| author | haftmann | 
| Wed, 28 Apr 2010 16:56:18 +0200 | |
| changeset 36513 | 70096cbdd4e0 | 
| parent 36443 | e62e32e163a4 | 
| child 36583 | 68ce5760c585 | 
| permissions | -rw-r--r-- | 
| 33175 | 1 | (* Title: HOL/Library/Convex_Euclidean_Space.thy | 
| 2 | Author: Robert Himmelmann, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Convex sets, functions and related things. *}
 | |
| 6 | ||
| 7 | theory Convex_Euclidean_Space | |
| 8 | imports Topology_Euclidean_Space | |
| 9 | begin | |
| 10 | ||
| 11 | ||
| 12 | (* ------------------------------------------------------------------------- *) | |
| 13 | (* To be moved elsewhere *) | |
| 14 | (* ------------------------------------------------------------------------- *) | |
| 15 | ||
| 16 | declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp] | |
| 17 | declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp] | |
| 18 | ||
| 34964 | 19 | (*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
 | 
| 20 | ||
| 21 | lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component | |
| 33175 | 22 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 23 | lemma norm_not_0:"(x::real^'n)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto | 
| 33175 | 24 | |
| 25 | lemma setsum_delta_notmem: assumes "x\<notin>s" | |
| 26 | shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s" | |
| 27 | "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s" | |
| 28 | "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s" | |
| 29 | "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s" | |
| 30 | apply(rule_tac [!] setsum_cong2) using assms by auto | |
| 31 | ||
| 32 | lemma setsum_delta'': | |
| 33 | fixes s::"'a::real_vector set" assumes "finite s" | |
| 34 | shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)" | |
| 35 | proof- | |
| 36 | have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto | |
| 37 | show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto | |
| 38 | qed | |
| 39 | ||
| 40 | lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
 | |
| 41 | ||
| 42 | lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto | |
| 43 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 44 | lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n)) ` {a..b} =
 | 
| 33175 | 45 |   (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
 | 
| 46 | using image_affinity_interval[of m 0 a b] by auto | |
| 47 | ||
| 48 | lemma dist_triangle_eq: | |
| 49 | fixes x y z :: "real ^ _" | |
| 50 | shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)" | |
| 51 | proof- have *:"x - y + (y - z) = x - z" by auto | |
| 52 | show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded smult_conv_scaleR *] | |
| 53 | by(auto simp add:norm_minus_commute) qed | |
| 54 | ||
| 55 | lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 56 | lemma norm_minus_eqI:"(x::real^'n) = - y \<Longrightarrow> norm x = norm y" by auto | 
| 33175 | 57 | |
| 58 | lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
 | |
| 59 | unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto | |
| 60 | ||
| 61 | lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1" | |
| 62 | using one_le_card_finite by auto | |
| 63 | ||
| 64 | lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 65 | by(metis dimindex_ge_1 real_eq_of_nat real_of_nat_1 real_of_nat_le_iff) | 
| 33175 | 66 | |
| 67 | lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
 | |
| 68 | ||
| 69 | subsection {* Affine set and affine hull.*}
 | |
| 70 | ||
| 71 | definition | |
| 72 | affine :: "'a::real_vector set \<Rightarrow> bool" where | |
| 73 | "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 74 | ||
| 75 | lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" | |
| 36071 | 76 | unfolding affine_def by(metis eq_diff_eq') | 
| 33175 | 77 | |
| 78 | lemma affine_empty[intro]: "affine {}"
 | |
| 79 | unfolding affine_def by auto | |
| 80 | ||
| 81 | lemma affine_sing[intro]: "affine {x}"
 | |
| 82 | unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric]) | |
| 83 | ||
| 84 | lemma affine_UNIV[intro]: "affine UNIV" | |
| 85 | unfolding affine_def by auto | |
| 86 | ||
| 87 | lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)" | |
| 88 | unfolding affine_def by auto | |
| 89 | ||
| 90 | lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" | |
| 91 | unfolding affine_def by auto | |
| 92 | ||
| 93 | lemma affine_affine_hull: "affine(affine hull s)" | |
| 94 |   unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
 | |
| 95 | unfolding mem_def by auto | |
| 96 | ||
| 97 | lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" | |
| 36071 | 98 | by (metis affine_affine_hull hull_same mem_def) | 
| 33175 | 99 | |
| 100 | lemma setsum_restrict_set'': assumes "finite A" | |
| 101 |   shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | |
| 102 | unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] .. | |
| 103 | ||
| 104 | subsection {* Some explicit formulations (from Lars Schewe). *}
 | |
| 105 | ||
| 106 | lemma affine: fixes V::"'a::real_vector set" | |
| 107 |   shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
 | |
| 108 | unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ | |
| 109 | defer apply(rule, rule, rule, rule, rule) proof- | |
| 110 | fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)" | |
| 111 |     "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
 | |
| 112 | thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y") | |
| 113 |     using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
 | |
| 114 | by(auto simp add: scaleR_left_distrib[THEN sym]) | |
| 115 | next | |
| 116 | fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" | |
| 117 |     "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
 | |
| 118 | def n \<equiv> "card s" | |
| 119 | have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto | |
| 120 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE) | |
| 121 | assume "card s = 2" hence "card s = Suc (Suc 0)" by auto | |
| 122 |     then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
 | |
| 123 | thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5) | |
| 124 | by(auto simp add: setsum_clauses(2)) | |
| 125 | next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s) | |
| 126 | case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real" | |
| 127 | assume IA:"\<And>u s. \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s; | |
| 34915 | 128 |                s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
 | 
| 129 | as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" | |
| 33175 | 130 |            "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
 | 
| 131 | have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr) | |
| 132 | assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto | |
| 133 | thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15) | |
| 134 | less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed | |
| 135 | then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto | |
| 136 | ||
| 137 |       have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
 | |
| 138 |       have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
 | |
| 139 |       have **:"setsum u (s - {x}) = 1 - u x"
 | |
| 140 | using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto | |
| 141 |       have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
 | |
| 142 |       have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
 | |
| 143 |         case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
 | |
| 144 |           assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
 | |
| 145 | thus False using True by auto qed auto | |
| 146 |         thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
 | |
| 147 | unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto | |
| 148 |       next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
 | |
| 149 |         then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
 | |
| 150 | thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]] | |
| 151 | using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed | |
| 152 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] | |
| 153 | apply(subst *) unfolding setsum_clauses(2)[OF *(2)] | |
| 154 |          using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *\<^sub>R (\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa)"], 
 | |
| 155 | THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto | |
| 156 | qed auto | |
| 157 |   next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
 | |
| 158 | thus ?thesis using as(4,5) by simp | |
| 159 |   qed(insert `s\<noteq>{}` `finite s`, auto)
 | |
| 160 | qed | |
| 161 | ||
| 162 | lemma affine_hull_explicit: | |
| 163 |   "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
 | |
| 164 | apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine] | |
| 165 | apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof- | |
| 166 |   fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 167 |     apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
 | |
| 168 | next | |
| 169 |   fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | |
| 170 | thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 171 | next | |
| 172 |   show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
 | |
| 173 | apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof- | |
| 174 | fix u v ::real assume uv:"u + v = 1" | |
| 175 |     fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 176 |     then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
 | |
| 177 |     fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
 | |
| 178 |     then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
 | |
| 179 | have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto | |
| 180 | have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto | |
| 181 |     show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
 | |
| 182 | apply(rule_tac x="sx \<union> sy" in exI) | |
| 183 | apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI) | |
| 184 | unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left ** setsum_restrict_set[OF xy, THEN sym] | |
| 185 | unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym] | |
| 186 | unfolding x y using x(1-3) y(1-3) uv by simp qed qed | |
| 187 | ||
| 188 | lemma affine_hull_finite: | |
| 189 | assumes "finite s" | |
| 190 |   shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
 | |
| 191 | unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule) | |
| 192 | apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof- | |
| 193 | fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" | |
| 194 |   thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
 | |
| 195 | apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto | |
| 196 | next | |
| 197 | fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto | |
| 198 |   assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | |
| 199 | thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 200 | unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed | |
| 201 | ||
| 202 | subsection {* Stepping theorems and hence small special cases. *}
 | |
| 203 | ||
| 204 | lemma affine_hull_empty[simp]: "affine hull {} = {}"
 | |
| 205 | apply(rule hull_unique) unfolding mem_def by auto | |
| 206 | ||
| 207 | lemma affine_hull_finite_step: | |
| 208 | fixes y :: "'a::real_vector" | |
| 209 |   shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
 | |
| 210 | "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow> | |
| 211 | (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)") | |
| 212 | proof- | |
| 213 | show ?th1 by simp | |
| 214 | assume ?as | |
| 215 |   { assume ?lhs
 | |
| 216 | then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto | |
| 217 | have ?rhs proof(cases "a\<in>s") | |
| 218 | case True hence *:"insert a s = s" by auto | |
| 219 | show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto | |
| 220 | next | |
| 221 | case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto | |
| 222 | qed } moreover | |
| 223 |   { assume ?rhs
 | |
| 224 | then obtain v u where vu:"setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 225 | have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto | |
| 226 | have ?lhs proof(cases "a\<in>s") | |
| 227 | case True thus ?thesis | |
| 228 | apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI) | |
| 229 | unfolding setsum_clauses(2)[OF `?as`] apply simp | |
| 230 | unfolding scaleR_left_distrib and setsum_addf | |
| 231 | unfolding vu and * and scaleR_zero_left | |
| 232 | by (auto simp add: setsum_delta[OF `?as`]) | |
| 233 | next | |
| 234 | case False | |
| 235 | hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)" | |
| 236 | "\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto | |
| 237 | from False show ?thesis | |
| 238 | apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI) | |
| 239 | unfolding setsum_clauses(2)[OF `?as`] and * using vu | |
| 240 | using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)] | |
| 241 | using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto | |
| 242 | qed } | |
| 243 | ultimately show "?lhs = ?rhs" by blast | |
| 244 | qed | |
| 245 | ||
| 246 | lemma affine_hull_2: | |
| 247 | fixes a b :: "'a::real_vector" | |
| 248 |   shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
 | |
| 249 | proof- | |
| 250 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 251 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 252 |   have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
 | |
| 253 |     using affine_hull_finite[of "{a,b}"] by auto
 | |
| 254 |   also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
 | |
| 255 |     by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
 | |
| 256 | also have "\<dots> = ?rhs" unfolding * by auto | |
| 257 | finally show ?thesis by auto | |
| 258 | qed | |
| 259 | ||
| 260 | lemma affine_hull_3: | |
| 261 | fixes a b c :: "'a::real_vector" | |
| 262 |   shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
 | |
| 263 | proof- | |
| 264 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 265 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 266 | show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step) | |
| 267 | unfolding * apply auto | |
| 268 | apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto | |
| 269 | apply(rule_tac x=u in exI) by(auto intro!: exI) | |
| 270 | qed | |
| 271 | ||
| 272 | subsection {* Some relations between affine hull and subspaces. *}
 | |
| 273 | ||
| 274 | lemma affine_hull_insert_subset_span: | |
| 275 | fixes a :: "real ^ _" | |
| 276 |   shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
 | |
| 277 | unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq smult_conv_scaleR | |
| 278 | apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof- | |
| 279 |   fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | |
| 280 |   have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
 | |
| 281 |   thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
 | |
| 282 | apply(rule_tac x="x - a" in exI) | |
| 283 | apply (rule conjI, simp) | |
| 284 |     apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
 | |
| 285 | apply(rule_tac x="\<lambda>x. u (x + a)" in exI) | |
| 286 | apply (rule conjI) using as(1) apply simp | |
| 287 | apply (erule conjI) | |
| 288 | using as(1) | |
| 289 | apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib) | |
| 290 | unfolding as by simp qed | |
| 291 | ||
| 292 | lemma affine_hull_insert_span: | |
| 293 | fixes a :: "real ^ _" | |
| 294 | assumes "a \<notin> s" | |
| 295 | shows "affine hull (insert a s) = | |
| 296 |             {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
 | |
| 297 | apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def | |
| 298 | unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE) | |
| 299 |   fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
 | |
| 300 |   then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit smult_conv_scaleR by auto
 | |
| 301 | def f \<equiv> "(\<lambda>x. x + a) ` t" | |
| 302 | have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt | |
| 303 | by(auto simp add: setsum_reindex[unfolded inj_on_def]) | |
| 304 |   have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
 | |
| 305 |   show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
 | |
| 306 | apply(rule_tac x="insert a f" in exI) | |
| 307 | apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI) | |
| 308 | using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult | |
| 35577 | 309 | unfolding setsum_cases[OF f(1), of "\<lambda>x. x = a"] | 
| 310 | by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps *) qed | |
| 33175 | 311 | |
| 312 | lemma affine_hull_span: | |
| 313 | fixes a :: "real ^ _" | |
| 314 | assumes "a \<in> s" | |
| 315 |   shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
 | |
| 316 |   using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
 | |
| 317 | ||
| 318 | subsection {* Convexity. *}
 | |
| 319 | ||
| 320 | definition | |
| 321 | convex :: "'a::real_vector set \<Rightarrow> bool" where | |
| 322 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 323 | ||
| 324 | lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 325 | proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto | |
| 326 | show ?thesis unfolding convex_def apply auto | |
| 327 | apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE) | |
| 328 | by (auto simp add: *) qed | |
| 329 | ||
| 330 | lemma mem_convex: | |
| 331 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 332 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 333 | using assms unfolding convex_alt by auto | |
| 334 | ||
| 335 | lemma convex_empty[intro]: "convex {}"
 | |
| 336 | unfolding convex_def by simp | |
| 337 | ||
| 338 | lemma convex_singleton[intro]: "convex {a}"
 | |
| 339 | unfolding convex_def by (auto simp add:scaleR_left_distrib[THEN sym]) | |
| 340 | ||
| 341 | lemma convex_UNIV[intro]: "convex UNIV" | |
| 342 | unfolding convex_def by auto | |
| 343 | ||
| 344 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)" | |
| 345 | unfolding convex_def by auto | |
| 346 | ||
| 347 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 348 | unfolding convex_def by auto | |
| 349 | ||
| 350 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | |
| 351 | unfolding convex_def apply auto | |
| 352 | unfolding inner_add inner_scaleR | |
| 353 | by (metis real_convex_bound_le) | |
| 354 | ||
| 355 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 356 | proof- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
 | |
| 357 | show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed | |
| 358 | ||
| 359 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 360 | proof- | |
| 361 |   have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
 | |
| 362 | show ?thesis unfolding * apply(rule convex_Int) | |
| 363 | using convex_halfspace_le convex_halfspace_ge by auto | |
| 364 | qed | |
| 365 | ||
| 366 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 367 | unfolding convex_def | |
| 368 | by(auto simp add: real_convex_bound_lt inner_add) | |
| 369 | ||
| 370 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 371 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 372 | ||
| 36339 | 373 | lemma convex_real_interval: | 
| 374 | fixes a b :: "real" | |
| 375 |   shows "convex {a..}" and "convex {..b}"
 | |
| 376 |   and "convex {a<..}" and "convex {..<b}"
 | |
| 377 |   and "convex {a..b}" and "convex {a<..b}"
 | |
| 378 |   and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 379 | proof - | |
| 380 |   have "{a..} = {x. a \<le> inner 1 x}" by auto
 | |
| 381 |   thus 1: "convex {a..}" by (simp only: convex_halfspace_ge)
 | |
| 382 |   have "{..b} = {x. inner 1 x \<le> b}" by auto
 | |
| 383 |   thus 2: "convex {..b}" by (simp only: convex_halfspace_le)
 | |
| 384 |   have "{a<..} = {x. a < inner 1 x}" by auto
 | |
| 385 |   thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
 | |
| 386 |   have "{..<b} = {x. inner 1 x < b}" by auto
 | |
| 387 |   thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
 | |
| 388 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | |
| 389 |   thus "convex {a..b}" by (simp only: convex_Int 1 2)
 | |
| 390 |   have "{a<..b} = {a<..} \<inter> {..b}" by auto
 | |
| 391 |   thus "convex {a<..b}" by (simp only: convex_Int 3 2)
 | |
| 392 |   have "{a..<b} = {a..} \<inter> {..<b}" by auto
 | |
| 393 |   thus "convex {a..<b}" by (simp only: convex_Int 1 4)
 | |
| 394 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | |
| 395 |   thus "convex {a<..<b}" by (simp only: convex_Int 3 4)
 | |
| 396 | qed | |
| 397 | ||
| 398 | lemma convex_box: | |
| 399 |   assumes "\<And>i. convex {x. P i x}"
 | |
| 400 |   shows "convex {x. \<forall>i. P i (x$i)}"
 | |
| 401 | using assms unfolding convex_def by auto | |
| 402 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 403 | lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
 | 
| 36339 | 404 | by (rule convex_box, simp add: atLeast_def [symmetric] convex_real_interval) | 
| 33175 | 405 | |
| 406 | subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | |
| 407 | ||
| 408 | lemma convex: "convex s \<longleftrightarrow> | |
| 409 |   (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | |
| 410 |            \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 411 | unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule) | |
| 412 |   fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s"
 | |
| 413 | "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 414 | show "u *\<^sub>R x + v *\<^sub>R y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-) | |
| 415 | by (auto simp add: setsum_head_Suc) | |
| 416 | next | |
| 417 | fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 418 |   show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
 | |
| 419 | case (Suc k) show ?case proof(cases "u (Suc k) = 1") | |
| 420 | case True hence "(\<Sum>i = Suc 0..k. u i *\<^sub>R x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof- | |
| 421 |       fix i assume i:"i \<in> {Suc 0..k}" "u i *\<^sub>R x i \<noteq> 0"
 | |
| 422 | hence ui:"u i \<noteq> 0" by auto | |
| 423 |       hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
 | |
| 424 |       hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
 | |
| 425 |       hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
 | |
| 426 | thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed | |
| 427 | thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto | |
| 428 | next | |
| 429 |     have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
 | |
| 36071 | 430 |     have **:"u (Suc k) \<le> 1" unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
 | 
| 33175 | 431 | have ***:"\<And>i k. (u i / (1 - u (Suc k))) *\<^sub>R x i = (inverse (1 - u (Suc k))) *\<^sub>R (u i *\<^sub>R x i)" unfolding real_divide_def by (auto simp add: algebra_simps) | 
| 432 | case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto | |
| 433 | have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and * | |
| 434 | apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto | |
| 435 | hence "(1 - u (Suc k)) *\<^sub>R (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) + u (Suc k) *\<^sub>R x (Suc k) \<in> s" | |
| 436 | apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto | |
| 437 | thus ?thesis unfolding setsum_cl_ivl_Suc and *** and scaleR_right.setsum [symmetric] using nn by auto qed qed auto qed | |
| 438 | ||
| 439 | ||
| 440 | lemma convex_explicit: | |
| 441 | fixes s :: "'a::real_vector set" | |
| 442 | shows "convex s \<longleftrightarrow> | |
| 443 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | |
| 444 | unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 445 | fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 446 | show "u *\<^sub>R x + v *\<^sub>R y \<in> s" proof(cases "x=y") | |
| 447 | case True show ?thesis unfolding True and scaleR_left_distrib[THEN sym] using as(3,6) by auto next | |
| 448 |     case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
 | |
| 449 | next | |
| 450 | fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" "finite (t::'a set)" | |
| 451 | (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 452 | from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" apply(induct t rule:finite_induct) | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 453 | prefer 2 apply (rule,rule) apply(erule conjE)+ proof- | 
| 33175 | 454 | fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" | 
| 455 | assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)" | |
| 456 | show "(\<Sum>x\<in>insert x f. u x *\<^sub>R x) \<in> s" proof(cases "u x = 1") | |
| 457 | case True hence "setsum (\<lambda>x. u x *\<^sub>R x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof- | |
