| author | blanchet | 
| Fri, 21 Apr 2017 21:37:01 +0200 | |
| changeset 65547 | 701bb74c5f97 | 
| parent 64966 | d53d7ca3303e | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 63575 | 1 | (* Title: HOL/Complete_Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Author: Markus Wenzel | |
| 5 | Author: Florian Haftmann | |
| 6 | *) | |
| 11979 | 7 | |
| 60758 | 8 | section \<open>Complete lattices\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 9 | |
| 44860 
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
 haftmann parents: 
44845diff
changeset | 10 | theory Complete_Lattices | 
| 63575 | 11 | imports Fun | 
| 32139 | 12 | begin | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 13 | |
| 60758 | 14 | subsection \<open>Syntactic infimum and supremum operations\<close> | 
| 32879 | 15 | |
| 16 | class Inf = | |
| 63575 | 17 |   fixes Inf :: "'a set \<Rightarrow> 'a"  ("\<Sqinter>_" [900] 900)
 | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 18 | begin | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 19 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 20 | abbreviation INFIMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63575 | 21 | where "INFIMUM A f \<equiv> \<Sqinter>(f ` A)" | 
| 56166 | 22 | |
| 63575 | 23 | lemma INF_image [simp]: "INFIMUM (f ` A) g = INFIMUM A (g \<circ> f)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 24 | by (simp add: image_comp) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 25 | |
| 63575 | 26 | lemma INF_identity_eq [simp]: "INFIMUM A (\<lambda>x. x) = \<Sqinter>A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 27 | by simp | 
| 56166 | 28 | |
| 63575 | 29 | lemma INF_id_eq [simp]: "INFIMUM A id = \<Sqinter>A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 30 | by simp | 
| 56166 | 31 | |
| 63575 | 32 | lemma INF_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> INFIMUM A C = INFIMUM B D" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 33 | by (simp add: image_def) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 34 | |
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 35 | lemma strong_INF_cong [cong]: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 36 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> INFIMUM A C = INFIMUM B D" | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 37 | unfolding simp_implies_def by (fact INF_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 38 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 39 | end | 
| 32879 | 40 | |
| 41 | class Sup = | |
| 63575 | 42 |   fixes Sup :: "'a set \<Rightarrow> 'a"  ("\<Squnion>_" [900] 900)
 | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 43 | begin | 
| 32879 | 44 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 45 | abbreviation SUPREMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63575 | 46 | where "SUPREMUM A f \<equiv> \<Squnion>(f ` A)" | 
| 56166 | 47 | |
| 63575 | 48 | lemma SUP_image [simp]: "SUPREMUM (f ` A) g = SUPREMUM A (g \<circ> f)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 49 | by (simp add: image_comp) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 50 | |
| 63575 | 51 | lemma SUP_identity_eq [simp]: "SUPREMUM A (\<lambda>x. x) = \<Squnion>A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 52 | by simp | 
| 56166 | 53 | |
| 63575 | 54 | lemma SUP_id_eq [simp]: "SUPREMUM A id = \<Squnion>A" | 
| 56166 | 55 | by (simp add: id_def) | 
| 56 | ||
| 63575 | 57 | lemma SUP_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> SUPREMUM A C = SUPREMUM B D" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 58 | by (simp add: image_def) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 59 | |
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 60 | lemma strong_SUP_cong [cong]: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 61 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> SUPREMUM A C = SUPREMUM B D" | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 62 | unfolding simp_implies_def by (fact SUP_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 63 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 64 | end | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 65 | |
| 60758 | 66 | text \<open> | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 67 |   Note: must use names @{const INFIMUM} and @{const SUPREMUM} here instead of
 | 
| 61799 | 68 | \<open>INF\<close> and \<open>SUP\<close> to allow the following syntax coexist | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 69 | with the plain constant names. | 
| 60758 | 70 | \<close> | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 71 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 72 | syntax (ASCII) | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 73 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 74 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 75 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 76 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 77 | |
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 78 | syntax (output) | 
| 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 79 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
| 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 80 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
 | 
| 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 81 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
| 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 82 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
 | 
| 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 83 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 84 | syntax | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 85 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 86 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 87 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 88 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 89 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 90 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 91 | "\<Sqinter>x y. B" \<rightleftharpoons> "\<Sqinter>x. \<Sqinter>y. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 92 | "\<Sqinter>x. B" \<rightleftharpoons> "CONST INFIMUM CONST UNIV (\<lambda>x. B)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 93 | "\<Sqinter>x. B" \<rightleftharpoons> "\<Sqinter>x \<in> CONST UNIV. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 94 | "\<Sqinter>x\<in>A. B" \<rightleftharpoons> "CONST INFIMUM A (\<lambda>x. B)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 95 | "\<Squnion>x y. B" \<rightleftharpoons> "\<Squnion>x. \<Squnion>y. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 96 | "\<Squnion>x. B" \<rightleftharpoons> "CONST SUPREMUM CONST UNIV (\<lambda>x. B)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 97 | "\<Squnion>x. B" \<rightleftharpoons> "\<Squnion>x \<in> CONST UNIV. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 98 | "\<Squnion>x\<in>A. B" \<rightleftharpoons> "CONST SUPREMUM A (\<lambda>x. B)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 99 | |
| 60758 | 100 | print_translation \<open> | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 101 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFIMUM} @{syntax_const "_INF"},
 | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 102 |     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPREMUM} @{syntax_const "_SUP"}]
 | 
| 61799 | 103 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 46691 | 104 | |
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 105 | |
| 60758 | 106 | subsection \<open>Abstract complete lattices\<close> | 
| 32139 | 107 | |
| 60758 | 108 | text \<open>A complete lattice always has a bottom and a top, | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 109 | so we include them into the following type class, | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 110 | along with assumptions that define bottom and top | 
| 60758 | 111 | in terms of infimum and supremum.\<close> | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 112 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 113 | class complete_lattice = lattice + Inf + Sup + bot + top + | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 114 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<le> x" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 115 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> \<Sqinter>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 116 | and Sup_upper: "x \<in> A \<Longrightarrow> x \<le> \<Squnion>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 117 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> \<Squnion>A \<le> z" | 
| 63575 | 118 |     and Inf_empty [simp]: "\<Sqinter>{} = \<top>"
 | 
| 119 |     and Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 120 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 121 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 122 | subclass bounded_lattice | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 123 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 124 | fix a | 
| 63575 | 125 | show "\<bottom> \<le> a" | 
| 126 | by (auto intro: Sup_least simp only: Sup_empty [symmetric]) | |
| 127 | show "a \<le> \<top>" | |
| 128 | by (auto intro: Inf_greatest simp only: Inf_empty [symmetric]) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 129 | qed | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 130 | |
| 63575 | 131 | lemma dual_complete_lattice: "class.complete_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 132 | by (auto intro!: class.complete_lattice.intro dual_lattice) | 
| 63575 | 133 | (unfold_locales, (fact Inf_empty Sup_empty Sup_upper Sup_least Inf_lower Inf_greatest)+) | 
| 32678 | 134 | |
| 44040 | 135 | end | 
| 136 | ||
| 137 | context complete_lattice | |
| 138 | begin | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 139 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 140 | lemma Sup_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 141 | "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 142 | by (blast intro: antisym Sup_least Sup_upper) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 143 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 144 | lemma Inf_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 145 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 146 | by (blast intro: antisym Inf_greatest Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 147 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 148 | lemma SUP_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 149 | "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x" | 
