cert f r T B step pc s \<equiv> | |
| 31 | if cert!pc = B then | |
| 32 | wtl_inst cert f r T step pc s | |
| 33 | else | |
| 34 | if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T" | |
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 35 | |
| 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 36 | consts | 
| 13078 | 37 | wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> | 
| 38 | 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" | |
| 8245 | 39 | primrec | 
| 13101 | 40 | "wtl_inst_list [] cert f r T B step pc s = s" | 
| 41 | "wtl_inst_list (i#is) cert f r T B step pc s = | |
| 13078 | 42 | (let s' = wtl_cert cert f r T B step pc s in | 
| 13101 | 43 | if s' = T \<or> s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')" | 
| 8245 | 44 | |
| 45 | constdefs | |
| 13078 | 46 | cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool" | 
| 47 | "cert_ok cert n T B A \<equiv> (\<forall>i < n. cert!i \<in> A \<and> cert!i \<noteq> T) \<and> (cert!n = B)" | |
| 48 | ||
| 49 | constdefs | |
| 50 | bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool" | |
| 51 | "bottom r B \<equiv> \<forall>x. B <=_r x" | |
| 52 | ||
| 53 | ||
| 13365 | 54 | locale (open) lbv = semilat + | 
| 13078 | 55 |   fixes T :: "'a" ("\<top>") 
 | 
| 56 |   fixes B :: "'a" ("\<bottom>") 
 | |
| 57 | fixes step :: "'a step_type" | |
| 58 | assumes top: "top r \<top>" | |
| 59 | assumes T_A: "\<top> \<in> A" | |
| 60 | assumes bot: "bottom r \<bottom>" | |
| 61 | assumes B_A: "\<bottom> \<in> A" | |
| 62 | ||
| 63 | fixes merge :: "'a certificate \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 64 | defines mrg_def: "merge cert \<equiv> LBVSpec.merge cert f r \<top>" | |
| 13062 | 65 | |
| 13078 | 66 | fixes wti :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 67 | defines wti_def: "wti cert \<equiv> wtl_inst cert f r \<top> step" | |
| 68 | ||
| 69 | fixes wtc :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 70 | defines wtc_def: "wtc cert \<equiv> wtl_cert cert f r \<top> \<bottom> step" | |
| 71 | ||
| 72 | fixes wtl :: "'b list \<Rightarrow> 'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 73 | defines wtl_def: "wtl ins cert \<equiv> wtl_inst_list ins cert f r \<top> \<bottom> step" | |
| 74 | ||
| 75 | ||
| 76 | lemma (in lbv) wti: | |
| 77 | "wti c pc s \<equiv> merge c pc (step pc s) (c!(pc+1))" | |
| 78 | by (simp add: wti_def mrg_def wtl_inst_def) | |
| 79 | ||
| 80 | lemma (in lbv) wtc: | |
| 81 | "wtc c pc s \<equiv> if c!pc = \<bottom> then wti c pc s else if s <=_r c!pc then wti c pc (c!pc) else \<top>" | |
| 82 | by (unfold wtc_def wti_def wtl_cert_def) | |
| 83 | ||
| 84 | ||
| 85 | lemma cert_okD1 [intro?]: | |
| 86 | "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<in> A" | |
| 13062 | 87 | by (unfold cert_ok_def) fast | 
| 88 | ||
| 13078 | 89 | lemma cert_okD2 [intro?]: | 
| 90 | "cert_ok c n T B A \<Longrightarrow> c!n = B" | |
| 13071 | 91 | by (simp add: cert_ok_def) | 
| 92 | ||
| 13078 | 93 | lemma cert_okD3 [intro?]: | 
| 94 | "cert_ok c n T B A \<Longrightarrow> B \<in> A \<Longrightarrow> pc < n \<Longrightarrow> c!Suc pc \<in> A" | |
| 13071 | 95 | by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2) | 
| 96 | ||
| 13078 | 97 | lemma cert_okD4 [intro?]: | 
| 98 | "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<noteq> T" | |
| 99 | by (simp add: cert_ok_def) | |
| 13062 | 100 | |