| 458 | fix y assume y:"y \<in> f" "u y *\<^sub>R y \<noteq> 0" | |
| 459 | hence uy:"u y \<noteq> 0" by auto | |
| 460 | hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto | |
| 461 | hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) | |
| 462 | hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto | |
| 463 | thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed | |
| 464 | thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto | |
| 465 | next | |
| 466 | have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto | |
| 36071 | 467 | have **:"u x \<le> 1" unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2) | 
| 33175 | 468 | using setsum_nonneg[of f u] and as(4) by auto | 
| 469 | case False hence "inverse (1 - u x) *\<^sub>R (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" unfolding scaleR_right.setsum and scaleR_scaleR | |
| 470 | apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg) | |
| 471 | unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto | |
| 472 | hence "u x *\<^sub>R x + (1 - u x) *\<^sub>R ((inverse (1 - u x)) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) f) \<in>s" | |
| 473 | apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto | |
| 474 | thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed | |
| 475 | qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" by auto | |
| 476 | qed | |
| 477 | ||
| 478 | lemma convex_finite: assumes "finite s" | |
| 479 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 | |
| 480 | \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | |
| 481 | unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof- | |
| 482 | fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | |
| 483 | have *:"s \<inter> t = t" using as(3) by auto | |
| 484 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] | |
| 35577 | 485 | unfolding if_smult and setsum_cases[OF assms] using as(2-) * by auto | 
| 33175 | 486 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | 
| 487 | ||
| 488 | subsection {* Cones. *}
 | |
| 489 | ||
| 490 | definition | |
| 491 | cone :: "'a::real_vector set \<Rightarrow> bool" where | |
| 492 | "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" | |
| 493 | ||
| 494 | lemma cone_empty[intro, simp]: "cone {}"
 | |
| 495 | unfolding cone_def by auto | |
| 496 | ||
| 497 | lemma cone_univ[intro, simp]: "cone UNIV" | |
| 498 | unfolding cone_def by auto | |
| 499 | ||
| 500 | lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)" | |
| 501 | unfolding cone_def by auto | |
| 502 | ||
| 503 | subsection {* Conic hull. *}
 | |
| 504 | ||
| 505 | lemma cone_cone_hull: "cone (cone hull s)" | |
| 506 |   unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
 | |
| 507 | by (auto simp add: mem_def) | |
| 508 | ||
| 509 | lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s" | |
| 510 | apply(rule hull_eq[unfolded mem_def]) | |
| 511 | using cone_Inter unfolding subset_eq by (auto simp add: mem_def) | |
| 512 | ||
| 513 | subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
 | |
| 514 | ||
| 515 | definition | |
| 516 | affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where | |
| 517 |   "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
 | |
| 518 | ||
| 519 | lemma affine_dependent_explicit: | |
| 520 | "affine_dependent p \<longleftrightarrow> | |
| 521 | (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> | |
| 522 | (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" | |
| 523 | unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule) | |
| 524 | apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE) | |
| 525 | proof- | |
| 526 |   fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 527 | have "x\<notin>s" using as(1,4) by auto | |
| 528 | show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0" | |
| 529 | apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI) | |
| 530 | unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto | |
| 531 | next | |
| 532 | fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0" | |
| 533 |   have "s \<noteq> {v}" using as(3,6) by auto
 | |
| 534 |   thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | |
| 535 |     apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
 | |
| 536 | unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto | |
| 537 | qed | |
| 538 | ||
| 539 | lemma affine_dependent_explicit_finite: | |
| 540 | fixes s :: "'a::real_vector set" assumes "finite s" | |
| 541 | shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" | |
| 542 | (is "?lhs = ?rhs") | |
| 543 | proof | |
| 544 | have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto | |
| 545 | assume ?lhs | |
| 546 | then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0" | |
| 547 | unfolding affine_dependent_explicit by auto | |
| 548 | thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 549 | apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym] | |
| 550 | unfolding Int_absorb1[OF `t\<subseteq>s`] by auto | |
| 551 | next | |
| 552 | assume ?rhs | |
| 553 | then obtain u v where "setsum u s = 0" "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto | |
| 554 | thus ?lhs unfolding affine_dependent_explicit using assms by auto | |
| 555 | qed | |
| 556 | ||
| 557 | subsection {* A general lemma. *}
 | |
| 558 | ||
| 559 | lemma convex_connected: | |
| 560 | fixes s :: "'a::real_normed_vector set" | |
| 561 | assumes "convex s" shows "connected s" | |
| 562 | proof- | |
| 563 |   { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
 | |
| 564 |     assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 565 | then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto | |
| 566 | hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto | |
| 567 | ||
| 568 |     { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
 | |
| 569 |       { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
 | |
| 570 | by (simp add: algebra_simps) | |
| 571 | assume "\<bar>y - x\<bar> < e / norm (x1 - x2)" | |
| 572 | hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" | |
| 573 | unfolding * and scaleR_right_diff_distrib[THEN sym] | |
| 574 | unfolding less_divide_eq using n by auto } | |
| 575 | hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" | |
| 576 | apply(rule_tac x="e / norm (x1 - x2)" in exI) using as | |
| 577 | apply auto unfolding zero_less_divide_iff using n by simp } note * = this | |
| 578 | ||
| 579 | have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" | |
| 580 | apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+ | |
| 581 | using * apply(simp add: dist_norm) | |
| 582 | using as(1,2)[unfolded open_dist] apply simp | |
| 583 | using as(1,2)[unfolded open_dist] apply simp | |
| 584 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2 | |
| 585 | using as(3) by auto | |
| 586 | then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto | |
| 587 | hence False using as(4) | |
| 588 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] | |
| 589 | using x1(2) x2(2) by auto } | |
| 590 | thus ?thesis unfolding connected_def by auto | |
| 591 | qed | |
| 592 | ||
| 593 | subsection {* One rather trivial consequence. *}
 | |
| 594 | ||
| 34964 | 595 | lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)" | 
| 33175 | 596 | by(simp add: convex_connected convex_UNIV) | 
| 597 | ||
| 598 | subsection {* Convex functions into the reals. *}
 | |
| 599 | ||
| 600 | definition | |
| 601 |   convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
 | |
| 602 | "convex_on s f \<longleftrightarrow> | |
| 603 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 604 | ||
| 605 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 606 | unfolding convex_on_def by auto | |
| 607 | ||
| 34964 | 608 | lemma convex_add[intro]: | 
| 33175 | 609 | assumes "convex_on s f" "convex_on s g" | 
| 610 | shows "convex_on s (\<lambda>x. f x + g x)" | |
| 611 | proof- | |
| 612 |   { fix x y assume "x\<in>s" "y\<in>s" moreover
 | |
| 613 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 614 | ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 615 | using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 616 | using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 617 | apply - apply(rule add_mono) by auto | |
| 36350 | 618 | hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) } | 
| 33175 | 619 | thus ?thesis unfolding convex_on_def by auto | 
| 620 | qed | |
| 621 | ||
| 34964 | 622 | lemma convex_cmul[intro]: | 
| 33175 | 623 | assumes "0 \<le> (c::real)" "convex_on s f" | 
| 624 | shows "convex_on s (\<lambda>x. c * f x)" | |
| 625 | proof- | |
| 36350 | 626 | have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps) | 
| 33175 | 627 | show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto | 
| 628 | qed | |
| 629 | ||
| 630 | lemma convex_lower: | |
| 631 | assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 632 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | |
| 633 | proof- | |
| 634 | let ?m = "max (f x) (f y)" | |
| 635 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) | |
| 636 | using assms(4,5) by(auto simp add: mult_mono1) | |
| 637 | also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto | |
| 638 | finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 639 | using assms(2-6) by auto | |
| 640 | qed | |
| 641 | ||
| 642 | lemma convex_local_global_minimum: | |
| 643 | fixes s :: "'a::real_normed_vector set" | |
| 644 | assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y" | |
| 645 | shows "\<forall>y\<in>s. f x \<le> f y" | |
| 646 | proof(rule ccontr) | |
| 647 | have "x\<in>s" using assms(1,3) by auto | |
| 648 | assume "\<not> (\<forall>y\<in>s. f x \<le> f y)" | |
| 649 | then obtain y where "y\<in>s" and y:"f x > f y" by auto | |
| 650 | hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym]) | |
| 651 | ||
| 652 | then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y" | |
| 653 | using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto | |
| 654 | hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s` | |
| 655 | using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto | |
| 656 | moreover | |
| 657 | have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps) | |
| 658 | have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym] | |
| 659 | using u unfolding pos_less_divide_eq[OF xy] by auto | |
| 660 | hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto | |
| 661 | ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto | |
| 662 | qed | |
| 663 | ||
| 34964 | 664 | lemma convex_distance[intro]: | 
| 33175 | 665 | fixes s :: "'a::real_normed_vector set" | 
| 666 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 667 | proof(auto simp add: convex_on_def dist_norm) | |
| 668 | fix x y assume "x\<in>s" "y\<in>s" | |
| 669 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 670 | have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp | |
| 671 | hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | |
| 672 | by (auto simp add: algebra_simps) | |
| 673 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | |
| 674 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 675 | using `0 \<le> u` `0 \<le> v` by auto | |
| 676 | qed | |
| 677 | ||
| 678 | subsection {* Arithmetic operations on sets preserve convexity. *}
 | |
| 679 | ||
| 680 | lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 681 | unfolding convex_def and image_iff apply auto | |
| 682 | apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by (auto simp add: algebra_simps) | |
| 683 | ||
| 684 | lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)" | |
| 685 | unfolding convex_def and image_iff apply auto | |
| 686 | apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by auto | |
| 687 | ||
| 688 | lemma convex_sums: | |
| 689 | assumes "convex s" "convex t" | |
| 690 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 691 | proof(auto simp add: convex_def image_iff scaleR_right_distrib) | |
| 692 | fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t" | |
| 693 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 694 | show "\<exists>x y. u *\<^sub>R xa + u *\<^sub>R ya + (v *\<^sub>R xb + v *\<^sub>R yb) = x + y \<and> x \<in> s \<and> y \<in> t" | |
| 695 | apply(rule_tac x="u *\<^sub>R xa + v *\<^sub>R xb" in exI) apply(rule_tac x="u *\<^sub>R ya + v *\<^sub>R yb" in exI) | |
| 696 | using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]] | |
| 697 | using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]] | |
| 698 | using uv xy by auto | |
| 699 | qed | |
| 700 | ||
| 701 | lemma convex_differences: | |
| 702 | assumes "convex s" "convex t" | |
| 703 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 704 | proof- | |
| 705 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
 | |
| 706 | apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp | |
| 707 | apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp | |
| 708 | thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 709 | qed | |
| 710 | ||
| 711 | lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)" | |
| 712 | proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | |
| 713 | thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed | |
| 714 | ||
| 715 | lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 716 | proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto | |
| 717 | thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed | |
| 718 | ||
| 719 | lemma convex_linear_image: | |
| 720 | assumes c:"convex s" and l:"bounded_linear f" | |
| 721 | shows "convex(f ` s)" | |
| 722 | proof(auto simp add: convex_def) | |
| 723 | interpret f: bounded_linear f by fact | |
| 724 | fix x y assume xy:"x \<in> s" "y \<in> s" | |
| 725 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 726 | show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff | |
| 727 | apply(rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in bexI) | |
| 728 | unfolding f.add f.scaleR | |
| 729 | using c[unfolded convex_def] xy uv by auto | |
| 730 | qed | |
| 731 | ||
| 732 | subsection {* Balls, being convex, are connected. *}
 | |
| 733 | ||
| 734 | lemma convex_ball: | |
| 735 | fixes x :: "'a::real_normed_vector" | |
| 736 | shows "convex (ball x e)" | |
| 737 | proof(auto simp add: convex_def) | |
| 738 | fix y z assume yz:"dist x y < e" "dist x z < e" | |
| 739 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 740 | have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 741 | using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 742 | thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using real_convex_bound_lt[OF yz uv] by auto | |
| 743 | qed | |
| 744 | ||
| 745 | lemma convex_cball: | |
| 746 | fixes x :: "'a::real_normed_vector" | |
| 747 | shows "convex(cball x e)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 748 | proof(auto simp add: convex_def Ball_def) | 
| 33175 | 749 | fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e" | 
| 750 | fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 751 | have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 752 | using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 753 | thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using real_convex_bound_le[OF yz uv] by auto | |
| 754 | qed | |
| 755 | ||
| 756 | lemma connected_ball: | |
| 757 | fixes x :: "'a::real_normed_vector" | |
| 758 | shows "connected (ball x e)" | |
| 759 | using convex_connected convex_ball by auto | |
| 760 | ||
| 761 | lemma connected_cball: | |
| 762 | fixes x :: "'a::real_normed_vector" | |
| 763 | shows "connected(cball x e)" | |
| 764 | using convex_connected convex_cball by auto | |
| 765 | ||
| 766 | subsection {* Convex hull. *}
 | |
| 767 | ||
| 768 | lemma convex_convex_hull: "convex(convex hull s)" | |
| 769 |   unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
 | |
| 770 | unfolding mem_def by auto | |
| 771 | ||
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
33758diff
changeset | 772 | lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s" | 
| 36071 | 773 | by (metis convex_convex_hull hull_same mem_def) | 
| 33175 | 774 | |
| 775 | lemma bounded_convex_hull: | |
| 776 | fixes s :: "'a::real_normed_vector set" | |
| 777 | assumes "bounded s" shows "bounded(convex hull s)" | |
| 778 | proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto | |
| 779 | show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B]) | |
| 780 | unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball] | |
| 781 | unfolding subset_eq mem_cball dist_norm using B by auto qed | |
| 782 | ||
| 783 | lemma finite_imp_bounded_convex_hull: | |
| 784 | fixes s :: "'a::real_normed_vector set" | |
| 785 | shows "finite s \<Longrightarrow> bounded(convex hull s)" | |
| 786 | using bounded_convex_hull finite_imp_bounded by auto | |
| 787 | ||
| 788 | subsection {* Stepping theorems for convex hulls of finite sets. *}
 | |
| 789 | ||
| 790 | lemma convex_hull_empty[simp]: "convex hull {} = {}"
 | |
| 791 | apply(rule hull_unique) unfolding mem_def by auto | |
| 792 | ||
| 793 | lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
 | |
| 794 | apply(rule hull_unique) unfolding mem_def by auto | |
| 795 | ||
| 796 | lemma convex_hull_insert: | |
| 797 | fixes s :: "'a::real_vector set" | |
| 798 |   assumes "s \<noteq> {}"
 | |
| 799 |   shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
 | |
| 800 | b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull") | |
| 801 | apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof- | |
| 802 | fix x assume x:"x = a \<or> x \<in> s" | |
| 803 | thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer | |
| 804 | apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto | |
| 805 | next | |
| 806 | fix x assume "x\<in>?hull" | |
| 807 | then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto | |
| 808 | have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s" | |
| 809 |     using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
 | |
| 810 | thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def] | |
| 811 | apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto | |
| 812 | next | |
| 813 | show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 814 | fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull" | |
| 815 | from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto | |
| 816 | from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto | |
| 817 | have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 818 | have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" | |
| 819 | proof(cases "u * v1 + v * v2 = 0") | |
| 820 | have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 36071 | 821 | case True hence **:"u * v1 = 0" "v * v2 = 0" | 
| 822 | using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by arith+ | |
| 33175 | 823 | hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto | 
| 824 | thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib) | |
| 825 | next | |
| 826 | have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 827 | also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 828 | also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto | |
| 829 | case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply - | |
| 830 | apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg) | |
| 831 | using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 832 | thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False | |
| 833 | apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer | |
| 834 | apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4) | |
| 835 | unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff | |
| 836 | by (auto simp add: scaleR_left_distrib scaleR_right_distrib) | |
| 837 | qed note * = this | |
| 36071 | 838 | have u1:"u1 \<le> 1" unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto | 
| 839 | have u2:"u2 \<le> 1" unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto | |
| 33175 | 840 | have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono) | 
| 841 | apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 842 | also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto | |
| 843 | finally | |
| 844 | show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI) | |
| 845 | apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def | |
| 846 | using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps) | |
| 847 | qed | |
| 848 | qed | |
| 849 | ||
| 850 | ||
| 851 | subsection {* Explicit expression for convex hull. *}
 | |
| 852 | ||
| 853 | lemma convex_hull_indexed: | |
| 854 | fixes s :: "'a::real_vector set" | |
| 855 |   shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
 | |
| 856 |                             (setsum u {1..k} = 1) \<and>
 | |
| 857 |                             (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
 | |
| 858 | apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer | |
| 859 | apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule) | |
| 860 | proof- | |
| 861 | fix x assume "x\<in>s" | |
| 862 | thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto | |
| 863 | next | |
| 864 | fix t assume as:"s \<subseteq> t" "convex t" | |
| 865 | show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof- | |
| 866 |     fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | |
| 867 | show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format]) | |
| 868 | using assm(1,2) as(1) by auto qed | |
| 869 | next | |
| 870 | fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull" | |
| 871 |   from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
 | |
| 872 |   from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
 | |
| 873 | have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)" | |
| 874 |     "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
 | |
| 875 | prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le) | |
| 876 |   have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
 | |
| 877 | show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule) | |
| 878 |     apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
 | |
| 879 |     apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
 | |
| 35577 | 880 | unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def Collect_mem_eq | 
| 33175 | 881 | unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof- | 
| 882 |     fix i assume i:"i \<in> {1..k1+k2}"
 | |
| 883 |     show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
 | |
| 884 |     proof(cases "i\<in>{1..k1}")
 | |
| 885 | case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto | |
| 886 | next def j \<equiv> "i - k1" | |
| 887 |       case False with i have "j \<in> {1..k2}" unfolding j_def by auto
 | |
| 888 | thus ?thesis unfolding j_def[symmetric] using False | |
| 889 | using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed | |
| 890 | qed(auto simp add: not_le x(2,3) y(2,3) uv(3)) | |
| 891 | qed | |
| 892 | ||
| 893 | lemma convex_hull_finite: | |
| 894 | fixes s :: "'a::real_vector set" | |
| 895 | assumes "finite s" | |
| 896 |   shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
 | |
| 897 | setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set") | |
| 898 | proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set]) | |
| 899 | fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" | |
| 900 | apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto | |
| 901 | unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto | |
| 902 | next | |
| 903 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 904 | fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)" | |
| 905 | fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)" | |
| 906 |   { fix x assume "x\<in>s"
 | |
| 907 | hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2) | |
| 908 | by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2)) } | |
| 909 | moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1" | |
| 910 | unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto | |
| 911 | moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" | |
| 912 | unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto | |
| 913 | ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" | |
| 914 | apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto | |
| 915 | next | |
| 916 | fix t assume t:"s \<subseteq> t" "convex t" | |
| 917 | fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)" | |
| 918 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]] | |
| 919 | using assms and t(1) by auto | |
| 920 | qed | |
| 921 | ||
| 922 | subsection {* Another formulation from Lars Schewe. *}
 | |
| 923 | ||
| 924 | lemma setsum_constant_scaleR: | |
| 925 | fixes y :: "'a::real_vector" | |
| 926 | shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y" | |
| 927 | apply (cases "finite A") | |
| 928 | apply (induct set: finite) | |
