| author | blanchet | 
| Fri, 18 Feb 2011 15:44:52 +0100 | |
| changeset 41771 | 70d4585b11a6 | 
| parent 41479 | 655f583840d0 | 
| child 42151 | 4da4fc77664b | 
| permissions | -rw-r--r-- | 
| 25904 | 1 | (* Title: HOLCF/UpperPD.thy | 
| 2 | Author: Brian Huffman | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Upper powerdomain *}
 | |
| 6 | ||
| 7 | theory UpperPD | |
| 41284 | 8 | imports Compact_Basis | 
| 25904 | 9 | begin | 
| 10 | ||
| 11 | subsection {* Basis preorder *}
 | |
| 12 | ||
| 13 | definition | |
| 14 | upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 15 | "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)" | 
| 25904 | 16 | |
| 17 | lemma upper_le_refl [simp]: "t \<le>\<sharp> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 18 | unfolding upper_le_def by fast | 
| 25904 | 19 | |
| 20 | lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v" | |
| 21 | unfolding upper_le_def | |
| 22 | apply (rule ballI) | |
| 23 | apply (drule (1) bspec, erule bexE) | |
| 24 | apply (drule (1) bspec, erule bexE) | |
| 25 | apply (erule rev_bexI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 26 | apply (erule (1) below_trans) | 
| 25904 | 27 | done | 
| 28 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 29 | interpretation upper_le: preorder upper_le | 
| 25904 | 30 | by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans) | 
| 31 | ||
| 32 | lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t" | |
| 33 | unfolding upper_le_def Rep_PDUnit by simp | |
| 34 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 35 | lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y" | 
| 25904 | 36 | unfolding upper_le_def Rep_PDUnit by simp | 
| 37 | ||
| 38 | lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v" | |
| 39 | unfolding upper_le_def Rep_PDPlus by fast | |
| 40 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 41 | lemma PDPlus_upper_le: "PDPlus t u \<le>\<sharp> t" | 
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 42 | unfolding upper_le_def Rep_PDPlus by fast | 
| 25904 | 43 | |
| 44 | lemma upper_le_PDUnit_PDUnit_iff [simp]: | |
| 40436 | 45 | "(PDUnit a \<le>\<sharp> PDUnit b) = (a \<sqsubseteq> b)" | 
| 25904 | 46 | unfolding upper_le_def Rep_PDUnit by fast | 
| 47 | ||
| 48 | lemma upper_le_PDPlus_PDUnit_iff: | |
| 49 | "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)" | |
| 50 | unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast | |
| 51 | ||
| 52 | lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)" | |
| 53 | unfolding upper_le_def Rep_PDPlus by fast | |
| 54 | ||
| 55 | lemma upper_le_induct [induct set: upper_le]: | |
| 56 | assumes le: "t \<le>\<sharp> u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 57 | assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 58 | assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)" | 
| 59 | assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)" | |
| 60 | shows "P t u" | |
| 61 | using le apply (induct u arbitrary: t rule: pd_basis_induct) | |
| 62 | apply (erule rev_mp) | |
| 63 | apply (induct_tac t rule: pd_basis_induct) | |
| 64 | apply (simp add: 1) | |
| 65 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | |
| 66 | apply (simp add: 2) | |
| 67 | apply (subst PDPlus_commute) | |
| 68 | apply (simp add: 2) | |
| 69 | apply (simp add: upper_le_PDPlus_iff 3) | |
| 70 | done | |
| 71 | ||
| 72 | ||
| 73 | subsection {* Type definition *}
 | |
| 74 | ||
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 75 | typedef (open) 'a upper_pd = | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 76 |   "{S::'a pd_basis set. upper_le.ideal S}"
 | 
| 40888 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 77 | by (rule upper_le.ex_ideal) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 78 | |
| 41111 | 79 | type_notation (xsymbols) upper_pd ("('(_')\<sharp>)")
 | 
| 80 | ||
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 81 | instantiation upper_pd :: (bifinite) below | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 82 | begin | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 83 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 84 | definition | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 85 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 86 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 87 | instance .. | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 88 | end | 
| 25904 | 89 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 90 | instance upper_pd :: (bifinite) po | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 91 | using type_definition_upper_pd below_upper_pd_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 92 | by (rule upper_le.typedef_ideal_po) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 93 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 94 | instance upper_pd :: (bifinite) cpo | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 95 | using type_definition_upper_pd below_upper_pd_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 96 | by (rule upper_le.typedef_ideal_cpo) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 97 | |
| 25904 | 98 | definition | 
| 99 | upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 100 |   "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
 | 
| 25904 | 101 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 102 | interpretation upper_pd: | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 103 | ideal_completion upper_le upper_principal Rep_upper_pd | 
| 39984 | 104 | using type_definition_upper_pd below_upper_pd_def | 
| 105 | using upper_principal_def pd_basis_countable | |
| 106 | by (rule upper_le.typedef_ideal_completion) | |
| 25904 | 107 | |
| 27289 | 108 | text {* Upper powerdomain is pointed *}
 | 
| 25904 | 109 | |