| 56166 | 150 | using Sup_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 151 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 152 | lemma INF_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 153 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x" | 
| 56166 | 154 | using Inf_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 155 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 156 | lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> f i" | 
| 56166 | 157 | using Inf_lower [of _ "f ` A"] by simp | 
| 44040 | 158 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 159 | lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<le> f i) \<Longrightarrow> u \<le> (\<Sqinter>i\<in>A. f i)" | 
| 56166 | 160 | using Inf_greatest [of "f ` A"] by auto | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 161 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 162 | lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 56166 | 163 | using Sup_upper [of _ "f ` A"] by simp | 
| 44040 | 164 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 165 | lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<le> u" | 
| 56166 | 166 | using Sup_least [of "f ` A"] by auto | 
| 44040 | 167 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 168 | lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<le> v \<Longrightarrow> \<Sqinter>A \<le> v" | 
| 44040 | 169 | using Inf_lower [of u A] by auto | 
| 170 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 171 | lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<le> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> u" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 172 | using INF_lower [of i A f] by auto | 
| 44040 | 173 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 174 | lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<le> u \<Longrightarrow> v \<le> \<Squnion>A" | 
| 44040 | 175 | using Sup_upper [of u A] by auto | 
| 176 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 177 | lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<le> f i \<Longrightarrow> u \<le> (\<Squnion>i\<in>A. f i)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 178 | using SUP_upper [of i A f] by auto | 
| 44040 | 179 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 180 | lemma le_Inf_iff: "b \<le> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<le> a)" | 
| 44040 | 181 | by (auto intro: Inf_greatest dest: Inf_lower) | 
| 182 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 183 | lemma le_INF_iff: "u \<le> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<le> f i)" | 
| 56166 | 184 | using le_Inf_iff [of _ "f ` A"] by simp | 
| 44040 | 185 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 186 | lemma Sup_le_iff: "\<Squnion>A \<le> b \<longleftrightarrow> (\<forall>a\<in>A. a \<le> b)" | 
| 44040 | 187 | by (auto intro: Sup_least dest: Sup_upper) | 
| 188 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 189 | lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<le> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<le> u)" | 
| 56166 | 190 | using Sup_le_iff [of "f ` A"] by simp | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 191 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 192 | lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 193 | by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 194 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 195 | lemma INF_insert [simp]: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFIMUM A f" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 196 | by (simp cong del: strong_INF_cong) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 197 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 198 | lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 199 | by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 200 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 201 | lemma SUP_insert [simp]: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPREMUM A f" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 202 | by (simp cong del: strong_SUP_cong) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 203 | |
| 44067 | 204 | lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 205 | by (simp cong del: strong_INF_cong) | 
| 44040 | 206 | |
| 44067 | 207 | lemma SUP_empty [simp]: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 208 | by (simp cong del: strong_SUP_cong) | 
| 44040 | 209 | |
| 63575 | 210 | lemma Inf_UNIV [simp]: "\<Sqinter>UNIV = \<bottom>" | 
| 44040 | 211 | by (auto intro!: antisym Inf_lower) | 
| 41080 | 212 | |
| 63575 | 213 | lemma Sup_UNIV [simp]: "\<Squnion>UNIV = \<top>" | 
| 44040 | 214 | by (auto intro!: antisym Sup_upper) | 
| 41080 | 215 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 216 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 44040 | 217 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 218 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 219 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 44040 | 220 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 221 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 222 | lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<le> \<Sqinter>B" | 
| 43899 | 223 | by (auto intro: Inf_greatest Inf_lower) | 
| 224 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 225 | lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<le> \<Squnion>B" | 
| 43899 | 226 | by (auto intro: Sup_least Sup_upper) | 
| 227 | ||
| 38705 | 228 | lemma Inf_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 229 | assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 230 | shows "\<Sqinter>A \<le> \<Sqinter>B" | 
| 38705 | 231 | proof (rule Inf_greatest) | 
| 232 | fix b assume "b \<in> B" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 233 | with assms obtain a where "a \<in> A" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 234 | from \<open>a \<in> A\<close> have "\<Sqinter>A \<le> a" by (rule Inf_lower) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 235 | with \<open>a \<le> b\<close> show "\<Sqinter>A \<le> b" by auto | 
| 38705 | 236 | qed | 
| 237 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 238 | lemma INF_mono: "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<le> (\<Sqinter>n\<in>B. g n)" | 
| 56166 | 239 | using Inf_mono [of "g ` B" "f ` A"] by auto | 
| 44041 | 240 | |
| 41082 | 241 | lemma Sup_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 242 | assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 243 | shows "\<Squnion>A \<le> \<Squnion>B" | 
| 41082 | 244 | proof (rule Sup_least) | 
| 245 | fix a assume "a \<in> A" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 246 | with assms obtain b where "b \<in> B" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 247 | from \<open>b \<in> B\<close> have "b \<le> \<Squnion>B" by (rule Sup_upper) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 248 | with \<open>a \<le> b\<close> show "a \<le> \<Squnion>B" by auto | 
| 41082 | 249 | qed | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 250 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 251 | lemma SUP_mono: "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<le> (\<Squnion>n\<in>B. g n)" | 
| 56166 | 252 | using Sup_mono [of "f ` A" "g ` B"] by auto | 
| 44041 | 253 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 254 | lemma INF_superset_mono: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>B. g x)" | 
| 61799 | 255 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 44041 | 256 | by (blast intro: INF_mono dest: subsetD) | 
| 257 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 258 | lemma SUP_subset_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>B. g x)" | 
| 44041 | 259 | by (blast intro: SUP_mono dest: subsetD) | 
| 260 | ||
| 43868 | 261 | lemma Inf_less_eq: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 262 | assumes "\<And>v. v \<in> A \<Longrightarrow> v \<le> u" | 
| 43868 | 263 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 264 | shows "\<Sqinter>A \<le> u" | 
| 43868 | 265 | proof - | 
| 60758 | 266 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 267 | moreover from \<open>v \<in> A\<close> assms(1) have "v \<le> u" by blast | 
| 43868 | 268 | ultimately show ?thesis by (rule Inf_lower2) | 
| 269 | qed | |
| 270 | ||
| 271 | lemma less_eq_Sup: | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 272 | assumes "\<And>v. v \<in> A \<Longrightarrow> u \<le> v" | 
| 43868 | 273 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 274 | shows "u \<le> \<Squnion>A" | 
| 43868 | 275 | proof - | 
| 60758 | 276 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 277 | moreover from \<open>v \<in> A\<close> assms(1) have "u \<le> v" by blast | 
| 43868 | 278 | ultimately show ?thesis by (rule Sup_upper2) | 
| 279 | qed | |
| 280 | ||
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 281 | lemma INF_eq: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 282 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j" | 
| 63575 | 283 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 284 | shows "INFIMUM A f = INFIMUM B g" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 285 | by (intro antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+ | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 286 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 287 | lemma SUP_eq: | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 288 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j" | 
| 63575 | 289 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 290 | shows "SUPREMUM A f = SUPREMUM B g" | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 291 | by (intro antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+ | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 292 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 293 | lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<le> \<Sqinter>(A \<inter> B)" | 
| 43868 | 294 | by (auto intro: Inf_greatest Inf_lower) | 
| 295 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 296 | lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<le> \<Squnion>A \<sqinter> \<Squnion>B " | 
| 43868 | 297 | by (auto intro: Sup_least Sup_upper) | 
| 298 | ||
| 299 | lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B" | |
