2570
|
1 |
(* Specification of the following loop back device
|
|
2 |
|
|
3 |
|
|
4 |
g
|
|
5 |
--------------------
|
|
6 |
| ------- |
|
|
7 |
x | | | | y
|
|
8 |
------|---->| |------| ----->
|
|
9 |
| z | f | z |
|
|
10 |
| -->| |--- |
|
|
11 |
| | | | | |
|
|
12 |
| | ------- | |
|
|
13 |
| | | |
|
|
14 |
| <-------------- |
|
|
15 |
| |
|
|
16 |
--------------------
|
|
17 |
|
|
18 |
|
|
19 |
First step: Notation in Agent Network Description Language (ANDL)
|
|
20 |
-----------------------------------------------------------------
|
|
21 |
|
|
22 |
agent f
|
|
23 |
input channel i1:'b i2: ('b,'c) tc
|
|
24 |
output channel o1:'c o2: ('b,'c) tc
|
|
25 |
is
|
|
26 |
Rf(i1,i2,o1,o2) (left open in the example)
|
|
27 |
end f
|
|
28 |
|
|
29 |
agent g
|
|
30 |
input channel x:'b
|
|
31 |
output channel y:'c
|
|
32 |
is network
|
10835
|
33 |
<y,z> = f$<x,z>
|
2570
|
34 |
end network
|
|
35 |
end g
|
|
36 |
|
|
37 |
|
|
38 |
Remark: the type of the feedback depends at most on the types of the input and
|
|
39 |
output of g. (No type miracles inside g)
|
|
40 |
|
|
41 |
Second step: Translation of ANDL specification to HOLCF Specification
|
|
42 |
---------------------------------------------------------------------
|
|
43 |
|
|
44 |
Specification of agent f ist translated to predicate is_f
|
|
45 |
|
|
46 |
is_f :: ('b stream * ('b,'c) tc stream ->
|
|
47 |
'c stream * ('b,'c) tc stream) => bool
|
|
48 |
|
|
49 |
is_f f = !i1 i2 o1 o2.
|
10835
|
50 |
f$<i1,i2> = <o1,o2> --> Rf(i1,i2,o1,o2)
|
2570
|
51 |
|
|
52 |
Specification of agent g is translated to predicate is_g which uses
|
|
53 |
predicate is_net_g
|
|
54 |
|
|
55 |
is_net_g :: ('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) =>
|
|
56 |
'b stream => 'c stream => bool
|
|
57 |
|
|
58 |
is_net_g f x y =
|
10835
|
59 |
? z. <y,z> = f$<x,z> &
|
|
60 |
!oy hz. <oy,hz> = f$<x,hz> --> z << hz
|
2570
|
61 |
|
|
62 |
|
|
63 |
is_g :: ('b stream -> 'c stream) => bool
|
|
64 |
|
10835
|
65 |
is_g g = ? f. is_f f & (!x y. g$x = y --> is_net_g f x y
|
2570
|
66 |
|
|
67 |
Third step: (show conservativity)
|
|
68 |
-----------
|
|
69 |
|
|
70 |
Suppose we have a model for the theory TH1 which contains the axiom
|
|
71 |
|
|
72 |
? f. is_f f
|
|
73 |
|
|
74 |
In this case there is also a model for the theory TH2 that enriches TH1 by
|
|
75 |
axiom
|
|
76 |
|
|
77 |
? g. is_g g
|
|
78 |
|
|
79 |
The result is proved by showing that there is a definitional extension
|
|
80 |
that extends TH1 by a definition of g.
|
|
81 |
|
|
82 |
|
|
83 |
We define:
|
|
84 |
|
|
85 |
def_g g =
|
|
86 |
(? f. is_f f &
|
10835
|
87 |
g = (LAM x. cfst$(f$<x,fix$(LAM k.csnd$(f$<x,k>))>)) )
|
2570
|
88 |
|
|
89 |
Now we prove:
|
|
90 |
|
|
91 |
(? f. is_f f ) --> (? g. is_g g)
|
|
92 |
|
|
93 |
using the theorems
|
|
94 |
|
|
95 |
loopback_eq) def_g = is_g (real work)
|
|
96 |
|
|
97 |
L1) (? f. is_f f ) --> (? g. def_g g) (trivial)
|
|
98 |
|
|
99 |
*)
|
|
100 |
|
|
101 |
Focus_ex = Stream +
|
|
102 |
|
|
103 |
types tc 2
|
|
104 |
|
|
105 |
arities tc:: (pcpo,pcpo)pcpo
|
|
106 |
|
|
107 |
consts
|
|
108 |
|
|
109 |
is_f ::
|
|
110 |
"('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => bool"
|
|
111 |
is_net_g :: "('b stream *('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) =>
|
|
112 |
'b stream => 'c stream => bool"
|
|
113 |
is_g :: "('b stream -> 'c stream) => bool"
|
|
114 |
def_g :: "('b stream -> 'c stream) => bool"
|
|
115 |
Rf ::
|
|
116 |
"('b stream * ('b,'c) tc stream * 'c stream * ('b,'c) tc stream) => bool"
|
|
117 |
|
|
118 |
defs
|
|
119 |
|
|
120 |
is_f "is_f f == (!i1 i2 o1 o2.
|
10835
|
121 |
f$<i1,i2> = <o1,o2> --> Rf(i1,i2,o1,o2))"
|
2570
|
122 |
|
|
123 |
is_net_g "is_net_g f x y == (? z.
|
10835
|
124 |
<y,z> = f$<x,z> &
|
|
125 |
(!oy hz. <oy,hz> = f$<x,hz> --> z << hz))"
|
2570
|
126 |
|
|
127 |
is_g "is_g g == (? f.
|
|
128 |
is_f f &
|
10835
|
129 |
(!x y. g$x = y --> is_net_g f x y))"
|
2570
|
130 |
|
|
131 |
|
|
132 |
def_g "def_g g == (? f.
|
|
133 |
is_f f &
|
10835
|
134 |
g = (LAM x. cfst$(f$<x,fix$(LAM k. csnd$(f$<x,k>))>)))"
|
2570
|
135 |
|
|
136 |
end
|