| 110 | lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 111 | by (induct ys rule: upper_pd.principal_induct, simp, simp) | |
| 112 | ||
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 113 | instance upper_pd :: (bifinite) pcpo | 
| 26927 | 114 | by intro_classes (fast intro: upper_pd_minimal) | 
| 25904 | 115 | |
| 116 | lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)" | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 117 | by (rule upper_pd_minimal [THEN bottomI, symmetric]) | 
| 25904 | 118 | |
| 119 | ||
| 26927 | 120 | subsection {* Monadic unit and plus *}
 | 
| 25904 | 121 | |
| 122 | definition | |
| 123 | upper_unit :: "'a \<rightarrow> 'a upper_pd" where | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 124 | "upper_unit = compact_basis.extension (\<lambda>a. upper_principal (PDUnit a))" | 
| 25904 | 125 | |
| 126 | definition | |
| 127 | upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 128 | "upper_plus = upper_pd.extension (\<lambda>t. upper_pd.extension (\<lambda>u. | 
| 25904 | 129 | upper_principal (PDPlus t u)))" | 
| 130 | ||
| 131 | abbreviation | |
| 132 | upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd" | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 133 | (infixl "\<union>\<sharp>" 65) where | 
| 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 134 | "xs \<union>\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys" | 
| 25904 | 135 | |
| 26927 | 136 | syntax | 
| 41479 | 137 |   "_upper_pd" :: "args \<Rightarrow> logic" ("{_}\<sharp>")
 | 
| 26927 | 138 | |
| 139 | translations | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 140 |   "{x,xs}\<sharp>" == "{x}\<sharp> \<union>\<sharp> {xs}\<sharp>"
 | 
| 26927 | 141 |   "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
 | 
| 142 | ||
| 143 | lemma upper_unit_Rep_compact_basis [simp]: | |
| 144 |   "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
 | |
| 145 | unfolding upper_unit_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 146 | by (simp add: compact_basis.extension_principal PDUnit_upper_mono) | 
| 26927 | 147 | |
| 25904 | 148 | lemma upper_plus_principal [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 149 | "upper_principal t \<union>\<sharp> upper_principal u = upper_principal (PDPlus t u)" | 
| 25904 | 150 | unfolding upper_plus_def | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 151 | by (simp add: upper_pd.extension_principal | 
| 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 152 | upper_pd.extension_mono PDPlus_upper_mono) | 
| 25904 | 153 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36635diff
changeset | 154 | interpretation upper_add: semilattice upper_add proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 155 | fix xs ys zs :: "'a upper_pd" | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 156 | show "(xs \<union>\<sharp> ys) \<union>\<sharp> zs = xs \<union>\<sharp> (ys \<union>\<sharp> zs)" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 157 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 158 | apply (induct ys rule: upper_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 159 | apply (induct zs rule: upper_pd.principal_induct, simp) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 160 | apply (simp add: PDPlus_assoc) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 161 | done | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 162 | show "xs \<union>\<sharp> ys = ys \<union>\<sharp> xs" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 163 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 164 | apply (induct ys rule: upper_pd.principal_induct, simp) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 165 | apply (simp add: PDPlus_commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 166 | done | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 167 | show "xs \<union>\<sharp> xs = xs" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 168 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 169 | apply (simp add: PDPlus_absorb) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 170 | done | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 171 | qed | 
| 26927 | 172 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 173 | lemmas upper_plus_assoc = upper_add.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 174 | lemmas upper_plus_commute = upper_add.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 175 | lemmas upper_plus_absorb = upper_add.idem | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 176 | lemmas upper_plus_left_commute = upper_add.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 177 | lemmas upper_plus_left_absorb = upper_add.left_idem | 
| 26927 | 178 | |
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 179 | text {* Useful for @{text "simp add: upper_plus_ac"} *}
 | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 180 | lemmas upper_plus_ac = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 181 | upper_plus_assoc upper_plus_commute upper_plus_left_commute | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 182 | |
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 183 | text {* Useful for @{text "simp only: upper_plus_aci"} *}
 | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 184 | lemmas upper_plus_aci = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 185 | upper_plus_ac upper_plus_absorb upper_plus_left_absorb | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 186 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 187 | lemma upper_plus_below1: "xs \<union>\<sharp> ys \<sqsubseteq> xs" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 188 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 189 | apply (induct ys rule: upper_pd.principal_induct, simp) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 190 | apply (simp add: PDPlus_upper_le) | 