| 300 | by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2) | |
| 301 | ||
| 63575 | 302 | lemma INF_union: "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 303 | by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower) | 
| 44041 | 304 | |
| 43868 | 305 | lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B" | 
| 306 | by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2) | |
| 307 | ||
| 63575 | 308 | lemma SUP_union: "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 309 | by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper) | 
| 44041 | 310 | |
| 311 | lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)" | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 312 | by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono) | 
| 44041 | 313 | |
| 63575 | 314 | lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" | 
| 315 | (is "?L = ?R") | |
| 44918 | 316 | proof (rule antisym) | 
| 63575 | 317 | show "?L \<le> ?R" | 
| 318 | by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono) | |
| 319 | show "?R \<le> ?L" | |
| 320 | by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper) | |
| 44918 | 321 | qed | 
| 44041 | 322 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 323 | lemma Inf_top_conv [simp]: | 
| 43868 | 324 | "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | 
| 325 | "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 326 | proof - | |
| 327 | show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 328 | proof | |
| 329 | assume "\<forall>x\<in>A. x = \<top>" | |
| 330 |     then have "A = {} \<or> A = {\<top>}" by auto
 | |
| 44919 | 331 | then show "\<Sqinter>A = \<top>" by auto | 
| 43868 | 332 | next | 
| 333 | assume "\<Sqinter>A = \<top>" | |
| 334 | show "\<forall>x\<in>A. x = \<top>" | |
| 335 | proof (rule ccontr) | |
| 336 | assume "\<not> (\<forall>x\<in>A. x = \<top>)" | |
| 337 | then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast | |
| 338 | then obtain B where "A = insert x B" by blast | |
| 60758 | 339 | with \<open>\<Sqinter>A = \<top>\<close> \<open>x \<noteq> \<top>\<close> show False by simp | 
| 43868 | 340 | qed | 
| 341 | qed | |
| 342 | then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto | |
| 343 | qed | |
| 344 | ||
| 44918 | 345 | lemma INF_top_conv [simp]: | 
| 56166 | 346 | "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | 
| 347 | "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | |
| 348 | using Inf_top_conv [of "B ` A"] by simp_all | |
| 44041 | 349 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 350 | lemma Sup_bot_conv [simp]: | 
| 63575 | 351 | "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | 
| 352 | "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | |
| 44920 | 353 | using dual_complete_lattice | 
| 354 | by (rule complete_lattice.Inf_top_conv)+ | |
| 43868 | 355 | |
| 44918 | 356 | lemma SUP_bot_conv [simp]: | 
| 63575 | 357 | "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | 
| 358 | "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | |
| 56166 | 359 | using Sup_bot_conv [of "B ` A"] by simp_all | 
| 44041 | 360 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 361 | lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
 | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 362 | by (auto intro: antisym INF_lower INF_greatest) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 363 | |
| 43870 | 364 | lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
 | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 365 | by (auto intro: antisym SUP_upper SUP_least) | 
| 43870 | 366 | |
| 44918 | 367 | lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>" | 
| 44921 | 368 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 369 | |
| 44918 | 370 | lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>" | 
| 44921 | 371 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 372 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 373 | lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 374 | by (iprover intro: INF_lower INF_greatest order_trans antisym) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 375 | |
| 43870 | 376 | lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 377 | by (iprover intro: SUP_upper SUP_least order_trans antisym) | 
| 43870 | 378 | |
| 43871 | 379 | lemma INF_absorb: | 
| 43868 | 380 | assumes "k \<in> I" | 
| 381 | shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)" | |
| 382 | proof - | |
| 383 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 384 | then show ?thesis by simp | 
| 43868 | 385 | qed | 
| 386 | ||
| 43871 | 387 | lemma SUP_absorb: | 
| 388 | assumes "k \<in> I" | |
| 389 | shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)" | |
| 390 | proof - | |
| 391 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 392 | then show ?thesis by simp | 
| 43871 | 393 | qed | 
| 394 | ||
| 63575 | 395 | lemma INF_inf_const1: "I \<noteq> {} \<Longrightarrow> (INF i:I. inf x (f i)) = inf x (INF i:I. f i)"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 396 | by (intro antisym INF_greatest inf_mono order_refl INF_lower) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 397 | (auto intro: INF_lower2 le_infI2 intro!: INF_mono) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 398 | |
| 63575 | 399 | lemma INF_inf_const2: "I \<noteq> {} \<Longrightarrow> (INF i:I. inf (f i) x) = inf (INF i:I. f i) x"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 400 | using INF_inf_const1[of I x f] by (simp add: inf_commute) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 401 | |
| 63575 | 402 | lemma INF_constant: "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
 | 
| 44921 | 403 | by simp | 
| 43868 | 404 | |
| 63575 | 405 | lemma SUP_constant: "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
 | 
| 44921 | 406 | by simp | 
| 43871 | 407 | |
| 43943 | 408 | lemma less_INF_D: | 
| 63575 | 409 | assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" | 
| 410 | shows "y < f i" | |
| 43943 | 411 | proof - | 
| 60758 | 412 | note \<open>y < (\<Sqinter>i\<in>A. f i)\<close> | 
| 413 | also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using \<open>i \<in> A\<close> | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 414 | by (rule INF_lower) | 
| 43943 | 415 | finally show "y < f i" . | 
| 416 | qed | |
| 417 | ||
| 418 | lemma SUP_lessD: | |
| 63575 | 419 | assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" | 
| 420 | shows "f i < y" | |
| 43943 | 421 | proof - | 
| 63575 | 422 | have "f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 423 | using \<open>i \<in> A\<close> by (rule SUP_upper) | |
| 60758 | 424 | also note \<open>(\<Squnion>i\<in>A. f i) < y\<close> | 
| 43943 | 425 | finally show "f i < y" . | 
| 426 | qed | |
| 427 | ||
| 63575 | 428 | lemma INF_UNIV_bool_expand: "(\<Sqinter>b. A b) = A True \<sqinter> A False" | 
| 56166 | 429 | by (simp add: UNIV_bool inf_commute) | 
| 43868 | 430 | |
| 63575 | 431 | lemma SUP_UNIV_bool_expand: "(\<Squnion>b. A b) = A True \<squnion> A False" | 
| 56166 | 432 | by (simp add: UNIV_bool sup_commute) | 
| 43871 | 433 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 434 | lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 435 | by (blast intro: Sup_upper2 Inf_lower ex_in_conv) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 436 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 437 | lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFIMUM A f \<le> SUPREMUM A f"
 | 
| 56166 | 438 | using Inf_le_Sup [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 439 | |
| 63575 | 440 | lemma INF_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> INFIMUM I f = x"
 | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 441 | by (auto intro: INF_eqI) | 
| 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 442 | |
| 63575 | 443 | lemma SUP_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> SUPREMUM I f = x"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 444 | by (auto intro: SUP_eqI) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 445 | |
| 63575 | 446 | lemma INF_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> INFIMUM I f = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 447 | using INF_eq_const [of I f c] INF_lower [of _ I f] | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 448 | by (auto intro: antisym cong del: strong_INF_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 449 | |
| 63575 | 450 | lemma SUP_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> SUPREMUM I f = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 451 | using SUP_eq_const [of I f c] SUP_upper [of _ I f] | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 452 | by (auto intro: antisym cong del: strong_SUP_cong) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 453 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 454 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 455 | |
| 44024 | 456 | class complete_distrib_lattice = complete_lattice + | 
| 44039 | 457 | assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" | 
| 63575 | 458 | and inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)" | 
| 44024 | 459 | begin | 
| 460 | ||
| 63575 | 461 | lemma sup_INF: "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)" | 
| 63172 | 462 | by (simp add: sup_Inf) | 
| 44039 | 463 | |
| 63575 | 464 | lemma inf_SUP: "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)" | 
| 63172 | 465 | by (simp add: inf_Sup) | 
| 44039 | 466 | |
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 467 | lemma dual_complete_distrib_lattice: | 
| 44845 | 468 | "class.complete_distrib_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 44024 | 469 | apply (rule class.complete_distrib_lattice.intro) | 
| 63575 | 470 | apply (fact dual_complete_lattice) | 
| 44024 | 471 | apply (rule class.complete_distrib_lattice_axioms.intro) | 
| 63575 | 472 | apply (simp_all add: inf_Sup sup_Inf) | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 473 | done | 
| 44024 | 474 | |
| 63575 | 475 | subclass distrib_lattice | 
| 476 | proof | |
| 44024 | 477 | fix a b c | 
| 63575 | 478 |   have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" by (rule sup_Inf)
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 479 | then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by simp | 
| 44024 | 480 | qed | 
| 481 | ||
| 63575 | 482 | lemma Inf_sup: "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)" | 
| 44039 | 483 | by (simp add: sup_Inf sup_commute) | 