| 101 | declare Let_def [simp] | |
| 102 | ||
| 103 | section "more semilattice lemmas" | |
| 104 | ||
| 13078 | 105 | |
| 106 | lemma (in lbv) sup_top [simp, elim]: | |
| 107 | assumes x: "x \<in> A" | |
| 108 | shows "x +_f \<top> = \<top>" | |
| 13062 | 109 | proof - | 
| 13078 | 110 | from top have "x +_f \<top> <=_r \<top>" .. | 
| 111 | moreover from x have "\<top> <=_r x +_f \<top>" .. | |
| 112 | ultimately show ?thesis .. | |
| 13062 | 113 | qed | 
| 114 | ||
| 13078 | 115 | lemma (in lbv) plusplussup_top [simp, elim]: | 
| 116 | "set xs \<subseteq> A \<Longrightarrow> xs ++_f \<top> = \<top>" | |
| 13062 | 117 | by (induct xs) auto | 
| 13078 | 118 | |
| 119 | ||
| 13062 | 120 | |
| 13078 | 121 | lemma (in semilat) pp_ub1': | 
| 122 | assumes S: "snd`set S \<subseteq> A" | |
| 123 | assumes y: "y \<in> A" and ab: "(a, b) \<in> set S" | |
| 124 | shows "b <=_r map snd [(p', t')\<in>S . p' = a] ++_f y" | |
| 125 | proof - | |
| 126 | from S have "\<forall>(x,y) \<in> set S. y \<in> A" by auto | |
| 127 | with semilat y ab show ?thesis by - (rule ub1') | |
| 128 | qed | |
| 13062 | 129 | |
| 13078 | 130 | lemma (in lbv) bottom_le [simp, intro]: | 
| 131 | "\<bottom> <=_r x" | |
| 132 | by (insert bot) (simp add: bottom_def) | |
| 13062 | 133 | |
| 13078 | 134 | lemma (in lbv) le_bottom [simp]: | 
| 135 | "x <=_r \<bottom> = (x = \<bottom>)" | |
| 136 | by (blast intro: antisym_r) | |
| 137 | ||
| 13062 | 138 | |
| 139 | ||
| 140 | section "merge" | |
| 141 | ||
| 13078 | 142 | lemma (in lbv) merge_Nil [simp]: | 
| 143 | "merge c pc [] x = x" by (simp add: mrg_def) | |
| 144 | ||
| 145 | lemma (in lbv) merge_Cons [simp]: | |
| 146 | "merge c pc (l#ls) x = merge c pc ls (if fst l=pc+1 then snd l +_f x | |
| 147 | else if snd l <=_r (c!fst l) then x | |
| 148 | else \<top>)" | |
| 149 | by (simp add: mrg_def split_beta) | |
| 150 | ||
| 151 | lemma (in lbv) merge_Err [simp]: | |
| 152 | "snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss \<top> = \<top>" | |
| 13062 | 153 | by (induct ss) auto | 
| 8245 | 154 | |
| 13078 | 155 | lemma (in lbv) merge_not_top: | 
| 156 | "\<And>x. snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss x \<noteq> \<top> \<Longrightarrow> | |
| 157 | \<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc'))" | |
| 158 | (is "\<And>x. ?set ss \<Longrightarrow> ?merge ss x \<Longrightarrow> ?P ss") | |
| 13062 | 159 | proof (induct ss) | 
| 160 | show "?P []" by simp | |
| 161 | next | |
| 13078 | 162 | fix x ls l | 
| 163 | assume "?set (l#ls)" then obtain set: "snd`set ls \<subseteq> A" by simp | |
| 164 | assume merge: "?merge (l#ls) x" | |
| 13062 | 165 | moreover | 
| 166 | obtain pc' s' where [simp]: "l = (pc',s')" by (cases l) | |
| 167 | ultimately | |
| 13078 | 168 | obtain x' where "?merge ls x'" by simp | 
| 169 | assume "\<And>x. ?set ls \<Longrightarrow> ?merge ls x \<Longrightarrow> ?P ls" hence "?P ls" . | |
| 13062 | 170 | moreover | 
| 13078 | 171 | from merge set | 
| 172 | have "pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc')" by (simp split: split_if_asm) | |
| 13062 | 173 | ultimately | 
| 174 | show "?P (l#ls)" by simp | |
| 175 | qed | |
| 176 | ||
| 9012 | 177 | |
| 13078 | 178 | lemma (in lbv) merge_def: | 
| 13062 | 179 | shows | 
| 13078 | 180 | "\<And>x. x \<in> A \<Longrightarrow> snd`set ss \<subseteq> A \<Longrightarrow> | 
| 181 | merge c pc ss x = | |