| 929 | apply (simp_all add: algebra_simps) | |
| 930 | done | |
| 931 | ||
| 932 | lemma convex_hull_explicit: | |
| 933 | fixes p :: "'a::real_vector set" | |
| 934 |   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
 | |
| 935 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs") | |
| 936 | proof- | |
| 937 |   { fix x assume "x\<in>?lhs"
 | |
| 938 |     then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | |
| 939 | unfolding convex_hull_indexed by auto | |
| 940 | ||
| 941 |     have fin:"finite {1..k}" by auto
 | |
| 942 |     have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
 | |
| 943 |     { fix j assume "j\<in>{1..k}"
 | |
| 944 |       hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
 | |
| 945 | using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp | |
| 946 | apply(rule setsum_nonneg) using obt(1) by auto } | |
| 947 | moreover | |
| 948 |     have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
 | |
| 949 | unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto | |
| 950 |     moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
 | |
| 951 | using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym] | |
| 952 | unfolding scaleR_left.setsum using obt(3) by auto | |
| 953 | ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" | |
| 954 |       apply(rule_tac x="y ` {1..k}" in exI)
 | |
| 955 |       apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
 | |
| 956 | hence "x\<in>?rhs" by auto } | |
| 957 | moreover | |
| 958 |   { fix y assume "y\<in>?rhs"
 | |
| 959 | then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto | |
| 960 | ||
| 961 |     obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
 | |
| 962 | ||
| 963 |     { fix i::nat assume "i\<in>{1..card s}"
 | |
| 964 | hence "f i \<in> s" apply(subst f(2)[THEN sym]) by auto | |
| 965 | hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto } | |
| 966 |     moreover have *:"finite {1..card s}" by auto
 | |
| 967 |     { fix y assume "y\<in>s"
 | |
| 968 |       then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
 | |
| 969 |       hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
 | |
| 970 |       hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
 | |
| 971 |       hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y"
 | |
| 972 |             "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
 | |
| 973 | by (auto simp add: setsum_constant_scaleR) } | |
| 974 | ||
| 975 | hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y" | |
| 976 | unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] | |
| 977 |       unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
 | |
| 978 |       using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
 | |
| 979 | ||
| 980 |     ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
 | |
| 981 | apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp | |
| 982 | hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto } | |
| 983 | ultimately show ?thesis unfolding expand_set_eq by blast | |
| 984 | qed | |
| 985 | ||
| 986 | subsection {* A stepping theorem for that expansion. *}
 | |
| 987 | ||
| 988 | lemma convex_hull_finite_step: | |
| 989 | fixes s :: "'a::real_vector set" assumes "finite s" | |
| 990 | shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) | |
| 991 | \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs") | |
| 992 | proof(rule, case_tac[!] "a\<in>s") | |
| 993 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 994 | assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto | |
| 995 | next | |
| 996 | assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto | |
| 997 | assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp | |
| 998 | apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto | |
| 999 | next | |
| 1000 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 1001 | have fin:"finite (insert a s)" using assms by auto | |
| 1002 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 1003 | show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin] | |
| 1004 | unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto | |
| 1005 | next | |
| 1006 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 1007 | moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)" | |
| 1008 | apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto | |
| 1009 | ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI) unfolding setsum_clauses(2)[OF assms] by auto | |
| 1010 | qed | |
| 1011 | ||
| 1012 | subsection {* Hence some special cases. *}
 | |
| 1013 | ||
| 1014 | lemma convex_hull_2: | |
| 1015 |   "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
 | |
| 1016 | proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
 | |
| 1017 | show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc] | |
| 1018 | apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp | |
| 1019 | apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed | |
| 1020 | ||
| 1021 | lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
 | |
| 1022 | unfolding convex_hull_2 unfolding Collect_def | |
| 1023 | proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto | |
| 1024 | fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)" | |
| 1025 | unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed | |
| 1026 | ||
| 1027 | lemma convex_hull_3: | |
| 1028 |   "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
 | |
| 1029 | proof- | |
| 1030 |   have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
 | |
| 1031 | have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" | |
| 36350 | 1032 | "\<And>x y z ::real^_. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: field_simps) | 
| 33175 | 1033 | show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and * | 
| 1034 | unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto | |
| 1035 | apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp | |
| 1036 | apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed | |
| 1037 | ||
| 1038 | lemma convex_hull_3_alt: | |
| 1039 |   "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
 | |
| 1040 | proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto | |
| 1041 | show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps) | |
| 1042 | apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed | |
| 1043 | ||
| 1044 | subsection {* Relations among closure notions and corresponding hulls. *}
 | |
| 1045 | ||
| 1046 | text {* TODO: Generalize linear algebra concepts defined in @{text
 | |
| 1047 | Euclidean_Space.thy} so that we can generalize these lemmas. *} | |
| 1048 | ||
| 1049 | lemma subspace_imp_affine: | |
| 1050 | fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> affine s" | |
| 1051 | unfolding subspace_def affine_def smult_conv_scaleR by auto | |
| 1052 | ||
| 1053 | lemma affine_imp_convex: "affine s \<Longrightarrow> convex s" | |
| 1054 | unfolding affine_def convex_def by auto | |
| 1055 | ||
| 1056 | lemma subspace_imp_convex: | |
| 1057 | fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> convex s" | |
| 1058 | using subspace_imp_affine affine_imp_convex by auto | |
| 1059 | ||
| 1060 | lemma affine_hull_subset_span: | |
| 1061 | fixes s :: "(real ^ _) set" shows "(affine hull s) \<subseteq> (span s)" | |
| 36071 | 1062 | by (metis hull_minimal mem_def span_inc subspace_imp_affine subspace_span) | 
| 33175 | 1063 | |
| 1064 | lemma convex_hull_subset_span: | |
| 1065 | fixes s :: "(real ^ _) set" shows "(convex hull s) \<subseteq> (span s)" | |
| 36071 | 1066 | by (metis hull_minimal mem_def span_inc subspace_imp_convex subspace_span) | 
| 33175 | 1067 | |
| 1068 | lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)" | |
| 36071 | 1069 | by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset mem_def) | 
| 1070 | ||
| 33175 | 1071 | |
| 1072 | lemma affine_dependent_imp_dependent: | |
| 1073 | fixes s :: "(real ^ _) set" shows "affine_dependent s \<Longrightarrow> dependent s" | |
| 1074 | unfolding affine_dependent_def dependent_def | |
| 1075 | using affine_hull_subset_span by auto | |
| 1076 | ||
| 1077 | lemma dependent_imp_affine_dependent: | |
| 1078 | fixes s :: "(real ^ _) set" | |
| 1079 |   assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
 | |
| 1080 | shows "affine_dependent (insert a s)" | |
| 1081 | proof- | |
| 1082 | from assms(1)[unfolded dependent_explicit smult_conv_scaleR] obtain S u v | |
| 1083 |     where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
 | |
| 1084 | def t \<equiv> "(\<lambda>x. x + a) ` S" | |
| 1085 | ||
| 1086 | have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto | |
| 1087 | have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto | |
| 1088 | have fin:"finite t" and "t\<subseteq>s" unfolding t_def using obt(1,2) by auto | |
| 1089 | ||
| 1090 | hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto | |
| 1091 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" | |
| 1092 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 1093 | have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" | |
| 1094 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto | |
| 1095 | moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" | |
| 1096 | apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto | |
| 1097 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)" | |
| 1098 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 1099 | have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" | |
| 1100 | unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def | |
| 1101 | using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib) | |
| 1102 | hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" | |
| 1103 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: * vector_smult_lneg) | |
| 1104 | ultimately show ?thesis unfolding affine_dependent_explicit | |
| 1105 | apply(rule_tac x="insert a t" in exI) by auto | |
| 1106 | qed | |
| 1107 | ||
| 1108 | lemma convex_cone: | |
| 1109 | "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs") | |
| 1110 | proof- | |
| 1111 |   { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
 | |
| 1112 | hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto | |
| 1113 | hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1] | |
| 1114 | apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE) | |
| 1115 | apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto } | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1116 | thus ?thesis unfolding convex_def cone_def by blast | 
| 33175 | 1117 | qed | 
| 1118 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1119 | lemma affine_dependent_biggerset: fixes s::"(real^'n) set" | 
| 33175 | 1120 |   assumes "finite s" "card s \<ge> CARD('n) + 2"
 | 
| 1121 | shows "affine_dependent s" | |
| 1122 | proof- | |
| 1123 |   have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
 | |
| 1124 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 1125 |   have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 1126 | apply(rule card_image) unfolding inj_on_def by auto | |
| 1127 |   also have "\<dots> > CARD('n)" using assms(2)
 | |
| 1128 | unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | |
| 1129 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 1130 | apply(rule dependent_imp_affine_dependent) | |
| 1131 | apply(rule dependent_biggerset) by auto qed | |
| 1132 | ||
| 1133 | lemma affine_dependent_biggerset_general: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1134 | assumes "finite (s::(real^'n) set)" "card s \<ge> dim s + 2" | 
| 33175 | 1135 | shows "affine_dependent s" | 
| 1136 | proof- | |
| 1137 |   from assms(2) have "s \<noteq> {}" by auto
 | |
| 1138 | then obtain a where "a\<in>s" by auto | |
| 1139 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 1140 |   have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 1141 | apply(rule card_image) unfolding inj_on_def by auto | |
| 1142 |   have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
 | |
| 1143 | apply(rule subset_le_dim) unfolding subset_eq | |
| 1144 | using `a\<in>s` by (auto simp add:span_superset span_sub) | |
| 1145 | also have "\<dots> < dim s + 1" by auto | |
| 1146 |   also have "\<dots> \<le> card (s - {a})" using assms
 | |
| 1147 | using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | |
| 1148 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 1149 | apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed | |
| 1150 | ||
| 1151 | subsection {* Caratheodory's theorem. *}
 | |
| 1152 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1153 | lemma convex_hull_caratheodory: fixes p::"(real^'n) set" | 
| 33175 | 1154 |   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
 | 
| 1155 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" | |
| 1156 | unfolding convex_hull_explicit expand_set_eq mem_Collect_eq | |
| 1157 | proof(rule,rule) | |
| 1158 | fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" | |
| 1159 | assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" | |
| 1160 | then obtain N where "?P N" by auto | |
| 1161 | hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto | |
| 1162 | then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast | |
| 1163 | then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto | |
| 1164 | ||
| 1165 |   have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
 | |
| 1166 |     assume "CARD('n) + 1 < card s"
 | |
| 1167 | hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto | |
| 1168 | then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0" | |
| 1169 | using affine_dependent_explicit_finite[OF obt(1)] by auto | |
| 1170 |     def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
 | |
| 1171 | have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less) | |
| 1172 | assume as:"\<forall>x\<in>s. 0 \<le> w x" | |
| 1173 |       hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
 | |
| 1174 | hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`] | |
| 1175 | using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto | |
| 1176 | thus False using wv(1) by auto | |
| 1177 |     qed hence "i\<noteq>{}" unfolding i_def by auto
 | |
| 1178 | ||
| 1179 | hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def | |
| 1180 | using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto | |
| 1181 | have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof | |
| 1182 | fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto | |
| 1183 | show"0 \<le> u v + t * w v" proof(cases "w v < 0") | |
| 1184 | case False thus ?thesis apply(rule_tac add_nonneg_nonneg) | |
| 1185 | using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next | |
| 1186 | case True hence "t \<le> u v / (- w v)" using `v\<in>s` | |
| 1187 | unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 1188 | thus ?thesis unfolding real_0_le_add_iff | |
| 1189 | using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto | |
| 1190 | qed qed | |
| 1191 | ||
| 1192 | obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0" | |
| 1193 |       using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
 | |
| 1194 | hence a:"a\<in>s" "u a + t * w a = 0" by auto | |
| 1195 |     have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
 | |
| 1196 | have "(\<Sum>v\<in>s. u v + t * w v) = 1" | |
| 1197 | unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto | |
| 1198 | moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" | |
| 1199 | unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4) | |
| 1200 | using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] | |
| 1201 | by (simp add: vector_smult_lneg) | |
| 1202 |     ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
 | |
| 1203 | apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: * scaleR_left_distrib) | |
| 1204 | thus False using smallest[THEN spec[where x="n - 1"]] by auto qed | |
| 1205 |   thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
 | |
| 1206 | \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto | |
| 1207 | qed auto | |
| 1208 | ||
| 1209 | lemma caratheodory: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1210 |  "convex hull p = {x::real^'n. \<exists>s. finite s \<and> s \<subseteq> p \<and>
 | 
| 33175 | 1211 |       card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
 | 
| 1212 | unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof- | |
| 1213 | fix x assume "x \<in> convex hull p" | |
| 1214 |   then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
 | |
| 1215 | "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto | |
| 1216 |   thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | |
| 1217 | apply(rule_tac x=s in exI) using hull_subset[of s convex] | |
| 1218 | using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 1219 | next | |
| 1220 |   fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | |
| 1221 |   then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
 | |
| 1222 | thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto | |
| 1223 | qed | |
| 1224 | ||
| 1225 | subsection {* Openness and compactness are preserved by convex hull operation. *}
 | |
| 1226 | ||
| 34964 | 1227 | lemma open_convex_hull[intro]: | 
| 33175 | 1228 | fixes s :: "'a::real_normed_vector set" | 
| 1229 | assumes "open s" | |
| 1230 | shows "open(convex hull s)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1231 | unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) | 
| 33175 | 1232 | proof(rule, rule) fix a | 
| 1233 | assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a" | |
| 1234 | then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto | |
| 1235 | ||
| 1236 | from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s" | |
| 1237 | using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto | |
| 1238 |   have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
 | |
| 1239 | ||
| 1240 |   show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
 | |
| 1241 | apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq | |
| 1242 | proof- | |
| 1243 |     show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
 | |
| 1244 | using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto | |
| 1245 | next fix y assume "y \<in> cball a (Min i)" | |
| 1246 | hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto | |
| 1247 |     { fix x assume "x\<in>t"
 | |
| 1248 | hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 1249 | hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto | |
| 1250 | moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1251 | ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by fast } | 
| 33175 | 1252 | moreover | 
| 1253 | have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto | |
| 1254 | have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1" | |
| 1255 | unfolding setsum_reindex[OF *] o_def using obt(4) by auto | |
| 1256 | moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y" | |
| 1257 | unfolding setsum_reindex[OF *] o_def using obt(4,5) | |
| 1258 | by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib) | |
| 1259 | ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y" | |
| 1260 | apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI) | |
| 1261 | using obt(1, 3) by auto | |
| 1262 | qed | |
| 1263 | qed | |
| 1264 | ||
| 1265 | (* TODO: move *) | |
| 1266 | lemma compact_real_interval: | |
| 1267 |   fixes a b :: real shows "compact {a..b}"
 | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1268 | proof (rule bounded_closed_imp_compact) | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1269 |   have "\<forall>y\<in>{a..b}. dist a y \<le> dist a b"
 | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1270 | unfolding dist_real_def by auto | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1271 |   thus "bounded {a..b}" unfolding bounded_def by fast
 | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1272 |   show "closed {a..b}" by (rule closed_real_atLeastAtMost)
 | 
| 33175 | 1273 | qed | 
| 1274 | ||
| 1275 | lemma compact_convex_combinations: | |
| 1276 | fixes s t :: "'a::real_normed_vector set" | |
| 1277 | assumes "compact s" "compact t" | |
| 1278 |   shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
 | |
| 1279 | proof- | |
| 1280 |   let ?X = "{0..1} \<times> s \<times> t"
 | |
| 1281 | let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" | |
| 1282 |   have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
 | |
| 1283 | apply(rule set_ext) unfolding image_iff mem_Collect_eq | |
| 1284 | apply rule apply auto | |
| 1285 | apply (rule_tac x=u in rev_bexI, simp) | |
| 1286 | apply (erule rev_bexI, erule rev_bexI, simp) | |
| 1287 | by auto | |
| 1288 |   have "continuous_on ({0..1} \<times> s \<times> t)
 | |
| 1289 | (\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" | |
| 1290 | unfolding continuous_on by (rule ballI) (intro tendsto_intros) | |
| 1291 | thus ?thesis unfolding * | |
| 1292 | apply (rule compact_continuous_image) | |
| 1293 | apply (intro compact_Times compact_real_interval assms) | |
| 1294 | done | |
| 1295 | qed | |
| 1296 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1297 | lemma compact_convex_hull: fixes s::"(real^'n) set" | 
| 33175 | 1298 | assumes "compact s" shows "compact(convex hull s)" | 
| 1299 | proof(cases "s={}")
 | |
| 1300 | case True thus ?thesis using compact_empty by simp | |
| 1301 | next | |
| 1302 | case False then obtain w where "w\<in>s" by auto | |
| 1303 | show ?thesis unfolding caratheodory[of s] | |
| 34915 | 1304 |   proof(induct ("CARD('n) + 1"))
 | 
| 33175 | 1305 |     have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1306 | using compact_empty by auto | 
| 33175 | 1307 | case 0 thus ?case unfolding * by simp | 
| 1308 | next | |
| 1309 | case (Suc n) | |
| 1310 | show ?case proof(cases "n=0") | |
| 1311 |       case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
 | |
| 1312 | unfolding expand_set_eq and mem_Collect_eq proof(rule, rule) | |
| 1313 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1314 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1315 | show "x\<in>s" proof(cases "card t = 0") | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1316 | case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by simp | 
| 33175 | 1317 | next | 
| 1318 | case False hence "card t = Suc 0" using t(3) `n=0` by auto | |
| 1319 |           then obtain a where "t = {a}" unfolding card_Suc_eq by auto
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1320 | thus ?thesis using t(2,4) by simp | 
| 33175 | 1321 | qed | 
| 1322 | next | |
| 1323 | fix x assume "x\<in>s" | |
| 1324 | thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1325 |           apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
 | |
| 1326 | qed thus ?thesis using assms by simp | |
| 1327 | next | |
| 1328 |       case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
 | |
| 1329 |         { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
 | |
| 1330 |         0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
 | |
| 1331 | unfolding expand_set_eq and mem_Collect_eq proof(rule,rule) | |
| 1332 | fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> | |
| 1333 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1334 | then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v" | |
| 1335 | "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n" "v \<in> convex hull t" by auto | |
| 1336 | moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t" | |
| 1337 | apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex] | |
| 1338 | using obt(7) and hull_mono[of t "insert u t"] by auto | |
| 1339 | ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1340 | apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if) | |
| 1341 | next | |
| 1342 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1343 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1344 | let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> | |
| 1345 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1346 | show ?P proof(cases "card t = Suc n") | |
| 1347 | case False hence "card t \<le> n" using t(3) by auto | |
| 1348 | thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t | |
| 1349 | by(auto intro!: exI[where x=t]) | |
| 1350 | next | |
| 1351 | case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto | |
| 1352 |           show ?P proof(cases "u={}")
 | |
| 1353 | case True hence "x=a" using t(4)[unfolded au] by auto | |
| 1354 | show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1355 |               using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"])
 | 
| 33175 | 1356 | next | 
| 1357 | case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b" | |
| 1358 | using t(4)[unfolded au convex_hull_insert[OF False]] by auto | |
| 1359 | have *:"1 - vx = ux" using obt(3) by auto | |
| 1360 | show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI) | |