| 484 | ||
| 63575 | 485 | lemma Sup_inf: "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)" | 
| 44039 | 486 | by (simp add: inf_Sup inf_commute) | 
| 487 | ||
| 63575 | 488 | lemma INF_sup: "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)" | 
| 44039 | 489 | by (simp add: sup_INF sup_commute) | 
| 490 | ||
| 63575 | 491 | lemma SUP_inf: "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)" | 
| 44039 | 492 | by (simp add: inf_SUP inf_commute) | 
| 493 | ||
| 63575 | 494 | lemma Inf_sup_eq_top_iff: "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)" | 
| 44039 | 495 | by (simp only: Inf_sup INF_top_conv) | 
| 496 | ||
| 63575 | 497 | lemma Sup_inf_eq_bot_iff: "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)" | 
| 44039 | 498 | by (simp only: Sup_inf SUP_bot_conv) | 
| 499 | ||
| 63575 | 500 | lemma INF_sup_distrib2: "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)" | 
| 44039 | 501 | by (subst INF_commute) (simp add: sup_INF INF_sup) | 
| 502 | ||
| 63575 | 503 | lemma SUP_inf_distrib2: "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)" | 
| 44039 | 504 | by (subst SUP_commute) (simp add: inf_SUP SUP_inf) | 
| 505 | ||
| 56074 | 506 | context | 
| 507 | fixes f :: "'a \<Rightarrow> 'b::complete_lattice" | |
| 508 | assumes "mono f" | |
| 509 | begin | |
| 510 | ||
| 63575 | 511 | lemma mono_Inf: "f (\<Sqinter>A) \<le> (\<Sqinter>x\<in>A. f x)" | 
| 60758 | 512 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.INF_greatest Inf_lower dest: monoD) | 
| 56074 | 513 | |
| 63575 | 514 | lemma mono_Sup: "(\<Squnion>x\<in>A. f x) \<le> f (\<Squnion>A)" | 
| 60758 | 515 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.SUP_least Sup_upper dest: monoD) | 
| 56074 | 516 | |
| 63575 | 517 | lemma mono_INF: "f (INF i : I. A i) \<le> (INF x : I. f (A x))" | 
| 60758 | 518 | by (intro complete_lattice_class.INF_greatest monoD[OF \<open>mono f\<close>] INF_lower) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 519 | |
| 63575 | 520 | lemma mono_SUP: "(SUP x : I. f (A x)) \<le> f (SUP i : I. A i)" | 
| 60758 | 521 | by (intro complete_lattice_class.SUP_least monoD[OF \<open>mono f\<close>] SUP_upper) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 522 | |
| 56074 | 523 | end | 
| 524 | ||
| 44024 | 525 | end | 
| 526 | ||
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 527 | class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice | 
| 43873 | 528 | begin | 
| 529 | ||
| 43943 | 530 | lemma dual_complete_boolean_algebra: | 
| 44845 | 531 | "class.complete_boolean_algebra Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus" | 
| 63575 | 532 | by (rule class.complete_boolean_algebra.intro, | 
| 533 | rule dual_complete_distrib_lattice, | |
| 534 | rule dual_boolean_algebra) | |
| 43943 | 535 | |
| 63575 | 536 | lemma uminus_Inf: "- (\<Sqinter>A) = \<Squnion>(uminus ` A)" | 
| 43873 | 537 | proof (rule antisym) | 
| 538 | show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)" | |
| 539 | by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp | |
| 540 | show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A" | |
| 541 | by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto | |
| 542 | qed | |
| 543 | ||
| 44041 | 544 | lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 545 | by (simp add: uminus_Inf image_image) | 
| 44041 | 546 | |
| 63575 | 547 | lemma uminus_Sup: "- (\<Squnion>A) = \<Sqinter>(uminus ` A)" | 
| 43873 | 548 | proof - | 
| 63575 | 549 | have "\<Squnion>A = - \<Sqinter>(uminus ` A)" | 
| 550 | by (simp add: image_image uminus_INF) | |
| 43873 | 551 | then show ?thesis by simp | 
| 552 | qed | |
| 63575 | 553 | |
| 43873 | 554 | lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 555 | by (simp add: uminus_Sup image_image) | 
| 43873 | 556 | |
| 557 | end | |
| 558 | ||
| 43940 | 559 | class complete_linorder = linorder + complete_lattice | 
| 560 | begin | |
| 561 | ||
| 43943 | 562 | lemma dual_complete_linorder: | 
| 44845 | 563 | "class.complete_linorder Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 43943 | 564 | by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder) | 
| 565 | ||
| 51386 | 566 | lemma complete_linorder_inf_min: "inf = min" | 
| 51540 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 haftmann parents: 
51489diff
changeset | 567 | by (auto intro: antisym simp add: min_def fun_eq_iff) | 
| 51386 | 568 | |
| 569 | lemma complete_linorder_sup_max: "sup = max" | |
| 51540 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 haftmann parents: 
51489diff
changeset | 570 | by (auto intro: antisym simp add: max_def fun_eq_iff) | 
| 51386 | 571 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 572 | lemma Inf_less_iff: "\<Sqinter>S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)" | 
| 63172 | 573 | by (simp add: not_le [symmetric] le_Inf_iff) | 
| 43940 | 574 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 575 | lemma INF_less_iff: "(\<Sqinter>i\<in>A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)" | 
| 63172 | 576 | by (simp add: Inf_less_iff [of "f ` A"]) | 
| 44041 | 577 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 578 | lemma less_Sup_iff: "a < \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a < x)" | 
| 63172 | 579 | by (simp add: not_le [symmetric] Sup_le_iff) | 
| 43940 | 580 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 581 | lemma less_SUP_iff: "a < (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)" | 
| 63172 | 582 | by (simp add: less_Sup_iff [of _ "f ` A"]) | 
| 43940 | 583 | |
| 63575 | 584 | lemma Sup_eq_top_iff [simp]: "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 43943 | 585 | proof | 
| 586 | assume *: "\<Squnion>A = \<top>" | |
| 63575 | 587 | show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 588 | unfolding * [symmetric] | |
| 43943 | 589 | proof (intro allI impI) | 
| 63575 | 590 | fix x | 
| 591 | assume "x < \<Squnion>A" | |
| 592 | then show "\<exists>i\<in>A. x < i" | |
| 63172 | 593 | by (simp add: less_Sup_iff) | 
| 43943 | 594 | qed | 
| 595 | next | |
| 596 | assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i" | |
| 597 | show "\<Squnion>A = \<top>" | |
| 598 | proof (rule ccontr) | |
| 599 | assume "\<Squnion>A \<noteq> \<top>" | |
| 63575 | 600 | with top_greatest [of "\<Squnion>A"] have "\<Squnion>A < \<top>" | 
| 601 | unfolding le_less by auto | |
| 602 | with * have "\<Squnion>A < \<Squnion>A" | |
| 603 | unfolding less_Sup_iff by auto | |
| 43943 | 604 | then show False by auto | 
| 605 | qed | |
| 606 | qed | |
| 607 | ||
| 63575 | 608 | lemma SUP_eq_top_iff [simp]: "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)" | 
| 56166 | 609 | using Sup_eq_top_iff [of "f ` A"] by simp | 
| 44041 | 610 | |
| 63575 | 611 | lemma Inf_eq_bot_iff [simp]: "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)" | 
| 44920 | 612 | using dual_complete_linorder | 
| 613 | by (rule complete_linorder.Sup_eq_top_iff) | |
| 43943 | 614 | |
| 63575 | 615 | lemma INF_eq_bot_iff [simp]: "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)" | 
| 56166 | 616 | using Inf_eq_bot_iff [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 617 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 618 | lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 619 | proof safe | 
| 63575 | 620 | fix y | 
| 621 | assume "x \<ge> \<Sqinter>A" "y > x" | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 622 | then have "y > \<Sqinter>A" by auto | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 623 | then show "\<exists>a\<in>A. y > a" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 624 | unfolding Inf_less_iff . | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 625 | qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 626 | |
| 63575 | 627 | lemma INF_le_iff: "INFIMUM A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)" | 
| 56166 | 628 | using Inf_le_iff [of "f ` A"] by simp | 
| 629 | ||
| 630 | lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)" | |
| 631 | proof safe | |
| 63575 | 632 | fix y | 
| 633 | assume "x \<le> \<Squnion>A" "y < x" | |
| 56166 | 634 | then have "y < \<Squnion>A" by auto | 
| 635 | then show "\<exists>a\<in>A. y < a" | |
| 636 | unfolding less_Sup_iff . | |
| 637 | qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper) | |
| 638 | ||
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 639 | lemma le_SUP_iff: "x \<le> SUPREMUM A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)" | 
| 56166 | 640 | using le_Sup_iff [of _ "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 641 | |
| 51386 | 642 | subclass complete_distrib_lattice | 
| 643 | proof | |
| 644 | fix a and B | |
| 645 | show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" and "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)" | |
| 646 | by (safe intro!: INF_eqI [symmetric] sup_mono Inf_lower SUP_eqI [symmetric] inf_mono Sup_upper) | |
| 647 | (auto simp: not_less [symmetric] Inf_less_iff less_Sup_iff | |
| 648 | le_max_iff_disj complete_linorder_sup_max min_le_iff_disj complete_linorder_inf_min) | |
| 649 | qed | |
| 650 | ||
| 43940 | 651 | end | 
| 652 | ||
| 51341 
8c10293e7ea7
complete_linorder is also a complete_distrib_lattice
 hoelzl parents: 
51328diff
changeset | 653 | |
| 60758 | 654 | subsection \<open>Complete lattice on @{typ bool}\<close>
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 655 | |
| 44024 | 656 | instantiation bool :: complete_lattice | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 657 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 658 | |
| 63575 | 659 | definition [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 660 | |
| 63575 | 661 | definition [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 662 | |
| 63575 | 663 | instance | 
| 664 | by standard (auto intro: bool_induct) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 665 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 666 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 667 | |
| 63575 | 668 | lemma not_False_in_image_Ball [simp]: "False \<notin> P ` A \<longleftrightarrow> Ball A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 669 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 670 | |
| 63575 | 671 | lemma True_in_image_Bex [simp]: "True \<in> P ` A \<longleftrightarrow> Bex A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 672 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 673 | |