| 25904 | 191 | done | 
| 192 | ||
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 193 | lemma upper_plus_below2: "xs \<union>\<sharp> ys \<sqsubseteq> ys" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 194 | by (subst upper_plus_commute, rule upper_plus_below1) | 
| 25904 | 195 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 196 | lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys \<union>\<sharp> zs" | 
| 25904 | 197 | apply (subst upper_plus_absorb [of xs, symmetric]) | 
| 198 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | |
| 199 | done | |
| 200 | ||
| 40734 | 201 | lemma upper_below_plus_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 202 | "xs \<sqsubseteq> ys \<union>\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs" | 
| 25904 | 203 | apply safe | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 204 | apply (erule below_trans [OF _ upper_plus_below1]) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 205 | apply (erule below_trans [OF _ upper_plus_below2]) | 
| 25904 | 206 | apply (erule (1) upper_plus_greatest) | 
| 207 | done | |
| 208 | ||
| 40734 | 209 | lemma upper_plus_below_unit_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 210 |   "xs \<union>\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
 | 
| 39970 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 211 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 212 | apply (induct ys rule: upper_pd.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 213 | apply (induct z rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 214 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | 
| 25904 | 215 | done | 
| 216 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 217 | lemma upper_unit_below_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
| 39970 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 218 | apply (induct x rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 219 | apply (induct y rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 220 | apply simp | 
| 26927 | 221 | done | 
| 222 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 223 | lemmas upper_pd_below_simps = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 224 | upper_unit_below_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 225 | upper_below_plus_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 226 | upper_plus_below_unit_iff | 
| 25904 | 227 | |
| 26927 | 228 | lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
 | 
| 229 | unfolding po_eq_conv by simp | |
| 230 | ||
| 231 | lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 232 | using upper_unit_Rep_compact_basis [of compact_bot] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 233 | by (simp add: inst_upper_pd_pcpo) | 
| 26927 | 234 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 235 | lemma upper_plus_strict1 [simp]: "\<bottom> \<union>\<sharp> ys = \<bottom>" | 
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 236 | by (rule bottomI, rule upper_plus_below1) | 
| 26927 | 237 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 238 | lemma upper_plus_strict2 [simp]: "xs \<union>\<sharp> \<bottom> = \<bottom>" | 
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 239 | by (rule bottomI, rule upper_plus_below2) | 
| 26927 | 240 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40002diff
changeset | 241 | lemma upper_unit_bottom_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | 
| 26927 | 242 | unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) | 
| 243 | ||
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40002diff
changeset | 244 | lemma upper_plus_bottom_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 245 | "xs \<union>\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 246 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 247 | apply (induct ys rule: upper_pd.principal_induct, simp) | 
| 27289 | 248 | apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff | 
| 26927 | 249 | upper_le_PDPlus_PDUnit_iff) | 
| 250 | done | |
| 251 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 252 | lemma compact_upper_unit: "compact x \<Longrightarrow> compact {x}\<sharp>"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 253 | by (auto dest!: compact_basis.compact_imp_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 254 | |
| 26927 | 255 | lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 256 | apply (safe elim!: compact_upper_unit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 257 | apply (simp only: compact_def upper_unit_below_iff [symmetric]) | 
| 40327 | 258 | apply (erule adm_subst [OF cont_Rep_cfun2]) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 259 | done | 
| 26927 | 260 | |
| 261 | lemma compact_upper_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 262 | "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs \<union>\<sharp> ys)" | 
| 27289 | 263 | by (auto dest!: upper_pd.compact_imp_principal) | 
| 26927 | 264 | |
| 25904 | 265 | |
| 266 | subsection {* Induction rules *}
 | |
| 267 | ||
| 268 | lemma upper_pd_induct1: | |
| 269 | assumes P: "adm P" | |
| 26927 | 270 |   assumes unit: "\<And>x. P {x}\<sharp>"
 | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 271 |   assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> \<union>\<sharp> ys)"
 | 
| 25904 | 272 | shows "P (xs::'a upper_pd)" | 
| 27289 | 273 | apply (induct xs rule: upper_pd.principal_induct, rule P) | 
| 274 | apply (induct_tac a rule: pd_basis_induct1) | |
| 25904 | 275 | apply (simp only: upper_unit_Rep_compact_basis [symmetric]) | 
| 276 | apply (rule unit) | |
| 277 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] | |
| 278 | upper_plus_principal [symmetric]) | |
| 279 | apply (erule insert [OF unit]) | |
| 280 | done | |
| 281 | ||