| 1361 | using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)] | |
| 1362 | by(auto intro!: exI[where x=u]) | |
| 1363 | qed | |
| 1364 | qed | |
| 1365 | qed | |
| 1366 | thus ?thesis using compact_convex_combinations[OF assms Suc] by simp | |
| 1367 | qed | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1368 | qed | 
| 33175 | 1369 | qed | 
| 1370 | ||
| 1371 | lemma finite_imp_compact_convex_hull: | |
| 1372 | fixes s :: "(real ^ _) set" | |
| 1373 | shows "finite s \<Longrightarrow> compact(convex hull s)" | |
| 36071 | 1374 | by (metis compact_convex_hull finite_imp_compact) | 
| 33175 | 1375 | |
| 1376 | subsection {* Extremal points of a simplex are some vertices. *}
 | |
| 1377 | ||
| 1378 | lemma dist_increases_online: | |
| 1379 | fixes a b d :: "'a::real_inner" | |
| 1380 | assumes "d \<noteq> 0" | |
| 1381 | shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b" | |
| 1382 | proof(cases "inner a d - inner b d > 0") | |
| 1383 | case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" | |
| 1384 | apply(rule_tac add_pos_pos) using assms by auto | |
| 1385 | thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff | |
| 1386 | by (simp add: algebra_simps inner_commute) | |
| 1387 | next | |
| 1388 | case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" | |
| 1389 | apply(rule_tac add_pos_nonneg) using assms by auto | |
| 1390 | thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff | |
| 1391 | by (simp add: algebra_simps inner_commute) | |
| 1392 | qed | |
| 1393 | ||
| 1394 | lemma norm_increases_online: | |
| 1395 | fixes d :: "'a::real_inner" | |
| 1396 | shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a" | |
| 1397 | using dist_increases_online[of d a 0] unfolding dist_norm by auto | |
| 1398 | ||
| 1399 | lemma simplex_furthest_lt: | |
| 1400 | fixes s::"'a::real_inner set" assumes "finite s" | |
| 1401 | shows "\<forall>x \<in> (convex hull s). x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))" | |
| 1402 | proof(induct_tac rule: finite_induct[of s]) | |
| 1403 | fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))" | |
| 1404 | show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))" | |
| 1405 |   proof(rule,rule,cases "s = {}")
 | |
| 1406 | case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s" | |
| 1407 | obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b" | |
| 1408 | using y(1)[unfolded convex_hull_insert[OF False]] by auto | |
| 1409 | show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)" | |
| 1410 | proof(cases "y\<in>convex hull s") | |
| 1411 | case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)" | |
| 1412 | using as(3)[THEN bspec[where x=y]] and y(2) by auto | |
| 1413 | thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto | |
| 1414 | next | |
| 1415 | case False show ?thesis using obt(3) proof(cases "u=0", case_tac[!] "v=0") | |
| 1416 | assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto | |
| 1417 | thus ?thesis using False and obt(4) by auto | |
| 1418 | next | |
| 1419 | assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto | |
| 1420 | thus ?thesis using y(2) by auto | |
| 1421 | next | |
| 1422 | assume "u\<noteq>0" "v\<noteq>0" | |
| 1423 | then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto | |
| 1424 | have "x\<noteq>b" proof(rule ccontr) | |
| 1425 | assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5) | |
| 1426 | using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym]) | |
| 1427 | thus False using obt(4) and False by simp qed | |
| 1428 | hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto | |
| 1429 | show ?thesis using dist_increases_online[OF *, of a y] | |
| 1430 | proof(erule_tac disjE) | |
| 1431 | assume "dist a y < dist a (y + w *\<^sub>R (x - b))" | |
| 1432 | hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)" | |
| 1433 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) | |
| 1434 | moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s" | |
| 1435 |             unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1436 | apply(rule_tac x="u + w" in exI) apply rule defer | |
| 1437 | apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1438 | ultimately show ?thesis by auto | |
| 1439 | next | |
| 1440 | assume "dist a y < dist a (y - w *\<^sub>R (x - b))" | |
| 1441 | hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)" | |
| 1442 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) | |
| 1443 | moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s" | |
| 1444 |             unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1445 | apply(rule_tac x="u - w" in exI) apply rule defer | |
| 1446 | apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1447 | ultimately show ?thesis by auto | |
| 1448 | qed | |
| 1449 | qed auto | |
| 1450 | qed | |
| 1451 | qed auto | |
| 1452 | qed (auto simp add: assms) | |
| 1453 | ||
| 1454 | lemma simplex_furthest_le: | |
| 1455 | fixes s :: "(real ^ _) set" | |
| 1456 |   assumes "finite s" "s \<noteq> {}"
 | |
| 1457 | shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)" | |
| 1458 | proof- | |
| 1459 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1460 | then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)" | |
| 1461 | using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a] | |
| 1462 | unfolding dist_commute[of a] unfolding dist_norm by auto | |
| 1463 | thus ?thesis proof(cases "x\<in>s") | |
| 1464 | case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)" | |
| 1465 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto | |
| 1466 | thus ?thesis using x(2)[THEN bspec[where x=y]] by auto | |
| 1467 | qed auto | |
| 1468 | qed | |
| 1469 | ||
| 1470 | lemma simplex_furthest_le_exists: | |
| 1471 | fixes s :: "(real ^ _) set" | |
| 1472 | shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))" | |
| 1473 |   using simplex_furthest_le[of s] by (cases "s={}")auto
 | |
| 1474 | ||
| 1475 | lemma simplex_extremal_le: | |
| 1476 | fixes s :: "(real ^ _) set" | |
| 1477 |   assumes "finite s" "s \<noteq> {}"
 | |
| 1478 | shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)" | |
| 1479 | proof- | |
| 1480 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1481 | then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s" | |
| 1482 | "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)" | |
| 1483 | using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto | |
| 1484 | thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE) | |
| 1485 | assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)" | |
| 1486 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto | |
| 1487 | thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto | |
| 1488 | next | |
| 1489 | assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)" | |
| 1490 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto | |
| 1491 | thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1) | |
| 1492 | by (auto simp add: norm_minus_commute) | |
| 1493 | qed auto | |
| 1494 | qed | |
| 1495 | ||
| 1496 | lemma simplex_extremal_le_exists: | |
| 1497 | fixes s :: "(real ^ _) set" | |
| 1498 | shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s | |
| 1499 | \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))" | |
| 1500 |   using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
 | |
| 1501 | ||
| 1502 | subsection {* Closest point of a convex set is unique, with a continuous projection. *}
 | |
| 1503 | ||
| 1504 | definition | |
| 36337 | 1505 |   closest_point :: "'a::{real_inner,heine_borel} set \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 33175 | 1506 | "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))" | 
| 1507 | ||
| 1508 | lemma closest_point_exists: | |
| 1509 |   assumes "closed s" "s \<noteq> {}"
 | |
| 1510 | shows "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y" | |
| 1511 | unfolding closest_point_def apply(rule_tac[!] someI2_ex) | |
| 1512 | using distance_attains_inf[OF assms(1,2), of a] by auto | |
| 1513 | ||
| 1514 | lemma closest_point_in_set: | |
| 1515 |   "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
 | |
| 1516 | by(meson closest_point_exists) | |
| 1517 | ||
| 1518 | lemma closest_point_le: | |
| 1519 | "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x" | |
| 1520 | using closest_point_exists[of s] by auto | |
| 1521 | ||
| 1522 | lemma closest_point_self: | |
| 1523 | assumes "x \<in> s" shows "closest_point s x = x" | |
| 1524 | unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) | |
| 1525 | using assms by auto | |
| 1526 | ||
| 1527 | lemma closest_point_refl: | |
| 1528 |  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
 | |
| 1529 | using closest_point_in_set[of s x] closest_point_self[of x s] by auto | |
| 1530 | ||
| 1531 | (* TODO: move *) | |
| 1532 | lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y" | |
| 1533 | unfolding norm_eq_sqrt_inner by simp | |
| 1534 | ||
| 1535 | (* TODO: move *) | |
| 1536 | lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y" | |
| 1537 | unfolding norm_eq_sqrt_inner by simp | |
| 1538 | ||
| 36337 | 1539 | lemma closer_points_lemma: | 
| 33175 | 1540 | assumes "inner y z > 0" | 
| 1541 | shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y" | |
| 1542 | proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto | |
| 1543 | thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+) | |
| 1544 | fix v assume "0<v" "v \<le> inner y z / inner z z" | |
| 1545 | thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms | |
| 1546 | by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`]) | |
| 1547 | qed(rule divide_pos_pos, auto) qed | |
| 1548 | ||
| 1549 | lemma closer_point_lemma: | |
| 1550 | assumes "inner (y - x) (z - x) > 0" | |
| 1551 | shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y" | |
| 1552 | proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)" | |
| 1553 | using closer_points_lemma[OF assms] by auto | |
| 1554 | show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0` | |
| 1555 | unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed | |
| 1556 | ||
| 1557 | lemma any_closest_point_dot: | |
| 1558 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1559 | shows "inner (a - x) (y - x) \<le> 0" | |
| 1560 | proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0" | |
| 1561 | then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto | |
| 1562 | let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto | |
| 1563 | thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed | |
| 1564 | ||
| 1565 | lemma any_closest_point_unique: | |
| 36337 | 1566 | fixes x :: "'a::real_inner" | 
| 33175 | 1567 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" | 
| 1568 | "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z" | |
| 1569 | shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)] | |
| 1570 | unfolding norm_pths(1) and norm_le_square | |
| 1571 | by (auto simp add: algebra_simps) | |
| 1572 | ||
| 1573 | lemma closest_point_unique: | |
| 1574 | assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1575 | shows "x = closest_point s a" | |
| 1576 | using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] | |
| 1577 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1578 | ||
| 1579 | lemma closest_point_dot: | |
| 1580 | assumes "convex s" "closed s" "x \<in> s" | |
| 1581 | shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0" | |
| 1582 | apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)]) | |
| 1583 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1584 | ||
| 1585 | lemma closest_point_lt: | |
| 1586 | assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a" | |
| 1587 | shows "dist a (closest_point s a) < dist a x" | |
| 1588 | apply(rule ccontr) apply(rule_tac notE[OF assms(4)]) | |
| 1589 | apply(rule closest_point_unique[OF assms(1-3), of a]) | |
| 1590 | using closest_point_le[OF assms(2), of _ a] by fastsimp | |
| 1591 | ||
| 1592 | lemma closest_point_lipschitz: | |
| 1593 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1594 | shows "dist (closest_point s x) (closest_point s y) \<le> dist x y" | |
| 1595 | proof- | |
| 1596 | have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0" | |
| 1597 | "inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0" | |
| 1598 | apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)]) | |
| 1599 | using closest_point_exists[OF assms(2-3)] by auto | |
| 1600 | thus ?thesis unfolding dist_norm and norm_le | |
| 1601 | using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"] | |
| 1602 | by (simp add: inner_add inner_diff inner_commute) qed | |
| 1603 | ||
| 1604 | lemma continuous_at_closest_point: | |
| 1605 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1606 | shows "continuous (at x) (closest_point s)" | |
| 1607 | unfolding continuous_at_eps_delta | |
| 1608 | using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto | |
| 1609 | ||
| 1610 | lemma continuous_on_closest_point: | |
| 1611 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1612 | shows "continuous_on t (closest_point s)" | |
| 36071 | 1613 | by(metis continuous_at_imp_continuous_on continuous_at_closest_point[OF assms]) | 
| 33175 | 1614 | |
| 1615 | subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
 | |
| 1616 | ||
| 1617 | lemma supporting_hyperplane_closed_point: | |
| 36337 | 1618 |   fixes z :: "'a::{real_inner,heine_borel}"
 | 
| 33175 | 1619 |   assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
 | 
| 1620 | shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)" | |
| 1621 | proof- | |
| 1622 | from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto | |
| 1623 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI) | |
| 1624 | apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof- | |
| 1625 | show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym]) | |
| 1626 | unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto | |
| 1627 | next | |
| 1628 | fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)" | |
| 1629 | using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto | |
| 1630 | assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where | |
| 1631 | "v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff) | |
| 1632 | thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps) | |
| 1633 | qed auto | |
| 1634 | qed | |
| 1635 | ||
| 1636 | lemma separating_hyperplane_closed_point: | |
| 36337 | 1637 |   fixes z :: "'a::{real_inner,heine_borel}"
 | 
| 33175 | 1638 | assumes "convex s" "closed s" "z \<notin> s" | 
| 1639 | shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)" | |
| 1640 | proof(cases "s={}")
 | |
| 1641 | case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI) | |
| 1642 | using less_le_trans[OF _ inner_ge_zero[of z]] by auto | |
| 1643 | next | |
| 1644 | case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" | |
| 1645 | using distance_attains_inf[OF assms(2) False] by auto | |
| 1646 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI) | |
| 1647 | apply rule defer apply rule proof- | |
| 1648 | fix x assume "x\<in>s" | |
| 1649 | have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma) | |
| 1650 | assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z" | |
| 1651 | then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto | |
| 1652 | thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]] | |
| 1653 | using assms(1)[unfolded convex_alt, THEN bspec[where x=y]] | |
| 1654 | using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed | |
| 1655 | moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto | |
| 1656 | hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp | |
| 1657 | ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x" | |
| 1658 | unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff) | |
| 1659 | qed(insert `y\<in>s` `z\<notin>s`, auto) | |
| 1660 | qed | |
| 1661 | ||
| 1662 | lemma separating_hyperplane_closed_0: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1663 | assumes "convex (s::(real^'n) set)" "closed s" "0 \<notin> s" | 
| 33175 | 1664 | shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)" | 
| 1665 |   proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1666 | case True have "norm ((basis a)::real^'n) = 1" | 
| 33175 | 1667 | using norm_basis and dimindex_ge_1 by auto | 
| 1668 | thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto | |
| 1669 | next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms] | |
| 35542 | 1670 | apply - apply(erule exE)+ unfolding inner.zero_right apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed | 
| 33175 | 1671 | |
| 1672 | subsection {* Now set-to-set for closed/compact sets. *}
 | |
| 1673 | ||
| 1674 | lemma separating_hyperplane_closed_compact: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1675 |   assumes "convex (s::(real^'n) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1676 | shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)" | 
| 1677 | proof(cases "s={}")
 | |
| 1678 | case True | |
| 1679 | obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto | |
| 1680 | obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto | |
| 1681 | hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto | |
| 1682 | then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x" | |
| 1683 | using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto | |
| 1684 | thus ?thesis using True by auto | |
| 1685 | next | |
| 1686 | case False then obtain y where "y\<in>s" by auto | |
| 1687 |   obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
 | |
| 1688 | using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0] | |
| 1689 | using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast) | |
| 1690 | hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff) | |
| 33270 | 1691 | def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)" | 
| 33175 | 1692 | show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI) | 
| 1693 | apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof- | |
| 1694 | from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)" | |
| 1695 | apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto | |
| 33270 | 1696 | hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto | 
| 33175 | 1697 | fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto | 
| 1698 | next | |
| 1699 | fix x assume "x\<in>s" | |
| 33270 | 1700 | hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5) | 
| 33175 | 1701 | using ab[THEN bspec[where x=x]] by auto | 
| 1702 | thus "k + b / 2 < inner a x" using `0 < b` by auto | |
| 1703 | qed | |
| 1704 | qed | |
| 1705 | ||
| 1706 | lemma separating_hyperplane_compact_closed: | |
| 1707 | fixes s :: "(real ^ _) set" | |
| 1708 |   assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
 | |
| 1709 | shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)" | |
| 1710 | proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)" | |
| 1711 | using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto | |
| 1712 | thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed | |
| 1713 | ||
| 1714 | subsection {* General case without assuming closure and getting non-strict separation. *}
 | |
| 1715 | ||
| 1716 | lemma separating_hyperplane_set_0: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1717 | assumes "convex s" "(0::real^'n) \<notin> s" | 
| 33175 | 1718 | shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)" | 
| 1719 | proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> inner c x}"
 | |
| 1720 |   have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
 | |
| 1721 | apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball]) | |
| 1722 | defer apply(rule,rule,erule conjE) proof- | |
| 1723 | fix f assume as:"f \<subseteq> ?k ` s" "finite f" | |
| 1724 | obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto | |
| 1725 | then obtain a b where ab:"a \<noteq> 0" "0 < b" "\<forall>x\<in>convex hull c. b < inner a x" | |
| 1726 | using separating_hyperplane_closed_0[OF convex_convex_hull, of c] | |
| 1727 | using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2) | |
| 1728 | using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto | |
| 1729 | hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI) | |
| 1730 | using hull_subset[of c convex] unfolding subset_eq and inner_scaleR | |
| 1731 | apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg) | |
| 1732 | by(auto simp add: inner_commute elim!: ballE) | |
| 1733 |     thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
 | |
| 1734 | qed(insert closed_halfspace_ge, auto) | |
| 1735 | then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto | |
| 1736 | thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed | |
| 1737 | ||
| 1738 | lemma separating_hyperplane_sets: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1739 |   assumes "convex s" "convex (t::(real^'n) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1740 | shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)" | 
| 1741 | proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]] | |
| 33270 | 1742 |   obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
 | 
| 1743 | using assms(3-5) by auto | |
| 1744 | hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x" | |
| 1745 | by (force simp add: inner_diff) | |
| 1746 | thus ?thesis | |
| 1747 | apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0` | |
| 1748 | apply auto | |
| 1749 | apply (rule Sup[THEN isLubD2]) | |
| 1750 | prefer 4 | |
| 1751 | apply (rule Sup_least) | |
| 1752 | using assms(3-5) apply (auto simp add: setle_def) | |
| 36071 | 1753 | apply metis | 
| 33270 | 1754 | done | 
| 1755 | qed | |
| 33175 | 1756 | |
| 1757 | subsection {* More convexity generalities. *}
 | |
| 1758 | ||
| 1759 | lemma convex_closure: | |
| 1760 | fixes s :: "'a::real_normed_vector set" | |
| 1761 | assumes "convex s" shows "convex(closure s)" | |
| 1762 | unfolding convex_def Ball_def closure_sequential | |
| 1763 | apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+ | |
| 1764 | apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule) | |
| 1765 | apply(rule assms[unfolded convex_def, rule_format]) prefer 6 | |
| 1766 | apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto | |
| 1767 | ||
| 1768 | lemma convex_interior: | |
| 1769 | fixes s :: "'a::real_normed_vector set" | |
| 1770 | assumes "convex s" shows "convex(interior s)" | |
| 1771 | unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof- | |
| 1772 | fix x y u assume u:"0 \<le> u" "u \<le> (1::real)" | |
| 1773 | fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" | |
| 1774 | show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI) | |
| 1775 | apply rule unfolding subset_eq defer apply rule proof- | |
| 1776 | fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)" | |
| 1777 | hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s" | |
| 1778 | apply(rule_tac assms[unfolded convex_alt, rule_format]) | |
| 1779 | using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps) | |
| 1780 | thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed | |
| 1781 | ||
| 34964 | 1782 | lemma convex_hull_eq_empty[simp]: "convex hull s = {} \<longleftrightarrow> s = {}"
 | 
| 33175 | 1783 | using hull_subset[of s convex] convex_hull_empty by auto | 
| 1784 | ||
| 1785 | subsection {* Moving and scaling convex hulls. *}
 | |
| 1786 | ||
| 1787 | lemma convex_hull_translation_lemma: | |
| 1788 | "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)" | |
| 36071 | 1789 | by (metis convex_convex_hull convex_translation hull_minimal hull_subset image_mono mem_def) | 
| 33175 | 1790 | |
| 1791 | lemma convex_hull_bilemma: fixes neg | |
| 1792 | assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))" | |
| 1793 | shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t) | |
| 1794 | \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)" | |
| 1795 | using assms by(metis subset_antisym) | |
| 1796 | ||
| 1797 | lemma convex_hull_translation: | |
| 1798 | "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)" | |
| 1799 | apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto | |
| 1800 | ||
| 1801 | lemma convex_hull_scaling_lemma: | |
| 1802 | "(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)" | |
| 36071 | 1803 | by (metis convex_convex_hull convex_scaling hull_subset mem_def subset_hull subset_image_iff) | 
| 33175 | 1804 | |
| 1805 | lemma convex_hull_scaling: | |
| 1806 | "convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)" | |
| 1807 | apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1808 | unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv) | 
| 33175 | 1809 | |
| 1810 | lemma convex_hull_affinity: | |
| 1811 | "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)" | |
| 36071 | 1812 | by(simp only: image_image[THEN sym] convex_hull_scaling convex_hull_translation) | 