| 63575 | 674 | lemma INF_bool_eq [simp]: "INFIMUM = Ball" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 675 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 676 | |
| 63575 | 677 | lemma SUP_bool_eq [simp]: "SUPREMUM = Bex" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 678 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 679 | |
| 63575 | 680 | instance bool :: complete_boolean_algebra | 
| 681 | by standard (auto intro: bool_induct) | |
| 44024 | 682 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 683 | |
| 60758 | 684 | subsection \<open>Complete lattice on @{typ "_ \<Rightarrow> _"}\<close>
 | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 685 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 686 | instantiation "fun" :: (type, Inf) Inf | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 687 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 688 | |
| 63575 | 689 | definition "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)" | 
| 41080 | 690 | |
| 63575 | 691 | lemma Inf_apply [simp, code]: "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)" | 
| 41080 | 692 | by (simp add: Inf_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 693 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 694 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 695 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 696 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 697 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 698 | instantiation "fun" :: (type, Sup) Sup | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 699 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 700 | |
| 63575 | 701 | definition "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)" | 
| 41080 | 702 | |
| 63575 | 703 | lemma Sup_apply [simp, code]: "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)" | 
| 41080 | 704 | by (simp add: Sup_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 705 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 706 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 707 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 708 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 709 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 710 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 711 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 712 | |
| 63575 | 713 | instance | 
| 714 | by standard (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 715 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 716 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 717 | |
| 63575 | 718 | lemma INF_apply [simp]: "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)" | 
| 56166 | 719 | using Inf_apply [of "f ` A"] by (simp add: comp_def) | 
| 38705 | 720 | |
| 63575 | 721 | lemma SUP_apply [simp]: "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)" | 
| 56166 | 722 | using Sup_apply [of "f ` A"] by (simp add: comp_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 723 | |
| 63575 | 724 | instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice | 
| 725 | by standard (auto simp add: inf_Sup sup_Inf fun_eq_iff image_image) | |
| 44024 | 726 | |
| 43873 | 727 | instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra .. | 
| 728 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 729 | |
| 60758 | 730 | subsection \<open>Complete lattice on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 731 | |
| 63575 | 732 | lemma Inf1_I: "(\<And>P. P \<in> A \<Longrightarrow> P a) \<Longrightarrow> (\<Sqinter>A) a" | 
| 46884 | 733 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 734 | |
| 63575 | 735 | lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 736 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 737 | |
| 63575 | 738 | lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 739 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 740 | |
| 63575 | 741 | lemma Inf2_I: "(\<And>r. r \<in> A \<Longrightarrow> r a b) \<Longrightarrow> (\<Sqinter>A) a b" | 
| 46884 | 742 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 743 | |
| 63575 | 744 | lemma Inf1_D: "(\<Sqinter>A) a \<Longrightarrow> P \<in> A \<Longrightarrow> P a" | 
| 46884 | 745 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 746 | |
| 63575 | 747 | lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 748 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 749 | |
| 63575 | 750 | lemma Inf2_D: "(\<Sqinter>A) a b \<Longrightarrow> r \<in> A \<Longrightarrow> r a b" | 
| 46884 | 751 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 752 | |
| 63575 | 753 | lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 754 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 755 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 756 | lemma Inf1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 757 | assumes "(\<Sqinter>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 758 | obtains "P a" | "P \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 759 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 760 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 761 | lemma INF1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 762 | assumes "(\<Sqinter>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 763 | obtains "B a b" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 764 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 765 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 766 | lemma Inf2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 767 | assumes "(\<Sqinter>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 768 | obtains "r a b" | "r \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 769 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 770 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 771 | lemma INF2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 772 | assumes "(\<Sqinter>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 773 | obtains "B a b c" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 774 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 775 | |
| 63575 | 776 | lemma Sup1_I: "P \<in> A \<Longrightarrow> P a \<Longrightarrow> (\<Squnion>A) a" | 
| 46884 | 777 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 778 | |
| 63575 | 779 | lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 780 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 781 | |
| 63575 | 782 | lemma Sup2_I: "r \<in> A \<Longrightarrow> r a b \<Longrightarrow> (\<Squnion>A) a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 783 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 784 | |
| 63575 | 785 | lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c" | 
| 46884 | 786 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 787 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 788 | lemma Sup1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 789 | assumes "(\<Squnion>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 790 | obtains P where "P \<in> A" and "P a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 791 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 792 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 793 | lemma SUP1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 794 | assumes "(\<Squnion>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 795 | obtains x where "x \<in> A" and "B x b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 796 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 797 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 798 | lemma Sup2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 799 | assumes "(\<Squnion>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 800 | obtains r where "r \<in> A" "r a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 801 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 802 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 803 | lemma SUP2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 804 | assumes "(\<Squnion>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 805 | obtains x where "x \<in> A" "B x b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 806 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 807 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 808 | |
| 60758 | 809 | subsection \<open>Complete lattice on @{typ "_ set"}\<close>
 | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 810 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 811 | instantiation "set" :: (type) complete_lattice | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 812 | begin | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 813 | |
| 63575 | 814 | definition "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 815 | |
| 63575 | 816 | definition "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 817 | |
| 63575 | 818 | instance | 
| 819 | by standard (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def) | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 820 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 821 | end | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 822 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 823 | instance "set" :: (type) complete_boolean_algebra | 
| 63575 | 824 | by standard (auto simp add: Inf_set_def Sup_set_def image_def) | 
| 825 | ||
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 826 | |
| 60758 | 827 | subsubsection \<open>Inter\<close> | 
| 41082 | 828 | |
| 61952 | 829 | abbreviation Inter :: "'a set set \<Rightarrow> 'a set"  ("\<Inter>_" [900] 900)
 | 
| 830 | where "\<Inter>S \<equiv> \<Sqinter>S" | |
| 63575 | 831 | |
| 832 | lemma Inter_eq: "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 41082 | 833 | proof (rule set_eqI) | 
| 834 | fix x | |
| 835 |   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
 | |
| 836 | by auto | |
| 837 |   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 838 | by (simp add: Inf_set_def image_def) | 
| 41082 | 839 | qed | 
| 840 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 841 | lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)" | 
| 41082 | 842 | by (unfold Inter_eq) blast | 
| 843 | ||
| 43741 | 844 | lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C" | 
| 41082 | 845 | by (simp add: Inter_eq) | 
| 846 | ||
| 60758 | 847 | text \<open> | 
| 63575 | 848 |   \<^medskip> A ``destruct'' rule -- every @{term X} in @{term C}
 | 
| 43741 | 849 |   contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
 | 
| 61799 | 850 |   @{prop "X \<in> C"} does not!  This rule is analogous to \<open>spec\<close>.