| 182 | (if \<forall>(pc',s') \<in> set ss. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc' then | |
| 183 | map snd [(p',t') \<in> ss. p'=pc+1] ++_f x | |
| 184 | else \<top>)" | |
| 13062 | 185 | (is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?merge ss x = ?if ss x" is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?P ss x") | 
| 186 | proof (induct ss) | |
| 187 | fix x show "?P [] x" by simp | |
| 188 | next | |
| 13078 | 189 | fix x assume x: "x \<in> A" | 
| 190 | fix l::"nat \<times> 'a" and ls | |
| 191 | assume "snd`set (l#ls) \<subseteq> A" | |
| 192 | then obtain l: "snd l \<in> A" and ls: "snd`set ls \<subseteq> A" by auto | |
| 193 | assume "\<And>x. x \<in> A \<Longrightarrow> snd`set ls \<subseteq> A \<Longrightarrow> ?P ls x" | |
| 194 | hence IH: "\<And>x. x \<in> A \<Longrightarrow> ?P ls x" . | |
| 13062 | 195 | obtain pc' s' where [simp]: "l = (pc',s')" by (cases l) | 
| 196 | hence "?merge (l#ls) x = ?merge ls | |
| 13078 | 197 | (if pc'=pc+1 then s' +_f x else if s' <=_r c!pc' then x else \<top>)" | 
| 13062 | 198 | (is "?merge (l#ls) x = ?merge ls ?if'") | 
| 199 | by simp | |
| 200 | also have "\<dots> = ?if ls ?if'" | |
| 201 | proof - | |
| 13078 | 202 | from l have "s' \<in> A" by simp | 
| 203 | with x have "s' +_f x \<in> A" by simp | |
| 204 | with x have "?if' \<in> A" by auto | |
| 13062 | 205 | hence "?P ls ?if'" by (rule IH) thus ?thesis by simp | 
| 206 | qed | |
| 207 | also have "\<dots> = ?if (l#ls) x" | |
| 13078 | 208 | proof (cases "\<forall>(pc', s')\<in>set (l#ls). pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'") | 
| 13062 | 209 | case True | 
| 13078 | 210 | hence "\<forall>(pc', s')\<in>set ls. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'" by auto | 
| 13062 | 211 | moreover | 
| 212 | from True have | |
| 13078 | 213 | "map snd [(p',t')\<in>ls . p'=pc+1] ++_f ?if' = | 
| 214 | (map snd [(p',t')\<in>l#ls . p'=pc+1] ++_f x)" | |
| 13062 | 215 | by simp | 
| 216 | ultimately | |
| 217 | show ?thesis using True by simp | |
| 218 | next | |
| 13078 | 219 | case False | 
| 220 | moreover | |
| 221 | from ls have "set (map snd [(p', t')\<in>ls . p' = Suc pc]) \<subseteq> A" by auto | |
| 222 | ultimately show ?thesis by auto | |
| 13062 | 223 | qed | 
| 224 | finally show "?P (l#ls) x" . | |
| 225 | qed | |
| 226 | ||
| 13078 | 227 | lemma (in lbv) merge_not_top_s: | 
| 228 | assumes x: "x \<in> A" and ss: "snd`set ss \<subseteq> A" | |
| 229 | assumes m: "merge c pc ss x \<noteq> \<top>" | |
| 230 | shows "merge c pc ss x = (map snd [(p',t') \<in> ss. p'=pc+1] ++_f x)" | |
| 13062 | 231 | proof - | 
| 13078 | 232 | from ss m have "\<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r c!pc')" | 
| 233 | by (rule merge_not_top) | |
| 234 | with x ss m show ?thesis by - (drule merge_def, auto split: split_if_asm) | |
| 13062 | 235 | qed | 
| 236 | ||
| 237 | section "wtl-inst-list" | |
| 10042 | 238 | |
| 10812 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10638diff
changeset | 239 | lemmas [iff] = not_Err_eq | 
| 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10638diff
changeset | 240 | |
| 13078 | 241 | lemma (in lbv) wtl_Nil [simp]: "wtl [] c pc s = s" | 
| 242 | by (simp add: wtl_def) | |
| 243 | ||
| 244 | lemma (in lbv) wtl_Cons [simp]: | |
| 245 | "wtl (i#is) c pc s = | |
| 246 | (let s' = wtc c pc s in if s' = \<top> \<or> s = \<top> then \<top> else wtl is c (pc+1) s')" | |