| 33175 | 1813 | |
| 1814 | subsection {* Convex set as intersection of halfspaces. *}
 | |
| 1815 | ||
| 1816 | lemma convex_halfspace_intersection: | |
| 1817 | fixes s :: "(real ^ _) set" | |
| 1818 | assumes "closed s" "convex s" | |
| 1819 |   shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
 | |
| 1820 | apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- | |
| 1821 |   fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
 | |
| 1822 |   hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
 | |
| 1823 | thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)]) | |
| 1824 | apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto | |
| 1825 | qed auto | |
| 1826 | ||
| 1827 | subsection {* Radon's theorem (from Lars Schewe). *}
 | |
| 1828 | ||
| 1829 | lemma radon_ex_lemma: | |
| 1830 | assumes "finite c" "affine_dependent c" | |
| 1831 | shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0" | |
| 1832 | proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1833 | thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left | |
| 1834 | and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed | |
| 1835 | ||
| 1836 | lemma radon_s_lemma: | |
| 1837 | assumes "finite s" "setsum f s = (0::real)" | |
| 1838 |   shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
 | |
| 1839 | proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto | |
| 1840 | show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1841 | using assms(2) by assumption qed | |
| 1842 | ||
| 1843 | lemma radon_v_lemma: | |
| 34289 | 1844 | assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^_)" | 
| 33175 | 1845 |   shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
 | 
| 1846 | proof- | |
| 1847 | have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto | |
| 1848 | show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1849 | using assms(2) by assumption qed | |
| 1850 | ||
| 1851 | lemma radon_partition: | |
| 1852 | assumes "finite c" "affine_dependent c" | |
| 1853 |   shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
 | |
| 1854 | obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0" "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto | |
| 1855 |   have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
 | |
| 1856 |   def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
 | |
| 1857 |   have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
 | |
| 1858 | case False hence "u v < 0" by auto | |
| 1859 |     thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
 | |
| 1860 | case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto | |
| 1861 | next | |
| 1862 | case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto | |
| 1863 | thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed | |
| 1864 | qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto) | |
| 1865 | ||
| 1866 |   hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
 | |
| 1867 |   moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
 | |
| 1868 |     "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
 | |
| 1869 | using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto | |
| 1870 |   hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
 | |
| 1871 |    "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
 | |
| 1872 | unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add: setsum_Un_zero[OF fin, THEN sym]) | |
| 1873 |   moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
 | |
| 1874 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1875 | ||
| 1876 |   ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1877 |     apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
 | |
| 1878 | using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def | |
| 1879 | by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym]) | |
| 1880 |   moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
 | |
| 1881 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1882 |   hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1883 |     apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
 | |
| 1884 | using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using * | |
| 1885 | by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym]) | |
| 1886 |   ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
 | |
| 1887 | qed | |
| 1888 | ||
| 1889 | lemma radon: assumes "affine_dependent c" | |
| 1890 |   obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
 | |
| 1891 | proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1892 | hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto | |
| 1893 | from radon_partition[OF *] guess m .. then guess p .. | |
| 1894 | thus ?thesis apply(rule_tac that[of p m]) using s by auto qed | |
| 1895 | ||
| 1896 | subsection {* Helly's theorem. *}
 | |
| 1897 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1898 | lemma helly_induct: fixes f::"(real^'n) set set" | 
| 33715 | 1899 |   assumes "card f = n" "n \<ge> CARD('n) + 1"
 | 
| 33175 | 1900 |   "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
| 1901 |   shows "\<Inter> f \<noteq> {}"
 | |
| 33715 | 1902 | using assms proof(induct n arbitrary: f) | 
| 33175 | 1903 | case (Suc n) | 
| 33715 | 1904 | have "finite f" using `card f = Suc n` by (auto intro: card_ge_0_finite) | 
| 1905 | show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(5)[rule_format])
 | |
| 1906 | unfolding `card f = Suc n` proof- | |
| 33175 | 1907 |   assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
 | 
| 33715 | 1908 | apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF `finite f`] `card f = Suc n` | 
| 1909 | defer defer apply(rule Suc(4)[rule_format]) defer apply(rule Suc(5)[rule_format]) using Suc(3) `finite f` by auto | |
| 33175 | 1910 |   then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
 | 
| 1911 | show ?thesis proof(cases "inj_on X f") | |
| 1912 | case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto | |
| 1913 |     hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
 | |
| 1914 | show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI) | |
| 1915 | apply(rule, rule X[rule_format]) using X st by auto | |
| 1916 |   next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
 | |
| 1917 | using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"] | |
| 33715 | 1918 | unfolding card_image[OF True] and `card f = Suc n` using Suc(3) `finite f` and ng by auto | 
| 33175 | 1919 | have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto | 
| 1920 | then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto | |
| 1921 | hence "f \<union> (g \<union> h) = f" by auto | |
| 1922 | hence f:"f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True | |
| 1923 | unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto | |
| 1924 |     have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
 | |
| 1925 | have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h" | |
| 33715 | 1926 | apply(rule_tac [!] hull_minimal) using Suc gh(3-4) unfolding mem_def unfolding subset_eq | 
| 33175 | 1927 | apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof- | 
| 1928 | fix x assume "x\<in>X ` g" then guess y unfolding image_iff .. | |
| 1929 | thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next | |
| 1930 | fix x assume "x\<in>X ` h" then guess y unfolding image_iff .. | |
| 1931 | thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto | |
| 1932 | qed(auto) | |
| 1933 | thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed | |
| 1934 | qed(insert dimindex_ge_1, auto) qed(auto) | |
| 1935 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1936 | lemma helly: fixes f::"(real^'n) set set" | 
| 33715 | 1937 |   assumes "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
 | 
| 33175 | 1938 |           "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
| 1939 |   shows "\<Inter> f \<noteq>{}"
 | |
| 33715 | 1940 | apply(rule helly_induct) using assms by auto | 
| 33175 | 1941 | |
| 1942 | subsection {* Convex hull is "preserved" by a linear function. *}
 | |
| 1943 | ||
| 1944 | lemma convex_hull_linear_image: | |
| 1945 | assumes "bounded_linear f" | |
| 1946 | shows "f ` (convex hull s) = convex hull (f ` s)" | |
| 1947 | apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3 | |
| 1948 | apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption | |
| 1949 | apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption | |
| 1950 | proof- | |
| 1951 | interpret f: bounded_linear f by fact | |
| 1952 |   show "convex {x. f x \<in> convex hull f ` s}" 
 | |
| 1953 | unfolding convex_def by(auto simp add: f.scaleR f.add convex_convex_hull[unfolded convex_def, rule_format]) next | |
| 1954 | interpret f: bounded_linear f by fact | |
| 1955 |   show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
 | |
| 1956 | unfolding convex_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric]) | |
| 1957 | qed auto | |
| 1958 | ||
| 1959 | lemma in_convex_hull_linear_image: | |
| 1960 | assumes "bounded_linear f" "x \<in> convex hull s" | |
| 1961 | shows "(f x) \<in> convex hull (f ` s)" | |
| 1962 | using convex_hull_linear_image[OF assms(1)] assms(2) by auto | |
| 1963 | ||
| 1964 | subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
 | |
| 1965 | ||
| 1966 | lemma compact_frontier_line_lemma: | |
| 1967 | fixes s :: "(real ^ _) set" | |
| 1968 | assumes "compact s" "0 \<in> s" "x \<noteq> 0" | |
| 1969 | obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s" | |
| 1970 | proof- | |
| 1971 | obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto | |
| 1972 |   let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
 | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1973 |   have A:"?A = (\<lambda>u. u *\<^sub>R x) ` {0 .. b / norm x}"
 | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1974 | by auto | 
| 33175 | 1975 | have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on) | 
| 1976 | apply(rule, rule continuous_vmul) | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1977 | apply(rule continuous_at_id) by(rule compact_real_interval) | 
| 33175 | 1978 |   moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
 | 
| 1979 | unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos) | |
| 1980 | ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x" | |
| 1981 | "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto | |
| 1982 | ||
| 1983 | have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 1984 |   { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
 | |
| 1985 | hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] | |
| 1986 | using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto | |
| 1987 | hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer | |
| 1988 | apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) | |
| 1989 | using as(1) `u\<ge>0` by(auto simp add:field_simps) | |
| 1990 | hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps) | |
| 1991 | } note u_max = this | |
| 1992 | ||
| 1993 | have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym] | |
| 1994 | prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof- | |
| 1995 | fix e assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s" | |
| 1996 | hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos) | |
| 1997 | thus False using u_max[OF _ as] by auto | |
| 1998 | qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3)) | |
| 36071 | 1999 | thus ?thesis by(metis that[of u] u_max obt(1)) | 
| 2000 | qed | |
| 33175 | 2001 | |
| 2002 | lemma starlike_compact_projective: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2003 | assumes "compact s" "cball (0::real^'n) 1 \<subseteq> s " | 
| 33175 | 2004 | "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )" | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2005 | shows "s homeomorphic (cball (0::real^'n) 1)" | 
| 33175 | 2006 | proof- | 
| 2007 | have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp | |
| 2008 | def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *\<^sub>R x" | |
| 2009 | have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE) | |
| 2010 | using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto | |
| 2011 | have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto | |
| 2012 | ||
| 2013 |   have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
 | |
| 2014 | apply rule unfolding pi_def | |
| 2015 | apply (rule continuous_mul) | |
| 2016 | apply (rule continuous_at_inv[unfolded o_def]) | |
| 2017 | apply (rule continuous_at_norm) | |
| 2018 | apply simp | |
| 2019 | apply (rule continuous_at_id) | |
| 2020 | done | |
| 2021 |   def sphere \<equiv> "{x::real^'n. norm x = 1}"
 | |
| 2022 | have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto | |
| 2023 | ||
| 2024 | have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto | |
| 2025 | have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule) | |
| 2026 | fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u" | |
| 2027 | hence "x\<noteq>0" using `0\<notin>frontier s` by auto | |
| 2028 | obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s" | |
| 2029 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto | |
| 2030 | have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof- | |
| 2031 | assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next | |
| 2032 | assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]] | |
| 2033 | using v and x and fs unfolding inverse_less_1_iff by auto qed | |
| 2034 | show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof- | |
| 2035 | assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1") | |
| 2036 | using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed | |
| 2037 | ||
| 2038 | have "\<exists>surf. homeomorphism (frontier s) sphere pi surf" | |
| 2039 | apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)]) | |
| 2040 | apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) | |
| 2041 | unfolding inj_on_def prefer 3 apply(rule,rule,rule) | |
| 2042 | proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto | |
| 2043 | thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto | |
| 2044 | next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto | |
| 2045 | then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s" | |
| 2046 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto | |
| 2047 | thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto | |
| 2048 | next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y" | |
| 2049 | hence xys:"x\<in>s" "y\<in>s" using fs by auto | |
| 2050 | from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto | |
| 2051 | from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto | |
| 2052 | from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto | |
| 2053 | have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)" | |
| 2054 | unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto | |
| 2055 | hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff | |
| 2056 | using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]] | |
| 2057 | using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]] | |
| 2058 | using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym]) | |
| 2059 | thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto | |
| 2060 | qed(insert `0 \<notin> frontier s`, auto) | |
| 2061 | then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x" "pi ` frontier s = sphere" "continuous_on (frontier s) pi" | |
| 2062 | "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto | |
| 2063 | ||
| 2064 |   have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
 | |
| 2065 | apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto | |
| 2066 | ||
| 2067 |   { fix x assume as:"x \<in> cball (0::real^'n) 1"
 | |
| 2068 | have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") | |
| 2069 | case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm) | |
| 2070 | thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1]) | |
| 2071 | apply(rule_tac fs[unfolded subset_eq, rule_format]) | |
| 2072 | unfolding surf(5)[THEN sym] by auto | |
| 2073 | next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format]) | |
| 2074 | unfolding surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this | |
| 2075 | ||
| 2076 |   { fix x assume "x\<in>s"
 | |
| 2077 | hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0") | |
| 2078 | case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto | |
| 2079 | next let ?a = "inverse (norm (surf (pi x)))" | |
| 2080 | case False hence invn:"inverse (norm x) \<noteq> 0" by auto | |
| 2081 | from False have pix:"pi x\<in>sphere" using pi(1) by auto | |
| 2082 | hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption | |
| 2083 | hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto | |
| 2084 | hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply - | |
| 2085 | apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 2086 | have "norm (surf (pi x)) \<noteq> 0" using ** False by auto | |
| 2087 | hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))" | |
| 2088 | unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto | |
| 2089 | moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))" | |
| 2090 | unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] .. | |
| 2091 | moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto | |
| 2092 | hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm | |
| 2093 | using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]] | |
| 2094 | using False `x\<in>s` by(auto simp add:field_simps) | |
| 2095 | ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI) | |
| 2096 | apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] | |
| 2097 | unfolding pi(2)[OF `?a > 0`] by auto | |
| 2098 | qed } note hom2 = this | |
| 2099 | ||
| 2100 | show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"]) | |
| 2101 | apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom) | |
| 2102 | prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof- | |
| 2103 | fix x::"real^'n" assume as:"x \<in> cball 0 1" | |
| 2104 | thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0") | |
| 2105 | case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm) | |
| 2106 | using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto | |
| 2107 | next guess a using UNIV_witness[where 'a = 'n] .. | |
| 2108 | obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto | |
| 2109 | hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE) | |
| 2110 | unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def]) | |
| 2111 | case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI) | |
| 2112 | apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE) | |
| 2113 | unfolding norm_0 scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof- | |
| 2114 | fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e" | |
| 2115 | hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto | |
| 2116 | hence "norm (surf (pi x)) \<le> B" using B fs by auto | |
| 2117 | hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto | |
| 2118 | also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto | |
| 2119 | also have "\<dots> = e" using `B>0` by auto | |
| 2120 | finally show "norm x * norm (surf (pi x)) < e" by assumption | |
| 2121 | qed(insert `B>0`, auto) qed | |
| 2122 |   next { fix x assume as:"surf (pi x) = 0"
 | |
| 2123 | have "x = 0" proof(rule ccontr) | |
| 2124 | assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto | |
| 2125 | hence "surf (pi x) \<in> frontier s" using surf(5) by auto | |
| 2126 | thus False using `0\<notin>frontier s` unfolding as by simp qed | |
| 2127 | } note surf_0 = this | |
| 2128 | show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule) | |
| 2129 | fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)" | |
| 2130 | thus "x=y" proof(cases "x=0 \<or> y=0") | |
| 2131 | case True thus ?thesis using as by(auto elim: surf_0) next | |
| 2132 | case False | |
| 2133 | hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3) | |
| 2134 | using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto | |
| 2135 | moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto | |
| 2136 | ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto | |
| 2137 | moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0) | |
| 2138 | ultimately show ?thesis using injpi by auto qed qed | |
| 2139 | qed auto qed | |
| 2140 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2141 | lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n) set" | 
| 33175 | 2142 | assumes "convex s" "compact s" "cball 0 1 \<subseteq> s" | 
| 2143 | shows "s homeomorphic (cball (0::real^'n) 1)" | |
| 2144 | apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE) | |
| 2145 | fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)" | |
| 2146 | hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq | |
| 2147 | apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball) | |
| 2148 | unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof- | |
| 2149 | fix y assume "dist (u *\<^sub>R x) y < 1 - u" | |
| 2150 | hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s" | |
| 2151 | using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm | |
| 2152 | unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR | |
| 2153 | apply (rule mult_left_le_imp_le[of "1 - u"]) | |
| 2154 | unfolding class_semiring.mul_a using `u<1` by auto | |
| 2155 | thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u] | |
| 2156 | using as unfolding scaleR_scaleR by auto qed auto | |
| 2157 | thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed | |
| 2158 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2159 | lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n) set" | 
| 33175 | 2160 |   assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
 | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2161 | shows "s homeomorphic (cball (b::real^'n) e)" | 
| 33175 | 2162 | proof- obtain a where "a\<in>interior s" using assms(3) by auto | 
| 2163 | then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto | |
| 2164 | let ?d = "inverse d" and ?n = "0::real^'n" | |
| 2165 | have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s" | |
| 2166 | apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer | |
| 2167 | apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm | |
| 2168 | by(auto simp add: mult_right_le_one_le) | |
| 2169 | hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1" | |
| 2170 | using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity] | |
| 2171 | using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) | |
| 2172 | thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]]) | |
| 2173 | apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]]) | |
| 2174 | using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed | |
| 2175 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2176 | lemma homeomorphic_convex_compact: fixes s::"(real^'n) set" and t::"(real^'n) set" | 
| 33175 | 2177 |   assumes "convex s" "compact s" "interior s \<noteq> {}"
 | 
| 2178 |           "convex t" "compact t" "interior t \<noteq> {}"
 | |
| 2179 | shows "s homeomorphic t" | |
| 2180 | using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym) | |
| 2181 | ||
| 2182 | subsection {* Epigraphs of convex functions. *}
 | |
| 2183 | ||
| 36338 | 2184 | definition "epigraph s (f::_ \<Rightarrow> real) = {xy. fst xy \<in> s \<and> f (fst xy) \<le> snd xy}"
 | 
| 2185 | ||
| 2186 | lemma mem_epigraph: "(x, y) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto | |
| 33175 | 2187 | |
| 34964 | 2188 | (** This might break sooner or later. In fact it did already once. **) | 
| 33175 | 2189 | lemma convex_epigraph: | 
| 2190 | "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s" | |
| 36338 | 2191 | unfolding convex_def convex_on_def | 
| 2192 | unfolding Ball_def split_paired_All epigraph_def | |
| 2193 | unfolding mem_Collect_eq fst_conv snd_conv fst_add snd_add fst_scaleR snd_scaleR Ball_def[symmetric] | |
| 34964 | 2194 | apply safe defer apply(erule_tac x=x in allE,erule_tac x="f x" in allE) apply safe | 
| 2195 | apply(erule_tac x=xa in allE,erule_tac x="f xa" in allE) prefer 3 | |
| 36338 | 2196 | apply(rule_tac y="u * f a + v * f aa" in order_trans) defer by(auto intro!:mult_left_mono add_mono) | 
| 33175 | 2197 | |
| 36071 | 2198 | lemma convex_epigraphI: | 
| 2199 | "convex_on s f \<Longrightarrow> convex s \<Longrightarrow> convex(epigraph s f)" | |
| 2200 | unfolding convex_epigraph by auto | |
| 2201 | ||
| 2202 | lemma convex_epigraph_convex: | |
| 2203 | "convex s \<Longrightarrow> convex_on s f \<longleftrightarrow> convex(epigraph s f)" | |
| 2204 | by(simp add: convex_epigraph) | |
| 33175 | 2205 | |
| 2206 | subsection {* Use this to derive general bound property of convex function. *}
 | |
| 2207 | ||
| 2208 | lemma forall_of_pastecart: | |