 | 
| 60758 | 851 | \<close> | 
| 41082 | 852 | |
| 43741 | 853 | lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X" | 
| 41082 | 854 | by auto | 
| 855 | ||
| 43741 | 856 | lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R" | 
| 61799 | 857 | \<comment> \<open>``Classical'' elimination rule -- does not require proving | 
| 60758 | 858 |     @{prop "X \<in> C"}.\<close>
 | 
| 63575 | 859 | unfolding Inter_eq by blast | 
| 41082 | 860 | |
| 43741 | 861 | lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B" | 
| 43740 | 862 | by (fact Inf_lower) | 
| 863 | ||
| 63575 | 864 | lemma Inter_subset: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
 | 
| 43740 | 865 | by (fact Inf_less_eq) | 
| 41082 | 866 | |
| 61952 | 867 | lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> \<Inter>A" | 
| 43740 | 868 | by (fact Inf_greatest) | 
| 41082 | 869 | |
| 44067 | 870 | lemma Inter_empty: "\<Inter>{} = UNIV"
 | 
| 871 | by (fact Inf_empty) (* already simp *) | |
| 41082 | 872 | |
| 44067 | 873 | lemma Inter_UNIV: "\<Inter>UNIV = {}"
 | 
| 874 | by (fact Inf_UNIV) (* already simp *) | |
| 41082 | 875 | |
| 44920 | 876 | lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 877 | by (fact Inf_insert) (* already simp *) | |
| 41082 | 878 | |
| 879 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | |
| 43899 | 880 | by (fact less_eq_Inf_inter) | 
| 41082 | 881 | |
| 882 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | |
| 43756 | 883 | by (fact Inf_union_distrib) | 
| 884 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 885 | lemma Inter_UNIV_conv [simp]: | 
| 43741 | 886 | "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | 
| 887 | "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | |
| 43801 | 888 | by (fact Inf_top_conv)+ | 
| 41082 | 889 | |
| 43741 | 890 | lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B" | 
| 43899 | 891 | by (fact Inf_superset_mono) | 
| 41082 | 892 | |
| 893 | ||
| 60758 | 894 | subsubsection \<open>Intersections of families\<close> | 
| 41082 | 895 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 896 | abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 897 | where "INTER \<equiv> INFIMUM" | 
| 41082 | 898 | |
| 60758 | 899 | text \<open> | 
| 61799 | 900 |   Note: must use name @{const INTER} here instead of \<open>INT\<close>
 | 
| 43872 | 901 | to allow the following syntax coexist with the plain constant name. | 
| 60758 | 902 | \<close> | 
| 43872 | 903 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 904 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 905 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 906 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
 | 
| 41082 | 907 | |
| 908 | syntax (latex output) | |
| 62789 | 909 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 910 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 911 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 912 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 913 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 914 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 41082 | 915 | |
| 916 | translations | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 917 | "\<Inter>x y. B" \<rightleftharpoons> "\<Inter>x. \<Inter>y. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 918 | "\<Inter>x. B" \<rightleftharpoons> "CONST INTER CONST UNIV (\<lambda>x. B)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 919 | "\<Inter>x. B" \<rightleftharpoons> "\<Inter>x \<in> CONST UNIV. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 920 | "\<Inter>x\<in>A. B" \<rightleftharpoons> "CONST INTER A (\<lambda>x. B)" | 
| 41082 | 921 | |
| 60758 | 922 | print_translation \<open> | 
| 42284 | 923 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
 | 
| 61799 | 924 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 41082 | 925 | |
| 63575 | 926 | lemma INTER_eq: "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
 | 
| 56166 | 927 | by (auto intro!: INF_eqI) | 
| 41082 | 928 | |
| 43817 | 929 | lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)" | 
| 56166 | 930 | using Inter_iff [of _ "B ` A"] by simp | 
| 41082 | 931 | |
| 43817 | 932 | lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 933 | by auto | 
| 41082 | 934 | |
| 43852 | 935 | lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a" | 
| 41082 | 936 | by auto | 
| 937 | ||
| 43852 | 938 | lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 61799 | 939 |   \<comment> \<open>"Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}.\<close>
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 940 | by auto | 
| 41082 | 941 | |
| 942 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | |
| 943 | by blast | |
| 944 | ||
| 945 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | |
| 946 | by blast | |
| 947 | ||
| 43817 | 948 | lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 949 | by (fact INF_lower) | 
| 41082 | 950 | |
| 43817 | 951 | lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 952 | by (fact INF_greatest) | 
| 41082 | 953 | |
| 44067 | 954 | lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 955 | by (fact INF_empty) | 
| 43854 | 956 | |
| 43817 | 957 | lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 43872 | 958 | by (fact INF_absorb) | 
| 41082 | 959 | |
| 43854 | 960 | lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 41082 | 961 | by (fact le_INF_iff) | 
| 962 | ||
| 963 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 964 | by (fact INF_insert) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 965 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 966 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 967 | by (fact INF_union) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 968 | |
| 63575 | 969 | lemma INT_insert_distrib: "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 970 | by blast | 
| 43854 | 971 | |
| 41082 | 972 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 973 | by (fact INF_constant) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 974 | |
| 44920 | 975 | lemma INTER_UNIV_conv: | 
| 63575 | 976 | "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 977 | "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 44920 | 978 | by (fact INF_top_conv)+ (* already simp *) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 979 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 980 | lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False" | 
| 43873 | 981 | by (fact INF_UNIV_bool_expand) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 982 | |
| 63575 | 983 | lemma INT_anti_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 61799 | 984 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 43940 | 985 | by (fact INF_superset_mono) | 
| 41082 | 986 | |
| 987 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | |
| 988 | by blast | |
| 989 | ||
| 43817 | 990 | lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)" | 
| 41082 | 991 | by blast | 
| 992 | ||
| 993 | ||
| 60758 | 994 | subsubsection \<open>Union\<close> | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 995 | |
| 61952 | 996 | abbreviation Union :: "'a set set \<Rightarrow> 'a set"  ("\<Union>_" [900] 900)
 | 
| 997 | where "\<Union>S \<equiv> \<Squnion>S" | |
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 998 | |
| 63575 | 999 | lemma Union_eq: "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38705diff
changeset | 1000 | proof (rule set_eqI) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1001 | fix x | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1002 |   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1003 | by auto | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1004 |   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1005 | by (simp add: Sup_set_def image_def) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1006 | qed | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1007 | |
| 63575 | 1008 | lemma Union_iff [simp]: "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1009 | by (unfold Union_eq) blast | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1010 | |
| 63575 | 1011 | lemma UnionI [intro]: "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C" | 
| 61799 | 1012 |   \<comment> \<open>The order of the premises presupposes that @{term C} is rigid;
 | 
| 60758 | 1013 |     @{term A} may be flexible.\<close>
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1014 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1015 | |
| 63575 | 1016 | lemma UnionE [elim!]: "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1017 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1018 | |
| 43817 | 1019 | lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A" | 
| 43901 | 1020 | by (fact Sup_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1021 | |
| 43817 | 1022 | lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C" | 
| 43901 | 1023 | by (fact Sup_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1024 | |
| 44920 | 1025 | lemma Union_empty: "\<Union>{} = {}"
 | 
| 1026 | by (fact Sup_empty) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1027 | |
| 44920 | 1028 | lemma Union_UNIV: "\<Union>UNIV = UNIV" | 
| 1029 | by (fact Sup_UNIV) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1030 | |
| 44920 | 1031 | lemma Union_insert: "\<Union>insert a B = a \<union> \<Union>B" | 
| 1032 | by (fact Sup_insert) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1033 | |
| 43817 | 1034 | lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B" | 
| 43901 | 1035 | by (fact Sup_union_distrib) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1036 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1037 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 43901 | 1038 | by (fact Sup_inter_less_eq) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1039 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1040 | lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 1041 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1042 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1043 | lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 1044 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1045 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1046 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1047 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1048 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1049 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1050 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1051 | |
| 43817 | 1052 | lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 43901 | 1053 | by (fact Sup_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1054 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 1055 | lemma Union_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> x \<subseteq> y) \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 1056 | by blast | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1057 | |
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1058 | lemma disjnt_inj_on_iff: | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1059 | "\<lbrakk>inj_on f (\<Union>\<A>); X \<in> \<A>; Y \<in> \<A>\<rbrakk> \<Longrightarrow> disjnt (f ` X) (f ` Y) \<longleftrightarrow> disjnt X Y" | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1060 | apply (auto simp: disjnt_def) | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1061 | using inj_on_eq_iff by fastforce | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1062 | |
| 63575 | 1063 | |
| 60758 | 1064 | subsubsection \<open>Unions of families\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1065 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1066 | abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1067 | where "UNION \<equiv> SUPREMUM" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1068 | |
| 60758 | 1069 | text \<open> | 
| 61799 | 1070 |   Note: must use name @{const UNION} here instead of \<open>UN\<close>
 | 
| 43872 | 1071 | to allow the following syntax coexist with the plain constant name. | 
| 60758 | 1072 | \<close> | 
| 43872 | 1073 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1074 | syntax (ASCII) | 
| 35115 | 1075 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
35828diff
changeset | 1076 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1077 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1078 | syntax (latex output) | 
| 62789 | 1079 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 1080 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1081 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1082 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1083 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1084 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1085 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1086 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1087 | "\<Union>x y. B" \<rightleftharpoons> "\<Union>x. \<Union>y. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1088 | "\<Union>x. B" \<rightleftharpoons> "CONST UNION CONST UNIV (\<lambda>x. B)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1089 | "\<Union>x. B" \<rightleftharpoons> "\<Union>x \<in> CONST UNIV. B" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1090 | "\<Union>x\<in>A. B" \<rightleftharpoons> "CONST UNION A (\<lambda>x. B)" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1091 | |
| 60758 | 1092 | text \<open> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1093 | Note the difference between ordinary syntax of indexed | 
| 61799 | 1094 | unions and intersections (e.g.\ \<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1095 |   and their \LaTeX\ rendition: @{term"\<Union>a\<^sub>1\<in>A\<^sub>1. B"}.