| 40576 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 huffman parents: 
40497diff
changeset | 282 | lemma upper_pd_induct | 
| 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 huffman parents: 
40497diff
changeset | 283 | [case_names adm upper_unit upper_plus, induct type: upper_pd]: | 
| 25904 | 284 | assumes P: "adm P" | 
| 26927 | 285 |   assumes unit: "\<And>x. P {x}\<sharp>"
 | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 286 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs \<union>\<sharp> ys)" | 
| 25904 | 287 | shows "P (xs::'a upper_pd)" | 
| 27289 | 288 | apply (induct xs rule: upper_pd.principal_induct, rule P) | 
| 289 | apply (induct_tac a rule: pd_basis_induct) | |
| 25904 | 290 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit) | 
| 291 | apply (simp only: upper_plus_principal [symmetric] plus) | |
| 292 | done | |
| 293 | ||
| 294 | ||
| 295 | subsection {* Monadic bind *}
 | |
| 296 | ||
| 297 | definition | |
| 298 | upper_bind_basis :: | |
| 299 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 300 | "upper_bind_basis = fold_pd | |
| 301 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 302 | (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<sharp> y\<cdot>f)" | 
| 25904 | 303 | |
| 26927 | 304 | lemma ACI_upper_bind: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 305 | "class.ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<sharp> y\<cdot>f)" | 
| 25904 | 306 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 307 | apply (simp add: upper_plus_assoc) | 
| 25904 | 308 | apply (simp add: upper_plus_commute) | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 309 | apply (simp add: eta_cfun) | 
| 25904 | 310 | done | 
| 311 | ||
| 312 | lemma upper_bind_basis_simps [simp]: | |
| 313 | "upper_bind_basis (PDUnit a) = | |
| 314 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 315 | "upper_bind_basis (PDPlus t u) = | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 316 | (\<Lambda> f. upper_bind_basis t\<cdot>f \<union>\<sharp> upper_bind_basis u\<cdot>f)" | 
| 25904 | 317 | unfolding upper_bind_basis_def | 
| 318 | apply - | |
| 26927 | 319 | apply (rule fold_pd_PDUnit [OF ACI_upper_bind]) | 
| 320 | apply (rule fold_pd_PDPlus [OF ACI_upper_bind]) | |
| 25904 | 321 | done | 
| 322 | ||
| 323 | lemma upper_bind_basis_mono: | |
| 324 | "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u" | |
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 325 | unfolding cfun_below_iff | 
| 25904 | 326 | apply (erule upper_le_induct, safe) | 
| 27289 | 327 | apply (simp add: monofun_cfun) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 328 | apply (simp add: below_trans [OF upper_plus_below1]) | 
| 40734 | 329 | apply simp | 
| 25904 | 330 | done | 
| 331 | ||
| 332 | definition | |
| 333 |   upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 334 | "upper_bind = upper_pd.extension upper_bind_basis" | 
| 25904 | 335 | |
| 41036 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 336 | syntax | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 337 | "_upper_bind" :: "[logic, logic, logic] \<Rightarrow> logic" | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 338 |     ("(3\<Union>\<sharp>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 339 | |
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 340 | translations | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 341 | "\<Union>\<sharp>x\<in>xs. e" == "CONST upper_bind\<cdot>xs\<cdot>(\<Lambda> x. e)" | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 342 | |
| 25904 | 343 | lemma upper_bind_principal [simp]: | 
| 344 | "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t" | |
| 345 | unfolding upper_bind_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 346 | apply (rule upper_pd.extension_principal) | 
| 25904 | 347 | apply (erule upper_bind_basis_mono) | 
| 348 | done | |
| 349 | ||
| 350 | lemma upper_bind_unit [simp]: | |
| 26927 | 351 |   "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 352 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 353 | |
| 354 | lemma upper_bind_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 355 | "upper_bind\<cdot>(xs \<union>\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f \<union>\<sharp> upper_bind\<cdot>ys\<cdot>f" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 356 | by (induct xs rule: upper_pd.principal_induct, simp, | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 357 | induct ys rule: upper_pd.principal_induct, simp, simp) | 
| 25904 | 358 | |
| 359 | lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 360 | unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit) | |
| 361 | ||
| 40589 | 362 | lemma upper_bind_bind: | 
| 363 | "upper_bind\<cdot>(upper_bind\<cdot>xs\<cdot>f)\<cdot>g = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_bind\<cdot>(f\<cdot>x)\<cdot>g)" | |
| 364 | by (induct xs, simp_all) | |
| 365 | ||
| 25904 | 366 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 367 | subsection {* Map *}
 | 
| 25904 | 368 | |
| 369 | definition | |
| 370 |   upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
 | |
| 26927 | 371 |   "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
 | 
| 25904 | 372 | |
| 373 | lemma upper_map_unit [simp]: | |
| 26927 | 374 |   "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
 | 
| 25904 | 375 | unfolding upper_map_def by simp | 
| 376 | ||
| 377 | lemma upper_map_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 378 | "upper_map\<cdot>f\<cdot>(xs \<union>\<sharp> ys) = upper_map\<cdot>f\<cdot>xs \<union>\<sharp> upper_map\<cdot>f\<cdot>ys" | 
| 25904 | 379 | unfolding upper_map_def by simp | 
| 380 | ||
| 40577 | 381 | lemma upper_map_bottom [simp]: "upper_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<sharp>"
 | 
| 382 | unfolding upper_map_def by simp | |