| 2209 | "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson | |
| 2210 | apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto | |
| 2211 | ||
| 2212 | lemma forall_of_pastecart': | |
| 2213 | "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson | |
| 2214 | apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto | |
| 2215 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2216 | (* TODO: move *) | 
| 36338 | 2217 | lemma fst_setsum: "fst (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. fst (f x))" | 
| 2218 | by (cases "finite A", induct set: finite, simp_all) | |
| 2219 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2220 | (* TODO: move *) | 
| 36338 | 2221 | lemma snd_setsum: "snd (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. snd (f x))" | 
| 2222 | by (cases "finite A", induct set: finite, simp_all) | |
| 2223 | ||
| 33175 | 2224 | lemma convex_on: | 
| 2225 | assumes "convex s" | |
| 2226 |   shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
 | |
| 2227 |    f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
 | |
| 2228 | unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq | |
| 36338 | 2229 | unfolding fst_setsum snd_setsum fst_scaleR snd_scaleR | 
| 2230 | apply safe | |
| 2231 | apply (drule_tac x=k in spec) | |
| 2232 | apply (drule_tac x=u in spec) | |
| 2233 | apply (drule_tac x="\<lambda>i. (x i, f (x i))" in spec) | |
| 2234 | apply simp | |
| 2235 | using assms[unfolded convex] apply simp | |
| 2236 | apply(rule_tac j="\<Sum>i = 1..k. u i * f (fst (x i))" in real_le_trans) | |
| 2237 | defer apply(rule setsum_mono) apply(erule_tac x=i in allE) unfolding real_scaleR_def | |
| 34964 | 2238 | apply(rule mult_left_mono)using assms[unfolded convex] by auto | 
| 33175 | 2239 | |
| 36338 | 2240 | |
| 33175 | 2241 | subsection {* Convexity of general and special intervals. *}
 | 
| 2242 | ||
| 2243 | lemma is_interval_convex: | |
| 2244 | fixes s :: "(real ^ _) set" | |
| 2245 | assumes "is_interval s" shows "convex s" | |
| 2246 | unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 2247 | fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 2248 | hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto | |
| 2249 |   { fix a b assume "\<not> b \<le> u * a + v * b"
 | |
| 2250 | hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 2251 | hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps) | |
| 2252 | hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono) | |
| 2253 | } moreover | |
| 2254 |   { fix a b assume "\<not> u * a + v * b \<le> a"
 | |
| 2255 | hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 36350 | 2256 | hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: field_simps) | 
| 33175 | 2257 | hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) } | 
| 2258 | ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)]) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2259 | using as(3-) dimindex_ge_1 by auto qed | 
| 33175 | 2260 | |
| 2261 | lemma is_interval_connected: | |
| 2262 | fixes s :: "(real ^ _) set" | |
| 2263 | shows "is_interval s \<Longrightarrow> connected s" | |
| 2264 | using is_interval_convex convex_connected by auto | |
| 2265 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2266 | lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n}"
 | 
| 33175 | 2267 | apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto | 
| 2268 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2269 | (* FIXME: rewrite these lemmas without using vec1 | 
| 33175 | 2270 | subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
 | 
| 2271 | ||
| 2272 | lemma is_interval_1: | |
| 2273 | "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)" | |
| 34964 | 2274 | unfolding is_interval_def forall_1 by auto | 
| 33175 | 2275 | |
| 2276 | lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)" | |
| 2277 | apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1 | |
| 2278 | apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof- | |
| 2279 | fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s" | |
| 2280 | hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto | |
| 2281 |   let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
 | |
| 2282 |   { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2283 | using as(6) `y\<in>s` by (auto simp add: inner_vector_def) } | 
| 34964 | 2284 | moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def) | 
| 33175 | 2285 |   hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
 | 
| 2286 | ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]]) | |
| 2287 | apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) | |
| 36071 | 2288 | apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) | 
| 2289 | by(auto simp add: field_simps) qed | |
| 33175 | 2290 | |
| 2291 | lemma is_interval_convex_1: | |
| 2292 | "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" | |
| 36071 | 2293 | by(metis is_interval_convex convex_connected is_interval_connected_1) | 
| 33175 | 2294 | |
| 2295 | lemma convex_connected_1: | |
| 2296 | "connected s \<longleftrightarrow> convex (s::(real^1) set)" | |
| 36071 | 2297 | by(metis is_interval_convex convex_connected is_interval_connected_1) | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2298 | *) | 
| 33175 | 2299 | subsection {* Another intermediate value theorem formulation. *}
 | 
| 2300 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2301 | lemma ivt_increasing_component_on_1: fixes f::"real \<Rightarrow> real^'n" | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2302 |   assumes "a \<le> b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
 | 
| 33175 | 2303 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
| 2304 | proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
 | |
| 34964 | 2305 | using assms(1) by(auto simp add: vector_le_def) | 
| 33175 | 2306 |   thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
 | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2307 | using connected_continuous_image[OF assms(2) convex_connected[OF convex_real_interval(5)]] | 
| 33175 | 2308 | using assms by(auto intro!: imageI) qed | 
| 2309 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2310 | lemma ivt_increasing_component_1: fixes f::"real \<Rightarrow> real^'n" | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2311 |   shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
 | 
| 36071 | 2312 |    \<Longrightarrow> f a$k \<le> y \<Longrightarrow> y \<le> f b$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$k = y"
 | 
| 2313 | by(rule ivt_increasing_component_on_1) | |
| 2314 | (auto simp add: continuous_at_imp_continuous_on) | |
| 33175 | 2315 | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2316 | lemma ivt_decreasing_component_on_1: fixes f::"real \<Rightarrow> real^'n" | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2317 |   assumes "a \<le> b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
 | 
| 33175 | 2318 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
| 2319 | apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym] | |
| 2320 | apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2321 | by auto | 
| 33175 | 2322 | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2323 | lemma ivt_decreasing_component_1: fixes f::"real \<Rightarrow> real^'n" | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2324 |   shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
 | 
| 36071 | 2325 |     \<Longrightarrow> f b$k \<le> y \<Longrightarrow> y \<le> f a$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$k = y"
 | 
| 2326 | by(rule ivt_decreasing_component_on_1) | |
| 2327 | (auto simp: continuous_at_imp_continuous_on) | |
| 33175 | 2328 | |
| 2329 | subsection {* A bound within a convex hull, and so an interval. *}
 | |
| 2330 | ||
| 2331 | lemma convex_on_convex_hull_bound: | |
| 2332 | assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b" | |
| 2333 | shows "\<forall>x\<in> convex hull s. f x \<le> b" proof | |
| 2334 | fix x assume "x\<in>convex hull s" | |
| 2335 |   then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
 | |
| 2336 | unfolding convex_hull_indexed mem_Collect_eq by auto | |
| 2337 |   have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
 | |
| 2338 | unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono) | |
| 2339 | using assms(2) obt(1) by auto | |
| 2340 | thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] | |
| 2341 | unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed | |
| 2342 | ||
| 2343 | lemma unit_interval_convex_hull: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2344 |   "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
 | 
| 33175 | 2345 | proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
 | 
| 2346 |   { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
 | |
| 2347 | hence "x\<in>convex hull ?points" proof(induct n arbitrary: x) | |
| 2348 | case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto | |
| 2349 | thus "x\<in>convex hull ?points" using 01 by auto | |
| 2350 | next | |
| 2351 |     case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
 | |
| 2352 | case True hence "x = 0" unfolding Cart_eq by auto | |
| 2353 | thus "x\<in>convex hull ?points" using 01 by auto | |
| 2354 | next | |
| 2355 |       case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
 | |
| 2356 |       have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
 | |
| 2357 | then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto | |
| 2358 | have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j" | |
| 2359 | unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff | |
| 2360 | defer apply(rule_tac x=j in bexI) using i' by auto | |
| 2361 | have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0` | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2362 | by auto | 
| 33175 | 2363 | show ?thesis proof(cases "x$i=1") | 
| 2364 |         case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
 | |
| 2365 | fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1" | |
| 33758 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 hoelzl parents: 
33715diff
changeset | 2366 |           hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_le_def elim!:allE[where x=j])
 | 
| 33175 | 2367 |           hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
 | 
| 2368 | hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto | |
| 33758 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 hoelzl parents: 
33715diff
changeset | 2369 | thus False using True Suc(2) j by(auto simp add: vector_le_def elim!:ballE[where x=j]) qed | 
| 33175 | 2370 | thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2371 | by auto | 
| 33175 | 2372 | next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)" | 
| 2373 | case False hence *:"x = x$i *\<^sub>R (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *\<^sub>R (\<chi> j. ?y j)" unfolding Cart_eq | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2374 | by(auto simp add: field_simps) | 
| 33175 | 2375 |         { fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
 | 
| 2376 | apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2377 | using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps) | 
| 33175 | 2378 | hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto } | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2379 |         moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by auto
 | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2380 |         hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" by auto
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2381 |         hence **:"{j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by auto
 | 
| 33175 | 2382 |         have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
 | 
| 2383 | ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format]) | |
| 2384 | apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1)) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2385 | unfolding mem_interval using i01 Suc(3) by auto | 
| 33175 | 2386 | qed qed qed } note * = this | 
| 2387 | show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule | |
| 2388 |     apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
 | |
| 2389 | unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE) | |
| 33758 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 hoelzl parents: 
33715diff
changeset | 2390 | by(auto simp add: vector_le_def mem_def[of _ convex]) qed | 
| 33175 | 2391 | |
| 2392 | subsection {* And this is a finite set of vertices. *}
 | |
| 2393 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2394 | lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n} = convex hull s"
 | 
| 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2395 |   apply(rule that[of "{x::real^'n. \<forall>i. x$i=0 \<or> x$i=1}"])
 | 
| 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2396 | apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n) ` UNIV"]) | 
| 33175 | 2397 | prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof- | 
| 2398 | fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1" | |
| 2399 |   show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2400 | unfolding Cart_eq using as by auto qed auto | 
| 33175 | 2401 | |
| 2402 | subsection {* Hence any cube (could do any nonempty interval). *}
 | |
| 2403 | ||
| 2404 | lemma cube_convex_hull: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2405 |   assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
 | 
| 33175 | 2406 | let ?d = "(\<chi> i. d)::real^'n" | 
| 2407 |   have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. 1}" apply(rule set_ext, rule)
 | |
| 2408 | unfolding image_iff defer apply(erule bexE) proof- | |
| 2409 |     fix y assume as:"y\<in>{x - ?d .. x + ?d}"
 | |
| 2410 |     { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2411 | by auto | 
| 33175 | 2412 | hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)" | 
| 2413 | apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2414 | using assms by(auto simp add: field_simps) | 
| 33175 | 2415 | hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)" | 
| 2416 | "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) } | |
| 2417 |     hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2418 | by(auto simp add: Cart_eq field_simps) | 
| 33175 | 2419 |     thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2420 | using assms by(auto simp add: Cart_eq vector_le_def) | 
| 33175 | 2421 | next | 
| 2422 |     fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *\<^sub>R z" 
 | |
| 2423 | have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE) | |
| 2424 | apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2425 | using assms by(auto simp add: Cart_eq) | 
| 33175 | 2426 |     thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2427 | apply(erule_tac x=i in allE) using assms by(auto simp add: Cart_eq) qed | 
| 33175 | 2428 |   obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
 | 
| 2429 | thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed | |
| 2430 | ||
| 2431 | subsection {* Bounded convex function on open set is continuous. *}
 | |
| 2432 | ||
| 2433 | lemma convex_on_bounded_continuous: | |
| 36338 | 2434 |   fixes s :: "('a::real_normed_vector) set"
 | 
| 33175 | 2435 | assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b" | 
| 2436 | shows "continuous_on s f" | |
| 2437 | apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule) | |
| 2438 | fix x e assume "x\<in>s" "(0::real) < e" | |
| 2439 | def B \<equiv> "abs b + 1" | |
| 2440 | have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B" | |
| 2441 | unfolding B_def defer apply(drule assms(3)[rule_format]) by auto | |
| 2442 | obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto | |
| 2443 | show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e" | |
| 2444 | apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule) | |
| 2445 | fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" | |
| 2446 | show "\<bar>f y - f x\<bar> < e" proof(cases "y=x") | |
| 2447 | case False def t \<equiv> "k / norm (y - x)" | |
| 2448 | have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps) | |
| 2449 | have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2450 | apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) | |
| 2451 |       { def w \<equiv> "x + t *\<^sub>R (y - x)"
 | |
| 2452 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2453 | unfolding t_def using `k>0` by auto | |
| 2454 | have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 2455 | also have "\<dots> = 0" using `t>0` by(auto simp add:field_simps) | |
| 2456 | finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps) | |
| 2457 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2458 | hence "(f w - f x) / t < e" | |
| 2459 | using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2460 | hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption | |
| 2461 | using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w] | |
| 2462 | using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) } | |
| 2463 | moreover | |
| 2464 |       { def w \<equiv> "x - t *\<^sub>R (y - x)"
 | |
| 2465 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2466 | unfolding t_def using `k>0` by auto | |
| 2467 | have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 2468 | also have "\<dots>=x" using `t>0` by (auto simp add:field_simps) | |
| 2469 | finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps) | |
| 2470 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2471 | hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2472 | have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" | |
| 2473 | using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w] | |
| 2474 | using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps) | |
| 2475 | also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps) | |
| 2476 | also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps) | |
| 2477 | finally have "f x - f y < e" by auto } | |
| 2478 | ultimately show ?thesis by auto | |
| 2479 | qed(insert `0<e`, auto) | |
| 2480 | qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed | |
| 2481 | ||
| 2482 | subsection {* Upper bound on a ball implies upper and lower bounds. *}
 | |
| 2483 | ||
| 36338 | 2484 | lemma scaleR_2: | 
| 2485 | fixes x :: "'a::real_vector" | |
| 2486 | shows "scaleR 2 x = x + x" | |
| 2487 | unfolding one_add_one_is_two [symmetric] scaleR_left_distrib by simp | |
| 2488 | ||
| 33175 | 2489 | lemma convex_bounds_lemma: | 
| 36338 | 2490 | fixes x :: "'a::real_normed_vector" | 
| 33175 | 2491 | assumes "convex_on (cball x e) f" "\<forall>y \<in> cball x e. f y \<le> b" | 
| 2492 | shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)" | |
| 2493 | apply(rule) proof(cases "0 \<le> e") case True | |
| 2494 | fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y" | |
| 36338 | 2495 | have *:"x - (2 *\<^sub>R x - y) = y - x" by (simp add: scaleR_2) | 
| 33175 | 2496 | have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute) | 
| 2497 | have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps) | |
| 2498 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"] | |
| 2499 | using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps) | |
| 2500 | next case False fix y assume "y\<in>cball x e" | |
| 2501 | hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero) | |
| 2502 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed | |
| 2503 | ||
| 2504 | subsection {* Hence a convex function on an open set is continuous. *}
 | |
| 2505 | ||
| 2506 | lemma convex_on_continuous: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2507 | assumes "open (s::(real^'n) set)" "convex_on s f" | 
| 33175 | 2508 | shows "continuous_on s f" | 
| 2509 | unfolding continuous_on_eq_continuous_at[OF assms(1)] proof | |
| 2510 | note dimge1 = dimindex_ge_1[where 'a='n] | |
| 2511 | fix x assume "x\<in>s" | |
| 2512 | then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto | |
| 2513 |   def d \<equiv> "e / real CARD('n)"
 | |
| 2514 | have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) | |
| 2515 | let ?d = "(\<chi> i. d)::real^'n" | |
| 2516 |   obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2517 |   have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by auto
 | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2518 |   hence "c\<noteq>{}" using c by auto
 | 
| 33175 | 2519 | def k \<equiv> "Max (f ` c)" | 
| 2520 |   have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
 | |
| 2521 | apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof | |
| 2522 |     fix z assume z:"z\<in>{x - ?d..x + ?d}"
 | |
| 2523 | have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1 | |
| 36071 | 2524 | by (metis eq_divide_imp mult_frac_num real_dimindex_gt_0 real_eq_of_nat real_less_def real_mult_commute) | 
| 33175 | 2525 | show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono) | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2526 | using z[unfolded mem_interval] apply(erule_tac x=i in allE) by auto qed | 
| 33175 | 2527 |   hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
 | 
| 2528 | unfolding k_def apply(rule, rule Max_ge) using c(1) by auto | |
| 2529 | have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto | |
| 2530 | hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto | |
| 2531 | have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto | |
| 2532 | hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof | |
| 2533 | fix y assume y:"y\<in>cball x d" | |
| 2534 |     { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2535 | using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by auto } | 
| 33175 | 2536 | thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2537 | by auto qed | 
| 33175 | 2538 | hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous) | 
| 33270 | 2539 | apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) | 
| 2540 | apply force | |
| 2541 | done | |
| 2542 | thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball] | |
| 2543 | using `d>0` by auto | |
| 2544 | qed | |
| 2545 | ||
| 2546 | subsection {* Line segments, Starlike Sets, etc.*}
 | |
| 2547 | ||
| 2548 | (* Use the same overloading tricks as for intervals, so that | |
| 2549 | segment[a,b] is closed and segment(a,b) is open relative to affine hull. *) | |
| 33175 | 2550 | |
| 2551 | definition | |
| 36338 | 2552 | midpoint :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 33175 | 2553 | "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)" | 
| 2554 | ||
| 2555 | definition | |
| 36341 | 2556 | open_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where | 
| 33175 | 2557 |   "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
 | 
| 2558 | ||
| 2559 | definition | |
| 36341 | 2560 | closed_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where | 
| 33175 | 2561 |   "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
 | 
| 2562 | ||
| 2563 | definition "between = (\<lambda> (a,b). closed_segment a b)" | |
| 2564 | ||
| 2565 | lemmas segment = open_segment_def closed_segment_def | |
| 2566 | ||
| 2567 | definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)" | |
| 2568 | ||
| 2569 | lemma midpoint_refl: "midpoint x x = x" | |
| 2570 | unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto | |
| 2571 | ||
| 2572 | lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib) | |
| 2573 | ||
| 36338 | 2574 | lemma midpoint_eq_iff: "midpoint a b = c \<longleftrightarrow> a + b = c + c" | 
| 2575 | proof - | |
| 2576 | have "midpoint a b = c \<longleftrightarrow> scaleR 2 (midpoint a b) = scaleR 2 c" | |
| 2577 | by simp | |
| 2578 | thus ?thesis | |
| 2579 | unfolding midpoint_def scaleR_2 [symmetric] by simp | |
| 2580 | qed | |
| 2581 | ||
| 33175 | 2582 | lemma dist_midpoint: | 
| 36338 | 2583 | fixes a b :: "'a::real_normed_vector" shows | 
| 33175 | 2584 | "dist a (midpoint a b) = (dist a b) / 2" (is ?t1) | 
| 2585 | "dist b (midpoint a b) = (dist a b) / 2" (is ?t2) | |
| 2586 | "dist (midpoint a b) a = (dist a b) / 2" (is ?t3) | |
| 2587 | "dist (midpoint a b) b = (dist a b) / 2" (is ?t4) | |
| 2588 | proof- | |
| 36338 | 2589 | have *: "\<And>x y::'a. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto | 
| 2590 | have **:"\<And>x y::'a. 2 *\<^sub>R x = y \<Longrightarrow> norm x = (norm y) / 2" by auto | |
| 33175 | 2591 | note scaleR_right_distrib [simp] | 
| 36338 | 2592 | show ?t1 unfolding midpoint_def dist_norm apply (rule **) | 
| 2593 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2594 | show ?t2 unfolding midpoint_def dist_norm apply (rule *) | |
| 2595 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2596 | show ?t3 unfolding midpoint_def dist_norm apply (rule *) | |
| 2597 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2598 | show ?t4 unfolding midpoint_def dist_norm apply (rule **) | |