 | 
| 60758 | 1096 | \<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1097 | |
| 60758 | 1098 | print_translation \<open> | 
| 42284 | 1099 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
 | 
| 61799 | 1100 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1101 | |
| 63575 | 1102 | lemma UNION_eq: "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
 | 
| 56166 | 1103 | by (auto intro!: SUP_eqI) | 
| 44920 | 1104 | |
| 63575 | 1105 | lemma bind_UNION [code]: "Set.bind A f = UNION A f" | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1106 | by (simp add: bind_def UNION_eq) | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1107 | |
| 63575 | 1108 | lemma member_bind [simp]: "x \<in> Set.bind P f \<longleftrightarrow> x \<in> UNION P f " | 
| 46036 | 1109 | by (simp add: bind_UNION) | 
| 1110 | ||
| 60585 | 1111 | lemma Union_SetCompr_eq: "\<Union>{f x| x. P x} = {a. \<exists>x. P x \<and> a \<in> f x}"
 | 
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1112 | by blast | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1113 | |
| 46036 | 1114 | lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)" | 
| 56166 | 1115 | using Union_iff [of _ "B ` A"] by simp | 
| 11979 | 1116 | |
| 43852 | 1117 | lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)" | 
| 61799 | 1118 |   \<comment> \<open>The order of the premises presupposes that @{term A} is rigid;
 | 
| 60758 | 1119 |     @{term b} may be flexible.\<close>
 | 
| 11979 | 1120 | by auto | 
| 1121 | ||
| 43852 | 1122 | lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1123 | by auto | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1124 | |
| 43817 | 1125 | lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1126 | by (fact SUP_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1127 | |
| 43817 | 1128 | lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1129 | by (fact SUP_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1130 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1131 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1132 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1133 | |
| 43817 | 1134 | lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1135 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1136 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1137 | lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1138 | by (fact SUP_empty) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1139 | |
| 44920 | 1140 | lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
 | 
| 1141 | by (fact SUP_bot) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1142 | |
| 43817 | 1143 | lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1144 | by (fact SUP_absorb) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1145 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1146 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1147 | by (fact SUP_insert) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1148 | |
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1149 | lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1150 | by (fact SUP_union) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1151 | |
| 43967 | 1152 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1153 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1154 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1155 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 35629 | 1156 | by (fact SUP_le_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1157 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1158 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1159 | by (fact SUP_constant) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1160 | |
| 43944 | 1161 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1162 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1163 | |
| 44920 | 1164 | lemma UNION_empty_conv: | 
| 43817 | 1165 |   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | 
| 1166 |   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | |
| 44920 | 1167 | by (fact SUP_bot_conv)+ (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1168 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1169 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1170 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1171 | |
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1172 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1173 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1174 | |
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1175 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1176 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1177 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1178 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 62390 | 1179 | by safe (auto simp add: if_split_mem2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1180 | |
| 43817 | 1181 | lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1182 | by (fact SUP_UNIV_bool_expand) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1183 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1184 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1185 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1186 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1187 | lemma UN_mono: | 
| 43817 | 1188 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1189 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 43940 | 1190 | by (fact SUP_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1191 | |
| 43817 | 1192 | lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1193 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1194 | |
| 43817 | 1195 | lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1196 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1197 | |
| 43817 | 1198 | lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
 | 
| 61799 | 1199 | \<comment> \<open>NOT suitable for rewriting\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1200 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1201 | |
| 43817 | 1202 | lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)" | 
| 1203 | by blast | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1204 | |
| 45013 | 1205 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 1206 | by blast | |
| 1207 | ||
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
62789diff
changeset | 1208 | lemma inj_on_image: "inj_on f (\<Union>A) \<Longrightarrow> inj_on (op ` f) A" | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
62789diff
changeset | 1209 | unfolding inj_on_def by blast | 
| 11979 | 1210 | |
| 63575 | 1211 | |
| 60758 | 1212 | subsubsection \<open>Distributive laws\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1213 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1214 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1215 | by (fact inf_Sup) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1216 | |
| 44039 | 1217 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 1218 | by (fact sup_Inf) | |
| 1219 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1220 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 44039 | 1221 | by (fact Sup_inf) | 
| 1222 | ||
| 1223 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | |
| 1224 | by (rule sym) (rule INF_inf_distrib) | |
| 1225 | ||
| 1226 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | |
| 1227 | by (rule sym) (rule SUP_sup_distrib) | |
| 1228 | ||
| 63575 | 1229 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)" (* FIXME drop *) | 
| 56166 | 1230 | by (simp add: INT_Int_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1231 | |
| 63575 | 1232 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)" (* FIXME drop *) | 
| 61799 | 1233 | \<comment> \<open>Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:\<close> | 
| 1234 | \<comment> \<open>Union of a family of unions\<close> | |
| 56166 | 1235 | by (simp add: UN_Un_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1236 | |
| 44039 | 1237 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 1238 | by (fact sup_INF) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1239 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1240 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 61799 | 1241 | \<comment> \<open>Halmos, Naive Set Theory, page 35.\<close> | 
| 44039 | 1242 | by (fact inf_SUP) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1243 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1244 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 44039 | 1245 | by (fact SUP_inf_distrib2) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1246 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1247 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 44039 | 1248 | by (fact INF_sup_distrib2) | 
| 1249 | ||
| 1250 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
 | |
| 1251 | by (fact Sup_inf_eq_bot_iff) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1252 | |
| 61630 | 1253 | lemma SUP_UNION: "(SUP x:(UN y:A. g y). f x) = (SUP y:A. SUP x:g y. f x :: _ :: complete_lattice)" | 
| 63575 | 1254 | by (rule order_antisym) (blast intro: SUP_least SUP_upper2)+ | 
| 1255 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1256 | |
| 60758 | 1257 | subsection \<open>Injections and bijections\<close> | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1258 | |
| 63575 | 1259 | lemma inj_on_Inter: "S \<noteq> {} \<Longrightarrow> (\<And>A. A \<in> S \<Longrightarrow> inj_on f A) \<Longrightarrow> inj_on f (\<Inter>S)"
 | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1260 | unfolding inj_on_def by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1261 | |