| 247 | by (simp add: wtl_def wtc_def) | |
| 248 | ||
| 249 | lemma (in lbv) wtl_Cons_not_top: | |
| 250 | "wtl (i#is) c pc s \<noteq> \<top> = | |
| 251 | (wtc c pc s \<noteq> \<top> \<and> s \<noteq> T \<and> wtl is c (pc+1) (wtc c pc s) \<noteq> \<top>)" | |
| 10812 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10638diff
changeset | 252 | by (auto simp del: split_paired_Ex) | 
| 9549 
40d64cb4f4e6
BV and LBV specified in terms of app and step functions
 kleing parents: 
9376diff
changeset | 253 | |
| 13078 | 254 | lemma (in lbv) wtl_top [simp]: "wtl ls c pc \<top> = \<top>" | 
| 255 | by (cases ls) auto | |
| 256 | ||
| 257 | lemma (in lbv) wtl_not_top: | |
| 258 | "wtl ls c pc s \<noteq> \<top> \<Longrightarrow> s \<noteq> \<top>" | |
| 259 | by (cases "s=\<top>") auto | |
| 9012 | 260 | |
| 13078 | 261 | lemma (in lbv) wtl_append [simp]: | 
| 262 | "\<And>pc s. wtl (a@b) c pc s = wtl b c (pc+length a) (wtl a c pc s)" | |
| 263 | by (induct a) auto | |
| 264 | ||
| 265 | lemma (in lbv) wtl_take: | |
| 266 | "wtl is c pc s \<noteq> \<top> \<Longrightarrow> wtl (take pc' is) c pc s \<noteq> \<top>" | |
| 267 | (is "?wtl is \<noteq> _ \<Longrightarrow> _") | |
| 9183 | 268 | proof - | 
| 13078 | 269 | assume "?wtl is \<noteq> \<top>" | 
| 270 | hence "?wtl (take pc' is @ drop pc' is) \<noteq> \<top>" by simp | |
| 271 | thus ?thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id) | |
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 272 | qed | 
| 9012 | 273 | |
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 274 | lemma take_Suc: | 
| 13078 | 275 | "\<forall>n. n < length l \<longrightarrow> take (Suc n) l = (take n l)@[l!n]" (is "?P l") | 
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 276 | proof (induct l) | 
| 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 277 | show "?P []" by simp | 
| 12516 | 278 | next | 
| 279 | fix x xs assume IH: "?P xs" | |
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 280 | show "?P (x#xs)" | 
| 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 281 | proof (intro strip) | 
| 12516 | 282 | fix n assume "n < length (x#xs)" | 
| 283 | with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]" | |
| 284 | by (cases n, auto) | |
| 9183 | 285 | qed | 
| 286 | qed | |
| 9012 | 287 | |
| 13078 | 288 | lemma (in lbv) wtl_Suc: | 
| 289 | assumes suc: "pc+1 < length is" | |
| 290 | assumes wtl: "wtl (take pc is) c 0 s \<noteq> \<top>" | |
| 291 | shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)" | |
| 9183 | 292 | proof - | 
| 13062 | 293 | from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc) | 
| 13078 | 294 | with suc wtl show ?thesis by (simp add: min_def) | 
| 9183 | 295 | qed | 
| 9012 | 296 | |
| 13078 | 297 | lemma (in lbv) wtl_all: | 
| 298 | assumes all: "wtl is c 0 s \<noteq> \<top>" (is "?wtl is \<noteq> _") | |
| 299 | assumes pc: "pc < length is" | |
| 300 | shows "wtc c pc (wtl (take pc is) c 0 s) \<noteq> \<top>" | |
| 9183 | 301 | proof - | 
| 13062 | 302 | from pc have "0 < length (drop pc is)" by simp | 
| 12516 | 303 | then obtain i r where Cons: "drop pc is = i#r" | 
| 15109 | 304 | by (auto simp add: neq_Nil_conv simp del: length_drop drop_eq_Nil) | 
| 9757 
1024a2d80ac0
functional LBV style, dead code, type safety -> Isar
 kleing parents: 
9664diff
changeset | 305 | hence "i#r = drop pc is" .. | 
| 13078 | 306 | with all have take: "?wtl (take pc is@i#r) \<noteq> \<top>" by simp | 