| 2599 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2600 | qed | |
| 33175 | 2601 | |
| 2602 | lemma midpoint_eq_endpoint: | |
| 36338 | 2603 | "midpoint a b = a \<longleftrightarrow> a = b" | 
| 33175 | 2604 | "midpoint a b = b \<longleftrightarrow> a = b" | 
| 36338 | 2605 | unfolding midpoint_eq_iff by auto | 
| 33175 | 2606 | |
| 2607 | lemma convex_contains_segment: | |
| 2608 | "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)" | |
| 2609 | unfolding convex_alt closed_segment_def by auto | |
| 2610 | ||
| 2611 | lemma convex_imp_starlike: | |
| 2612 |   "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
 | |
| 2613 | unfolding convex_contains_segment starlike_def by auto | |
| 2614 | ||
| 2615 | lemma segment_convex_hull: | |
| 2616 |  "closed_segment a b = convex hull {a,b}" proof-
 | |
| 2617 |   have *:"\<And>x. {x} \<noteq> {}" by auto
 | |
| 2618 | have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto | |
| 2619 | show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext) | |
| 2620 | unfolding mem_Collect_eq apply(rule,erule exE) | |
| 2621 | apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer | |
| 2622 | apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed | |
| 2623 | ||
| 2624 | lemma convex_segment: "convex (closed_segment a b)" | |
| 2625 | unfolding segment_convex_hull by(rule convex_convex_hull) | |
| 2626 | ||
| 2627 | lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b" | |
| 2628 | unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto | |
| 2629 | ||
| 2630 | lemma segment_furthest_le: | |
| 36341 | 2631 | fixes a b x y :: "real ^ 'n" | 
| 33175 | 2632 | assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or> norm(y - x) \<le> norm(y - b)" proof- | 
| 2633 |   obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
 | |
| 2634 | using assms[unfolded segment_convex_hull] by auto | |
| 2635 | thus ?thesis by(auto simp add:norm_minus_commute) qed | |
| 2636 | ||
| 2637 | lemma segment_bound: | |
| 36341 | 2638 | fixes x a b :: "real ^ 'n" | 
| 33175 | 2639 | assumes "x \<in> closed_segment a b" | 
| 2640 | shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)" | |
| 2641 | using segment_furthest_le[OF assms, of a] | |
| 2642 | using segment_furthest_le[OF assms, of b] | |
| 2643 | by (auto simp add:norm_minus_commute) | |
| 2644 | ||
| 2645 | lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
 | |
| 2646 | ||
| 2647 | lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b" | |
| 2648 | unfolding between_def mem_def by auto | |
| 2649 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2650 | lemma between:"between (a,b) (x::real^'n) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)" | 
| 33175 | 2651 | proof(cases "a = b") | 
| 2652 | case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric] | |
| 2653 | by(auto simp add:segment_refl dist_commute) next | |
| 2654 | case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto | |
| 2655 | have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps) | |
| 2656 | show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq | |
| 2657 | apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof- | |
| 2658 | fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" | |
| 2659 | hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)" | |
| 2660 | unfolding as(1) by(auto simp add:algebra_simps) | |
| 2661 | show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)" | |
| 2662 | unfolding norm_minus_commute[of x a] * Cart_eq using as(2,3) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2663 | by(auto simp add: field_simps) | 
| 33175 | 2664 | next assume as:"dist a b = dist a x + dist x b" | 
| 2665 | have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto | |
| 2666 | thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI) | |
| 2667 | unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule | |
| 2668 | fix i::'n have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i = | |
| 2669 | ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2670 | using Fal by(auto simp add: field_simps) | 
| 33175 | 2671 | also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal]) | 
| 2672 | unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2673 | by(auto simp add:field_simps) | 
| 33175 | 2674 | finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i" by auto | 
| 2675 | qed(insert Fal2, auto) qed qed | |
| 2676 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2677 | lemma between_midpoint: fixes a::"real^'n" shows | 
| 33175 | 2678 | "between (a,b) (midpoint a b)" (is ?t1) | 
| 2679 | "between (b,a) (midpoint a b)" (is ?t2) | |
| 2680 | proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto | |
| 2681 | show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2682 | by(auto simp add:field_simps Cart_eq) qed | 
| 33175 | 2683 | |
| 2684 | lemma between_mem_convex_hull: | |
| 2685 |   "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
 | |
| 2686 | unfolding between_mem_segment segment_convex_hull .. | |
| 2687 | ||
| 2688 | subsection {* Shrinking towards the interior of a convex set. *}
 | |
| 2689 | ||
| 2690 | lemma mem_interior_convex_shrink: | |
| 2691 | fixes s :: "(real ^ _) set" | |
| 2692 | assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1" | |
| 2693 | shows "x - e *\<^sub>R (x - c) \<in> interior s" | |
| 2694 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2695 | show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI) | |
| 2696 | apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule) | |
| 2697 | fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d" | |
| 2698 | have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) | |
| 2699 | have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" | |
| 2700 | unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule norm_eqI) using `e>0` | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2701 | by(auto simp add: Cart_eq field_simps) | 
| 33175 | 2702 | also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:norm_eqI simp add: algebra_simps) | 
| 2703 | also have "\<dots> < d" using as[unfolded dist_norm] and `e>0` | |
| 2704 | by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute) | |
| 2705 | finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format]) | |
| 2706 | apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto | |
| 2707 | qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed | |
| 2708 | ||
| 2709 | lemma mem_interior_closure_convex_shrink: | |
| 2710 | fixes s :: "(real ^ _) set" | |
| 2711 | assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1" | |
| 2712 | shows "x - e *\<^sub>R (x - c) \<in> interior s" | |
| 2713 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2714 | have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s") | |
| 2715 | case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next | |
| 2716 | case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto | |
| 2717 | show ?thesis proof(cases "e=1") | |
| 2718 | case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1" | |
| 2719 | using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto | |
| 2720 | thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next | |
| 2721 | case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0" | |
| 2722 | using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos) | |
| 2723 | then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)" | |
| 2724 | using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto | |
| 2725 | thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed | |
| 2726 | then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto | |
| 2727 | def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)" | |
| 2728 | have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib) | |
| 2729 | have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format]) | |
| 2730 | unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5) | |
| 2731 | by(auto simp add:field_simps norm_minus_commute) | |
| 2732 | thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) | |
| 2733 | using assms(1,4-5) `y\<in>s` by auto qed | |
| 2734 | ||
| 2735 | subsection {* Some obvious but surprisingly hard simplex lemmas. *}
 | |
| 2736 | ||
| 2737 | lemma simplex: | |
| 2738 | assumes "finite s" "0 \<notin> s" | |
| 2739 |   shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
 | |
| 2740 | unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq | |
| 2741 | apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)] | |
| 2742 | apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2) | |
| 2743 | unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto | |
| 2744 | ||
| 2745 | lemma std_simplex: | |
| 2746 |   "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2747 |         {x::real^'n . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
 | 
| 33175 | 2748 | proof- let ?D = "UNIV::'n set" | 
| 2749 | have "0\<notin>?p" by(auto simp add: basis_nonzero) | |
| 2750 |   have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
 | |
| 2751 | note sumbas = this setsum_reindex[OF basis_inj, unfolded o_def] | |
| 2752 | show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule | |
| 2753 | apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof- | |
| 2754 |     fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *\<^sub>R x) = x"
 | |
| 2755 | have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by auto | |
| 2756 |     hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
 | |
| 2757 | show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule) | |
| 2758 | fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto | |
| 2759 | qed(insert as(2)[unfolded **], auto) | |
| 2760 | next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1" | |
| 2761 |     show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *\<^sub>R x) = x"
 | |
| 2762 | apply(rule_tac x="\<lambda>y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) | |
| 2763 | unfolding sumbas using as(2) and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by(auto simp add:inner_basis) qed qed | |
| 2764 | ||
| 2765 | lemma interior_std_simplex: | |
| 2766 |   "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2767 |   {x::real^'n. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
 | 
| 33175 | 2768 | apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball | 
| 2769 | unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof- | |
| 2770 | fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1" | |
| 2771 | show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof- | |
| 2772 | fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0` | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2773 | unfolding dist_norm by(auto simp add: norm_basis elim:allE[where x=i]) | 
| 33175 | 2774 | next guess a using UNIV_witness[where 'a='n] .. | 
| 2775 | have **:"dist x (x + (e / 2) *\<^sub>R basis a) < e" using `e>0` and norm_basis[of a] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2776 | unfolding dist_norm by(auto intro!: mult_strict_left_mono_comm) | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2777 | have "\<And>i. (x + (e / 2) *\<^sub>R basis a) $ i = x$i + (if i = a then e/2 else 0)" by auto | 
| 33175 | 2778 | hence *:"setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) | 
| 2779 | have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV" unfolding * setsum_addf | |
| 2780 | using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta') | |
| 2781 | also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto | |
| 2782 | finally show "setsum (op $ x) UNIV < 1" by auto qed | |
| 2783 | next | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2784 | fix x::"real^'n" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1" | 
| 33175 | 2785 | guess a using UNIV_witness[where 'a='b] .. | 
| 2786 |   let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
 | |
| 2787 | have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto | |
| 2788 | moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq) | |
| 2789 | ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" | |
| 2790 | apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof- | |
| 2791 | fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d" | |
| 2792 | have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono) | |
| 2793 | fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2794 | using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add: norm_minus_commute) | 
| 33175 | 2795 | thus "y $ i \<le> x $ i + ?d" by auto qed | 
| 2796 | also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq) | |
| 2797 | finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule) | |
| 2798 | fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2799 | by auto | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2800 | thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by auto | 
| 33175 | 2801 | qed auto qed auto qed | 
| 2802 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 2803 | lemma interior_std_simplex_nonempty: obtains a::"real^'n" where | 
| 33175 | 2804 |   "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
 | 
| 2805 |   let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b::real^'n. inverse (2 * real CARD('n)) *\<^sub>R b) {(basis i) | i. i \<in> ?D}"
 | |
| 2806 |   have *:"{basis i :: real ^ 'n | i. i \<in> ?D} = basis ` ?D" by auto
 | |
| 2807 |   { fix i have "?a $ i = inverse (2 * real CARD('n))"
 | |
| 2808 | unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def | |
| 2809 |     apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
 | |
| 2810 | unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) } | |
| 2811 | note ** = this | |
| 2812 | show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule) | |
| 2813 | fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next | |
| 2814 |     have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
 | |
| 2815 | also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps) | |
| 2816 | finally show "setsum (op $ ?a) ?D < 1" by auto qed qed | |
| 2817 | ||
| 2818 | subsection {* Paths. *}
 | |
| 2819 | ||
| 36341 | 2820 | definition | 
| 36443 | 2821 | path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | 
| 36341 | 2822 |   where "path g \<longleftrightarrow> continuous_on {0 .. 1} g"
 | 
| 2823 | ||
| 2824 | definition | |
| 36443 | 2825 | pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | 
| 36341 | 2826 | where "pathstart g = g 0" | 
| 2827 | ||
| 2828 | definition | |
| 36443 | 2829 | pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | 
| 36341 | 2830 | where "pathfinish g = g 1" | 
| 2831 | ||
| 2832 | definition | |
| 36443 | 2833 | path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set" | 
| 36341 | 2834 |   where "path_image g = g ` {0 .. 1}"
 | 
| 2835 | ||
| 2836 | definition | |
| 36443 | 2837 | reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a)" | 
| 36341 | 2838 | where "reversepath g = (\<lambda>x. g(1 - x))" | 
| 2839 | ||
| 2840 | definition | |
| 36443 | 2841 | joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a)" | 
| 36341 | 2842 | (infixr "+++" 75) | 
| 2843 | where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))" | |
| 2844 | ||
| 2845 | definition | |
| 36443 | 2846 | simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | 
| 36341 | 2847 | where "simple_path g \<longleftrightarrow> | 
| 33175 | 2848 |   (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | 
| 2849 | ||
| 36341 | 2850 | definition | 
| 36443 | 2851 | injective_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | 
| 36341 | 2852 |   where "injective_path g \<longleftrightarrow> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | 
| 33175 | 2853 | |
| 2854 | subsection {* Some lemmas about these concepts. *}
 | |
| 2855 | ||
| 2856 | lemma injective_imp_simple_path: | |
| 2857 | "injective_path g \<Longrightarrow> simple_path g" | |
| 2858 | unfolding injective_path_def simple_path_def by auto | |
| 2859 | ||
| 2860 | lemma path_image_nonempty: "path_image g \<noteq> {}"
 | |
| 2861 | unfolding path_image_def image_is_empty interval_eq_empty by auto | |
| 2862 | ||
| 2863 | lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g" | |
| 36341 | 2864 | unfolding pathstart_def path_image_def by auto | 
| 33175 | 2865 | |
| 2866 | lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g" | |
| 36341 | 2867 | unfolding pathfinish_def path_image_def by auto | 
| 33175 | 2868 | |
| 2869 | lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)" | |
| 36341 | 2870 | unfolding path_def path_image_def | 
| 2871 | apply (erule connected_continuous_image) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2872 | by(rule convex_connected, rule convex_real_interval) | 
| 33175 | 2873 | |
| 2874 | lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)" | |
| 36341 | 2875 | unfolding path_def path_image_def | 
| 2876 | by (erule compact_continuous_image, rule compact_real_interval) | |
| 33175 | 2877 | |
| 2878 | lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g" | |
| 2879 | unfolding reversepath_def by auto | |
| 2880 | ||
| 2881 | lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g" | |
| 2882 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 2883 | ||
| 2884 | lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g" | |
| 2885 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 2886 | ||
| 2887 | lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1" | |
| 2888 | unfolding pathstart_def joinpaths_def pathfinish_def by auto | |
| 2889 | ||
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2890 | lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2891 | unfolding pathstart_def joinpaths_def pathfinish_def by auto | 
| 33175 | 2892 | |
| 2893 | lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof- | |
| 2894 | have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g" | |
| 2895 | unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2896 | apply(rule_tac x="1 - xa" in bexI) by auto | 
| 33175 | 2897 | show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed | 
| 2898 | ||
| 2899 | lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof- | |
| 2900 | have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def | |
| 2901 | apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"]) | |
| 2902 | apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id) | |
| 34964 | 2903 |     apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto
 | 
| 36341 | 2904 | show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI) qed | 
| 33175 | 2905 | |
| 2906 | lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath | |
| 2907 | ||
| 2908 | lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2" | |
| 2909 | unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof- | |
| 2910 |   assume as:"continuous_on {0..1} (g1 +++ g2)"
 | |
| 2911 | have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)" | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2912 | "g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))" | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2913 | unfolding o_def by (auto simp add: add_divide_distrib) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2914 |   have "op *\<^sub>R (1 / 2) ` {0::real..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real)..1} \<subseteq> {0..1}"
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2915 | by auto | 
| 33175 | 2916 |   thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
 | 
| 2917 | apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose) | |
| 2918 | apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer | |
| 2919 | apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3 | |
| 2920 |     apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
 | |
| 2921 | apply(rule) defer apply rule proof- | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2922 |     fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real..1}"
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2923 | hence "x \<le> 1 / 2" unfolding image_iff by auto | 
| 33175 | 2924 | thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2925 |     fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real..1}"
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2926 | hence "x \<ge> 1 / 2" unfolding image_iff by auto | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2927 | thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "x = 1 / 2") | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2928 | case True hence "x = (1/2) *\<^sub>R 1" unfolding Cart_eq by auto | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2929 | thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by (auto simp add: mult_ac) | 
| 33175 | 2930 | qed (auto simp add:le_less joinpaths_def) qed | 
| 2931 | next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2932 |   have *:"{0 .. 1::real} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by auto
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2933 |   have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_ext, rule) unfolding image_iff 
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2934 | defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by auto | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2935 |   have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real}"
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2936 | apply (auto simp add: image_def) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2937 | apply (rule_tac x="(x + 1) / 2" in bexI) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2938 | apply (auto simp add: add_divide_distrib) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2939 | done | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2940 |   show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply (rule closed_real_atLeastAtMost)+ proof-
 | 
| 33175 | 2941 |     show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
 | 
| 2942 | unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2943 | unfolding ** apply(rule as(1)) unfolding joinpaths_def by auto next | 
| 33175 | 2944 |     show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
 | 
| 2945 | apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const) | |
| 2946 | unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def] | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2947 | by (auto simp add: mult_ac) qed qed | 
| 33175 | 2948 | |
| 2949 | lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof | |
| 2950 | fix x assume "x \<in> path_image (g1 +++ g2)" | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2951 |   then obtain y where y:"y\<in>{0..1}" "x = (if y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
 | 
| 33175 | 2952 | unfolding path_image_def image_iff joinpaths_def by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2953 | thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "y \<le> 1/2") | 
| 33175 | 2954 | apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1) | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2955 | by(auto intro!: imageI) qed | 
| 33175 | 2956 | |
| 2957 | lemma subset_path_image_join: | |
| 2958 | assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s" | |
| 2959 | using path_image_join_subset[of g1 g2] and assms by auto | |
| 2960 | ||
| 2961 | lemma path_image_join: | |
| 2962 | assumes "path g1" "path g2" "pathfinish g1 = pathstart g2" | |
| 2963 | shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)" | |
| 2964 | apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE) | |
| 2965 | fix x assume "x \<in> path_image g1" | |
| 2966 |   then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
 | |
| 2967 | thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | |
| 36341 | 2968 | apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by auto next | 
| 33175 | 2969 | fix x assume "x \<in> path_image g2" | 
| 2970 |   then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
 | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2971 | then show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | 
| 33175 | 2972 | apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def] | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2973 | by (auto simp add: add_divide_distrib) qed | 
| 33175 | 2974 | |
| 2975 | lemma not_in_path_image_join: | |
| 2976 | assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)" | |
| 2977 | using assms and path_image_join_subset[of g1 g2] by auto | |
| 2978 | ||
| 2979 | lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)" | |
| 2980 | using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+ | |
| 2981 | apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE) | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2982 | by auto | 
| 33175 | 2983 | |
| 2984 | lemma simple_path_join_loop: | |
| 2985 | assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1" | |