| 63575 | 1262 | lemma inj_on_INTER: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)) \<Longrightarrow> inj_on f (\<Inter>i \<in> I. A i)"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1263 | unfolding inj_on_def by safe simp | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1264 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1265 | lemma inj_on_UNION_chain: | 
| 63575 | 1266 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1267 | and inj: "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | |
| 60585 | 1268 | shows "inj_on f (\<Union>i \<in> I. A i)" | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1269 | proof - | 
| 63575 | 1270 | have "x = y" | 
| 1271 | if *: "i \<in> I" "j \<in> I" | |
| 1272 | and **: "x \<in> A i" "y \<in> A j" | |
| 1273 | and ***: "f x = f y" | |
| 1274 | for i j x y | |
| 1275 | using chain [OF *] | |
| 1276 | proof | |
| 1277 | assume "A i \<le> A j" | |
| 1278 | with ** have "x \<in> A j" by auto | |
| 1279 | with inj * ** *** show ?thesis | |
| 1280 | by (auto simp add: inj_on_def) | |
| 1281 | next | |
| 1282 | assume "A j \<le> A i" | |
| 1283 | with ** have "y \<in> A i" by auto | |
| 1284 | with inj * ** *** show ?thesis | |
| 1285 | by (auto simp add: inj_on_def) | |
| 1286 | qed | |
| 1287 | then show ?thesis | |
| 1288 | by (unfold inj_on_def UNION_eq) auto | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1289 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1290 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1291 | lemma bij_betw_UNION_chain: | 
| 63575 | 1292 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1293 | and bij: "\<And>i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | |
| 60585 | 1294 | shows "bij_betw f (\<Union>i \<in> I. A i) (\<Union>i \<in> I. A' i)" | 
| 63575 | 1295 | unfolding bij_betw_def | 
| 63576 | 1296 | proof safe | 
| 63575 | 1297 | have "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 1298 | using bij bij_betw_def[of f] by auto | |
| 63576 | 1299 | then show "inj_on f (UNION I A)" | 
| 63575 | 1300 | using chain inj_on_UNION_chain[of I A f] by auto | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1301 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1302 | fix i x | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1303 | assume *: "i \<in> I" "x \<in> A i" | 
| 63576 | 1304 | with bij have "f x \<in> A' i" | 
| 1305 | by (auto simp: bij_betw_def) | |
| 1306 | with * show "f x \<in> UNION I A'" by blast | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1307 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1308 | fix i x' | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1309 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 63576 | 1310 | with bij have "\<exists>x \<in> A i. x' = f x" | 
| 1311 | unfolding bij_betw_def by blast | |
| 63575 | 1312 | with * have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 1313 | by blast | |
| 63576 | 1314 | then show "x' \<in> f ` UNION I A" | 
| 63575 | 1315 | by blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1316 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1317 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1318 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | 
| 63575 | 1319 | lemma image_INT: "inj_on f C \<Longrightarrow> \<forall>x\<in>A. B x \<subseteq> C \<Longrightarrow> j \<in> A \<Longrightarrow> f ` (INTER A B) = (INT x:A. f ` B x)" | 
| 1320 | by (auto simp add: inj_on_def) blast | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1321 | |
| 63575 | 1322 | lemma bij_image_INT: "bij f \<Longrightarrow> f ` (INTER A B) = (INT x:A. f ` B x)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
63879diff
changeset | 1323 | by (auto simp: bij_def inj_def surj_def) blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1324 | |
| 63575 | 1325 | lemma UNION_fun_upd: "UNION J (A(i := B)) = UNION (J - {i}) A \<union> (if i \<in> J then B else {})"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1326 | by (auto simp add: set_eq_iff) | 
| 63365 | 1327 | |
| 1328 | lemma bij_betw_Pow: | |
| 1329 | assumes "bij_betw f A B" | |
| 1330 | shows "bij_betw (image f) (Pow A) (Pow B)" | |
| 1331 | proof - | |
| 1332 | from assms have "inj_on f A" | |
| 1333 | by (rule bij_betw_imp_inj_on) | |
| 1334 | then have "inj_on f (\<Union>Pow A)" | |
| 1335 | by simp | |
| 1336 | then have "inj_on (image f) (Pow A)" | |
| 1337 | by (rule inj_on_image) | |
| 1338 | then have "bij_betw (image f) (Pow A) (image f ` Pow A)" | |
| 1339 | by (rule inj_on_imp_bij_betw) | |
| 1340 | moreover from assms have "f ` A = B" | |
| 1341 | by (rule bij_betw_imp_surj_on) | |
| 1342 | then have "image f ` Pow A = Pow B" | |
| 1343 | by (rule image_Pow_surj) | |
| 1344 | ultimately show ?thesis by simp | |
| 1345 | qed | |
| 1346 | ||
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1347 | |
| 60758 | 1348 | subsubsection \<open>Complement\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1349 | |
| 43873 | 1350 | lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 1351 | by (fact uminus_INF) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1352 | |
| 43873 | 1353 | lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 1354 | by (fact uminus_SUP) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1355 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1356 | |
| 60758 | 1357 | subsubsection \<open>Miniscoping and maxiscoping\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1358 | |
| 63575 | 1359 | text \<open>\<^medskip> Miniscoping: pushing in quantifiers and big Unions and Intersections.\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1360 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1361 | lemma UN_simps [simp]: | 
| 43817 | 1362 |   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1363 |   "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
 | 
| 43852 | 1364 |   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1365 | "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)" | 
| 43852 | 1366 | "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))" | 
| 1367 | "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)" | |
| 1368 | "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))" | |
| 1369 | "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)" | |
| 1370 | "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)" | |
| 43831 | 1371 | "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1372 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1373 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1374 | lemma INT_simps [simp]: | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1375 |   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
 | 
| 43831 | 1376 |   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
 | 
| 43852 | 1377 |   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
 | 
| 1378 |   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
 | |
| 43817 | 1379 | "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)" | 
| 43852 | 1380 | "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)" | 
| 1381 | "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))" | |
| 1382 | "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)" | |
| 1383 | "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)" | |
| 1384 | "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1385 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1386 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1387 | lemma UN_ball_bex_simps [simp]: | 
| 43852 | 1388 | "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)" | 
| 43967 | 1389 | "\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)" | 
| 43852 | 1390 | "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)" | 
| 1391 | "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1392 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1393 | |
| 43943 | 1394 | |
| 63575 | 1395 | text \<open>\<^medskip> Maxiscoping: pulling out big Unions and Intersections.\<close> | 
| 13860 | 1396 | |
| 1397 | lemma UN_extend_simps: | |
| 43817 | 1398 |   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1399 |   "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
 | 
| 43852 | 1400 |   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
 | 
| 1401 | "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)" | |
| 1402 | "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)" | |
| 43817 | 1403 | "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)" | 
| 1404 | "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)" | |
| 43852 | 1405 | "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)" | 
| 1406 | "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)" | |
| 43831 | 1407 | "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)" | 
| 13860 | 1408 | by auto | 
| 1409 | ||
| 1410 | lemma INT_extend_simps: | |
| 43852 | 1411 |   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
 | 
| 1412 |   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
 | |
| 1413 |   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
 | |
| 1414 |   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
 | |
| 43817 | 1415 | "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))" | 
| 43852 | 1416 | "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)" | 
| 1417 | "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)" | |
| 1418 | "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)" | |
| 1419 | "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)" | |
| 1420 | "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)" | |
| 13860 | 1421 | by auto | 
| 1422 | ||
| 60758 | 1423 | text \<open>Finally\<close> | 
| 43872 | 1424 | |
| 30596 | 1425 | lemmas mem_simps = | 
| 1426 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 1427 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 61799 | 1428 | \<comment> \<open>Each of these has ALREADY been added \<open>[simp]\<close> above.\<close> | 
| 21669 | 1429 | |
| 11979 | 1430 | end |