| 12516 | 307 | from pc have "is!pc = drop pc is ! 0" by simp | 
| 308 | with Cons have "is!pc = i" by simp | |
| 13078 | 309 | with take pc show ?thesis by (auto simp add: min_def split: split_if_asm) | 
| 9183 | 310 | qed | 
| 9012 | 311 | |
| 13062 | 312 | section "preserves-type" | 
| 313 | ||
| 13078 | 314 | lemma (in lbv) merge_pres: | 
| 315 | assumes s0: "snd`set ss \<subseteq> A" and x: "x \<in> A" | |
| 316 | shows "merge c pc ss x \<in> A" | |
| 13062 | 317 | proof - | 
| 13078 | 318 | from s0 have "set (map snd [(p', t')\<in>ss . p'=pc+1]) \<subseteq> A" by auto | 
| 319 | with x have "(map snd [(p', t')\<in>ss . p'=pc+1] ++_f x) \<in> A" | |
| 13062 | 320 | by (auto intro!: plusplus_closed) | 
| 13078 | 321 | with s0 x show ?thesis by (simp add: merge_def T_A) | 
| 13062 | 322 | qed | 
| 323 | ||
| 324 | ||
| 13078 | 325 | lemma pres_typeD2: | 
| 326 | "pres_type step n A \<Longrightarrow> s \<in> A \<Longrightarrow> p < n \<Longrightarrow> snd`set (step p s) \<subseteq> A" | |
| 327 | by auto (drule pres_typeD) | |
| 13062 | 328 | |
| 13078 | 329 | |
| 330 | lemma (in lbv) wti_pres [intro?]: | |
| 331 | assumes pres: "pres_type step n A" | |
| 332 | assumes cert: "c!(pc+1) \<in> A" | |
| 333 | assumes s_pc: "s \<in> A" "pc < n" | |
| 334 | shows "wti c pc s \<in> A" | |
| 13062 | 335 | proof - | 
| 13078 | 336 | from pres s_pc have "snd`set (step pc s) \<subseteq> A" by (rule pres_typeD2) | 
| 337 | with cert show ?thesis by (simp add: wti merge_pres) | |
| 13062 | 338 | qed | 
| 339 | ||
| 340 | ||
| 13078 | 341 | lemma (in lbv) wtc_pres: | 
| 342 | assumes "pres_type step n A" | |
| 343 | assumes "c!pc \<in> A" and "c!(pc+1) \<in> A" | |
| 344 | assumes "s \<in> A" and "pc < n" | |
| 345 | shows "wtc c pc s \<in> A" | |
| 13062 | 346 | proof - | 
| 13078 | 347 | have "wti c pc s \<in> A" .. | 
| 348 | moreover have "wti c pc (c!pc) \<in> A" .. | |
| 349 | ultimately show ?thesis using T_A by (simp add: wtc) | |
| 13062 | 350 | qed | 
| 351 | ||
| 13078 | 352 | |
| 353 | lemma (in lbv) wtl_pres: | |
| 354 | assumes pres: "pres_type step (length is) A" | |
| 355 | assumes cert: "cert_ok c (length is) \<top> \<bottom> A" | |
| 356 | assumes s: "s \<in> A" | |
| 357 | assumes all: "wtl is c 0 s \<noteq> \<top>" | |
| 358 | shows "pc < length is \<Longrightarrow> wtl (take pc is) c 0 s \<in> A" | |
| 359 | (is "?len pc \<Longrightarrow> ?wtl pc \<in> A") | |
| 13062 | 360 | proof (induct pc) | 
| 13078 | 361 | from s show "?wtl 0 \<in> A" by simp | 
| 13062 | 362 | next | 
| 13078 | 363 | fix n assume "Suc n < length is" | 
| 364 | then obtain n: "n < length is" by simp | |
| 365 | assume "n < length is \<Longrightarrow> ?wtl n \<in> A" | |
| 366 | hence "?wtl n \<in> A" . | |
| 367 | moreover | |
| 368 | from cert have "c!n \<in> A" by (rule cert_okD1) | |
| 13062 | 369 | moreover | 
| 370 | have n1: "n+1 < length is" by simp | |
| 13078 | 371 | with cert have "c!(n+1) \<in> A" by (rule cert_okD1) | 
| 13062 | 372 | ultimately | 
| 13078 | 373 | have "wtc c n (?wtl n) \<in> A" by - (rule wtc_pres) | 
| 374 | also | |
| 375 | from all n have "?wtl n \<noteq> \<top>" by - (rule wtl_take) | |
| 376 | with n1 have "wtc c n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric]) | |
| 377 | finally show "?wtl (Suc n) \<in> A" by simp | |
| 13062 | 378 | qed | 
| 379 | ||
| 10042 | 380 | |
| 9183 | 381 | end |