| 2986 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | |
| 2987 | shows "simple_path(g1 +++ g2)" | |
| 2988 | unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2" | |
| 2989 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2990 |   fix x y::"real" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2991 | show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x \<le> 1/2",case_tac[!] "y \<le> 1/2", unfold not_le) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2992 | assume as:"x \<le> 1 / 2" "y \<le> 1 / 2" | 
| 34964 | 2993 | hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto | 
| 33175 | 2994 |     moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
 | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2995 | by auto | 
| 33175 | 2996 | ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 2997 | next assume as:"x > 1 / 2" "y > 1 / 2" | 
| 34964 | 2998 | hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2999 |     moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as by auto
 | 
| 33175 | 3000 | ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3001 | next assume as:"x \<le> 1 / 2" "y > 1 / 2" | 
| 33175 | 3002 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3003 | using xy(1,2) by auto | 
| 33175 | 3004 | moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3005 | using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2) | 
| 36341 | 3006 | by (auto simp add: field_simps) | 
| 33175 | 3007 | ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3008 | hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1) | 
| 36341 | 3009 | using inj(1)[of "2 *\<^sub>R x" 0] by auto | 
| 33175 | 3010 | moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym] | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3011 | unfolding joinpaths_def pathfinish_def using as(2) and xy(2) | 
| 36341 | 3012 | using inj(2)[of "2 *\<^sub>R y - 1" 1] by auto | 
| 3013 | ultimately show ?thesis by auto | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3014 | next assume as:"x > 1 / 2" "y \<le> 1 / 2" | 
| 33175 | 3015 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3016 | using xy(1,2) by auto | 
| 33175 | 3017 | moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3018 | using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1) | 
| 36341 | 3019 | by (auto simp add: field_simps) | 
| 33175 | 3020 | ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3021 | hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2) | 
| 36341 | 3022 | using inj(1)[of "2 *\<^sub>R y" 0] by auto | 
| 33175 | 3023 | moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym] | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3024 | unfolding joinpaths_def pathfinish_def using as(1) and xy(1) | 
| 36341 | 3025 | using inj(2)[of "2 *\<^sub>R x - 1" 1] by auto | 
| 33175 | 3026 | ultimately show ?thesis by auto qed qed | 
| 3027 | ||
| 3028 | lemma injective_path_join: | |
| 3029 | assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2" | |
| 3030 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | |
| 3031 | shows "injective_path(g1 +++ g2)" | |
| 3032 | unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2" | |
| 3033 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 3034 |   fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3035 | show "x = y" proof(cases "x \<le> 1/2", case_tac[!] "y \<le> 1/2", unfold not_le) | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3036 | assume "x \<le> 1 / 2" "y \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3037 | unfolding joinpaths_def by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3038 | next assume "x > 1 / 2" "y > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3039 | unfolding joinpaths_def by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3040 | next assume as:"x \<le> 1 / 2" "y > 1 / 2" | 
| 33175 | 3041 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3042 | using xy(1,2) by auto | 
| 33175 | 3043 | hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto | 
| 3044 | thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2) | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3045 | unfolding pathstart_def pathfinish_def joinpaths_def | 
| 36341 | 3046 | by auto | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3047 | next assume as:"x > 1 / 2" "y \<le> 1 / 2" | 
| 33175 | 3048 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3049 | using xy(1,2) by auto | 
| 33175 | 3050 | hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto | 
| 3051 | thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2) | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3052 | unfolding pathstart_def pathfinish_def joinpaths_def | 
| 36341 | 3053 | by auto qed qed | 
| 33175 | 3054 | |
| 3055 | lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join | |
| 3056 | ||
| 3057 | subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | |
| 3058 | ||
| 36443 | 3059 | definition "shiftpath a (f::real \<Rightarrow> 'a::topological_space) = | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3060 | (\<lambda>x. if (a + x) \<le> 1 then f(a + x) else f(a + x - 1))" | 
| 33175 | 3061 | |
| 3062 | lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a" | |
| 3063 | unfolding pathstart_def shiftpath_def by auto | |
| 3064 | ||
| 3065 | lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g" | |
| 3066 | shows "pathfinish(shiftpath a g) = g a" | |
| 3067 | using assms unfolding pathstart_def pathfinish_def shiftpath_def | |
| 36341 | 3068 | by auto | 
| 33175 | 3069 | |
| 3070 | lemma endpoints_shiftpath: | |
| 3071 |   assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | |
| 3072 | shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a" | |
| 3073 | using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath) | |
| 3074 | ||
| 3075 | lemma closed_shiftpath: | |
| 3076 |   assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 3077 | shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)" | |
| 3078 | using endpoints_shiftpath[OF assms] by auto | |
| 3079 | ||
| 3080 | lemma path_shiftpath: | |
| 3081 |   assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 3082 | shows "path(shiftpath a g)" proof- | |
| 36341 | 3083 |   have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by auto
 | 
| 33175 | 3084 | have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)" | 
| 3085 | using assms(2)[unfolded pathfinish_def pathstart_def] by auto | |
| 3086 | show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3087 | apply(rule closed_real_atLeastAtMost)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3 | 
| 33175 | 3088 | apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3 | 
| 3089 | apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+ | |
| 3090 | apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3091 | using assms(3) and ** by(auto, auto simp add: field_simps) qed | 
| 33175 | 3092 | |
| 3093 | lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | |
| 3094 | shows "shiftpath (1 - a) (shiftpath a g) x = g x" | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3095 | using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto | 
| 33175 | 3096 | |
| 3097 | lemma path_image_shiftpath: | |
| 3098 |   assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | |
| 3099 | shows "path_image(shiftpath a g) = path_image g" proof- | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3100 |   { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3101 |     hence "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
 | 
| 33175 | 3102 | case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI) | 
| 3103 | using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3104 | by(auto simp add: field_simps atomize_not) next | 
| 33175 | 3105 | case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI) | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3106 | by(auto simp add: field_simps) qed } | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3107 | thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3108 | by(auto simp add: image_iff) qed | 
| 33175 | 3109 | |
| 3110 | subsection {* Special case of straight-line paths. *}
 | |
| 3111 | ||
| 3112 | definition | |
| 36341 | 3113 | linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" where | 
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3114 | "linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)" | 
| 33175 | 3115 | |
| 3116 | lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a" | |
| 3117 | unfolding pathstart_def linepath_def by auto | |
| 3118 | ||
| 3119 | lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b" | |
| 3120 | unfolding pathfinish_def linepath_def by auto | |
| 3121 | ||
| 3122 | lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 3123 | unfolding linepath_def by (intro continuous_intros) | 
| 33175 | 3124 | |
| 3125 | lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)" | |
| 3126 | using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on) | |
| 3127 | ||
| 3128 | lemma path_linepath[intro]: "path(linepath a b)" | |
| 3129 | unfolding path_def by(rule continuous_on_linepath) | |
| 3130 | ||
| 3131 | lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)" | |
| 3132 | unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer | |
| 3133 | unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI) | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3134 | by auto | 
| 33175 | 3135 | |
| 3136 | lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a" | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3137 | unfolding reversepath_def linepath_def by(rule ext, auto) | 
| 33175 | 3138 | |
| 36341 | 3139 | lemma injective_path_linepath: | 
| 3140 | assumes "a \<noteq> b" shows "injective_path(linepath a b)" | |
| 3141 | proof - | |
| 3142 |   { fix x y :: "real"
 | |
| 3143 | assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" | |
| 3144 | hence "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps) | |
| 3145 | with assms have "x = y" by simp } | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3146 | thus ?thesis unfolding injective_path_def linepath_def by(auto simp add: algebra_simps) qed | 
| 33175 | 3147 | |
| 3148 | lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath) | |
| 3149 | ||
| 3150 | subsection {* Bounding a point away from a path. *}
 | |
| 3151 | ||
| 36341 | 3152 | lemma not_on_path_ball: | 
| 3153 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 3154 | assumes "path g" "z \<notin> path_image g" | |
| 33175 | 3155 |   shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
 | 
| 3156 | obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y" | |
| 3157 | using distance_attains_inf[OF _ path_image_nonempty, of g z] | |
| 3158 | using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto | |
| 3159 | thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed | |
| 3160 | ||
| 36341 | 3161 | lemma not_on_path_cball: | 
| 3162 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 3163 | assumes "path g" "z \<notin> path_image g" | |
| 33175 | 3164 |   shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
 | 
| 3165 |   obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
 | |
| 3166 | moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto | |
| 3167 | ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed | |
| 3168 | ||
| 3169 | subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | |
| 3170 | ||
| 3171 | definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 3172 | ||
| 3173 | lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def | |
| 3174 | ||
| 3175 | lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s" | |
| 3176 | using assms unfolding path_defs by auto | |
| 3177 | ||
| 3178 | lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x" | |
| 3179 | unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms | |
| 36341 | 3180 | by(auto intro!:continuous_on_intros) | 
| 33175 | 3181 | |
| 3182 | lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s" | |
| 36341 | 3183 | by(auto intro!: path_component_mem path_component_refl) | 
| 33175 | 3184 | |
| 3185 | lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x" | |
| 36341 | 3186 | using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) | 
| 3187 | by auto | |
| 33175 | 3188 | |
| 3189 | lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z" | |
| 3190 | using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join) | |
| 3191 | ||
| 3192 | lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y" | |
| 3193 | unfolding path_component_def by auto | |
| 3194 | ||
| 3195 | subsection {* Can also consider it as a set, as the name suggests. *}
 | |
| 3196 | ||
| 3197 | lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
 | |
| 3198 | apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto | |
| 3199 | ||
| 3200 | lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto | |
| 3201 | ||
| 3202 | lemma path_component_subset: "(path_component s x) \<subseteq> s" | |
| 3203 | apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def) | |
| 3204 | ||
| 3205 | lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
 | |
| 3206 | apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set | |
| 3207 | apply(drule path_component_mem(1)) using path_component_refl by auto | |
| 3208 | ||
| 3209 | subsection {* Path connectedness of a space. *}
 | |
| 3210 | ||
| 3211 | definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 3212 | ||
| 3213 | lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)" | |
| 3214 | unfolding path_connected_def path_component_def by auto | |
| 3215 | ||
| 3216 | lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)" | |
| 3217 | unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) | |
| 3218 | unfolding subset_eq mem_path_component_set Ball_def mem_def by auto | |
| 3219 | ||
| 3220 | subsection {* Some useful lemmas about path-connectedness. *}
 | |
| 3221 | ||
| 36341 | 3222 | lemma convex_imp_path_connected: | 
| 3223 | fixes s :: "'a::real_normed_vector set" | |
| 3224 | assumes "convex s" shows "path_connected s" | |
| 33175 | 3225 | unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI) | 
| 3226 | unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto | |
| 3227 | ||
| 3228 | lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s" | |
| 3229 | unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof- | |
| 3230 |   fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 3231 | then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto | |
| 3232 | then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2" | |
| 3233 | using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3234 |   have *:"connected {0..1::real}" by(auto intro!: convex_connected convex_real_interval)
 | 
| 33175 | 3235 |   have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
 | 
| 3236 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
 | |
| 36340 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3237 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt
 | 
| 
46328f9ddf3a
simplify types of path operations (use real instead of real^1)
 huffman parents: 
36339diff
changeset | 3238 | by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) | 
| 33175 | 3239 |   ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | 
| 3240 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)] | |
| 3241 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed | |
| 3242 | ||
| 36341 | 3243 | lemma open_path_component: | 
| 3244 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 3245 | assumes "open s" shows "open(path_component s x)" | |
| 33175 | 3246 | unfolding open_contains_ball proof | 
| 3247 | fix y assume as:"y \<in> path_component s x" | |
| 3248 | hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto | |
| 3249 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 3250 | show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof- | |
| 3251 | fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer | |
| 3252 | apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0` | |
| 3253 | using as[unfolded mem_def] by auto qed qed | |
| 3254 | ||
| 36341 | 3255 | lemma open_non_path_component: | 
| 3256 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 3257 | assumes "open s" shows "open(s - path_component s x)" | |
| 3258 | unfolding open_contains_ball proof | |
| 33175 | 3259 | fix y assume as:"y\<in>s - path_component s x" | 
| 3260 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 3261 | show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr) | |
| 3262 | fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x" | |
| 3263 | hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0` | |
| 3264 | apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)]) | |
| 3265 | apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto | |
| 3266 | thus False using as by auto qed(insert e(2), auto) qed | |
| 3267 | ||
| 36341 | 3268 | lemma connected_open_path_connected: | 
| 3269 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 3270 | assumes "open s" "connected s" shows "path_connected s" | |
| 33175 | 3271 | unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule) | 
| 3272 | fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr) | |
| 3273 | assume "y \<notin> path_component s x" moreover | |
| 3274 |     have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
 | |
| 3275 | ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] | |
| 3276 | using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto | |
| 3277 | qed qed | |
| 3278 | ||
| 3279 | lemma path_connected_continuous_image: | |
| 3280 | assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)" | |
| 3281 | unfolding path_connected_def proof(rule,rule) | |
| 3282 | fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s" | |
| 3283 | then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto | |
| 3284 | guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] .. | |
| 3285 | thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'" | |
| 3286 | unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs | |
| 3287 |     using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
 | |
| 3288 | ||
| 3289 | lemma homeomorphic_path_connectedness: | |
| 3290 | "s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)" | |
| 3291 | unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule | |
| 3292 | apply(drule_tac f=f in path_connected_continuous_image) prefer 3 | |
| 3293 | apply(drule_tac f=g in path_connected_continuous_image) by auto | |
| 3294 | ||
| 3295 | lemma path_connected_empty: "path_connected {}"
 | |
| 3296 | unfolding path_connected_def by auto | |
| 3297 | ||
| 3298 | lemma path_connected_singleton: "path_connected {a}"
 | |
| 36341 | 3299 | unfolding path_connected_def pathstart_def pathfinish_def path_image_def | 
| 3300 | apply (clarify, rule_tac x="\<lambda>x. a" in exI, simp add: image_constant_conv) | |
| 3301 | apply (simp add: path_def continuous_on_const) | |
| 3302 | done | |
| 33175 | 3303 | |
| 3304 | lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | |
| 3305 | shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule) | |
| 3306 | fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t" | |
| 3307 | from assms(3) obtain z where "z \<in> s \<inter> t" by auto | |
| 3308 | thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- | |
| 3309 | apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z]) | |
| 3310 | by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed | |
| 3311 | ||
| 3312 | subsection {* sphere is path-connected. *}
 | |
| 3313 | ||
| 3314 | lemma path_connected_punctured_universe: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 3315 |  assumes "2 \<le> CARD('n::finite)" shows "path_connected((UNIV::(real^'n) set) - {a})" proof-
 | 
| 33175 | 3316 |   obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
 | 
| 3317 |   let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
 | |
| 3318 | let ?basis = "\<lambda>k. basis (\<psi> k)" | |
| 3319 |   let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. inner (basis (\<psi> i)) x \<noteq> 0}"
 | |
| 3320 |   have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
 | |
| 3321 |     have *:"\<And>k. ?A (Suc k) = {x. inner (?basis (Suc k)) x < 0} \<union> {x. inner (?basis (Suc k)) x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
 | |
| 3322 | apply(erule UnE)+ unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI) | |
| 3323 | by(auto elim!: ballE simp add: not_less le_Suc_eq) | |
| 3324 |     fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
 | |
| 3325 | case (Suc k) show ?case proof(cases "k = 1") | |
| 3326 |         case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
 | |
| 3327 | hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto | |
| 3328 |         hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < inner (?basis (Suc k)) x} \<inter> (?A k)" 
 | |
| 3329 |           "?basis k - ?basis (Suc k) \<in> {x. 0 > inner (?basis (Suc k)) x} \<inter> ({x. 0 < inner (?basis (Suc k)) x} \<union> (?A k))" using d
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 3330 | by(auto simp add: inner_basis intro!:bexI[where x=k]) | 
| 33175 | 3331 | show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) | 
| 3332 | prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt) | |
| 36071 | 3333 | apply(rule Suc(1)) using d ** False by auto | 
| 33175 | 3334 |       next case True hence d:"1\<in>{1..CARD('n)}" "2\<in>{1..CARD('n)}" using Suc(2) by auto
 | 
| 3335 | have ***:"Suc 1 = 2" by auto | |
| 3336 |         have **:"\<And>s t P Q. s \<union> t \<union> {x. P x \<or> Q x} = (s \<union> {x. P x}) \<union> (t \<union> {x. Q x})" by auto
 | |
| 34964 | 3337 |         have nequals0I:"\<And>x A. x\<in>A \<Longrightarrow> A \<noteq> {}" by auto
 | 
| 36071 | 3338 | have "\<psi> 2 \<noteq> \<psi> (Suc 0)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto | 
| 33175 | 3339 | thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply - | 
| 3340 | apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected) | |
| 3341 | apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I) | |
| 3342 | apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I) | |
| 3343 | apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 3344 | using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add: inner_basis) | 
| 33175 | 3345 | qed qed auto qed note lem = this | 
| 3346 | ||
| 3347 |   have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0) \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)"
 | |
| 3348 | apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof- | |
| 3349 | fix x::"real^'n" and i assume as:"inner (basis i) x \<noteq> 0" | |
| 3350 |     have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
 | |
| 3351 |     then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
 | |
| 3352 |     thus "\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
 | |
| 3353 |   have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
 | |
| 3354 | apply rule apply(rule_tac x="x - a" in bexI) by auto | |
| 3355 | have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)" unfolding Cart_eq by(auto simp add: inner_basis) | |
| 3356 | show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ | |
| 3357 |     unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
 | |
| 3358 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 3359 | lemma path_connected_sphere: assumes "2 \<le> CARD('n::finite)" shows "path_connected {x::real^'n. norm(x - a) = r}" proof(cases "r\<le>0")
 | 
| 33175 | 3360 | case True thus ?thesis proof(cases "r=0") | 
| 3361 |     case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
 | |
| 3362 | thus ?thesis using path_connected_empty by auto | |
| 3363 | qed(auto intro!:path_connected_singleton) next | |
| 3364 |   case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
 | |
| 3365 | unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib) | |
| 3366 |   have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule)
 | |
| 3367 | unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm) | |
| 3368 |   have "continuous_on (UNIV - {0}) (\<lambda>x::real^'n. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
 | |
| 3369 | apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within) | |
| 3370 | apply(rule continuous_at_norm[unfolded o_def]) by auto | |
| 3371 | thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 3372 | by(auto intro!: path_connected_continuous_image continuous_on_intros) qed | 
| 33175 | 3373 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 3374 | lemma connected_sphere: "2 \<le> CARD('n) \<Longrightarrow> connected {x::real^'n. norm(x - a) = r}"
 | 
| 33175 | 3375 | using path_connected_sphere path_connected_imp_connected by auto | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 3376 | |
| 33175 | 3377 | end |