| 383 | ||
| 25904 | 384 | lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | 
| 385 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 386 | ||
| 33808 | 387 | lemma upper_map_ID: "upper_map\<cdot>ID = ID" | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 388 | by (simp add: cfun_eq_iff ID_def upper_map_ident) | 
| 33808 | 389 | |
| 25904 | 390 | lemma upper_map_map: | 
| 391 | "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 392 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 393 | ||
| 41110 | 394 | lemma upper_bind_map: | 
| 395 | "upper_bind\<cdot>(upper_map\<cdot>f\<cdot>xs)\<cdot>g = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))" | |
| 396 | by (simp add: upper_map_def upper_bind_bind) | |
| 397 | ||
| 398 | lemma upper_map_bind: | |
| 399 | "upper_map\<cdot>f\<cdot>(upper_bind\<cdot>xs\<cdot>g) = upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_map\<cdot>f\<cdot>(g\<cdot>x))" | |
| 400 | by (simp add: upper_map_def upper_bind_bind) | |
| 401 | ||
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 402 | lemma ep_pair_upper_map: "ep_pair e p \<Longrightarrow> ep_pair (upper_map\<cdot>e) (upper_map\<cdot>p)" | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 403 | apply default | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 404 | apply (induct_tac x rule: upper_pd_induct, simp_all add: ep_pair.e_inverse) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 405 | apply (induct_tac y rule: upper_pd_induct) | 
| 40734 | 406 | apply (simp_all add: ep_pair.e_p_below monofun_cfun del: upper_below_plus_iff) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 407 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 408 | |
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 409 | lemma deflation_upper_map: "deflation d \<Longrightarrow> deflation (upper_map\<cdot>d)" | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 410 | apply default | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 411 | apply (induct_tac x rule: upper_pd_induct, simp_all add: deflation.idem) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 412 | apply (induct_tac x rule: upper_pd_induct) | 
| 40734 | 413 | apply (simp_all add: deflation.below monofun_cfun del: upper_below_plus_iff) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 414 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 415 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 416 | (* FIXME: long proof! *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 417 | lemma finite_deflation_upper_map: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 418 | assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 419 | proof (rule finite_deflation_intro) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 420 | interpret d: finite_deflation d by fact | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 421 | have "deflation d" by fact | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 422 | thus "deflation (upper_map\<cdot>d)" by (rule deflation_upper_map) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 423 | have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 424 | hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 425 | by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 426 | hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 427 | hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 428 | by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 429 | hence *: "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 430 | hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 431 | apply (rule rev_finite_subset) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 432 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 433 | apply (induct_tac xs rule: upper_pd.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 434 | apply (simp add: adm_mem_finite *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 435 | apply (rename_tac t, induct_tac t rule: pd_basis_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 436 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 437 | apply simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 438 | apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b") | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 439 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 440 | apply (rule imageI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 441 | apply (rule vimageI2) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 442 | apply (simp add: Rep_PDUnit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 443 | apply (rule range_eqI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 444 | apply (erule sym) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 445 | apply (rule exI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 446 | apply (rule Abs_compact_basis_inverse [symmetric]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 447 | apply (simp add: d.compact) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 448 | apply (simp only: upper_plus_principal [symmetric] upper_map_plus) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 449 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 450 | apply (rule imageI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 451 | apply (rule vimageI2) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 452 | apply (simp add: Rep_PDPlus) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 453 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 454 |   thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 455 | by (rule finite_range_imp_finite_fixes) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 456 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 457 | |
| 41289 
f655912ac235
minimize imports; move domain class instances for powerdomain types into Powerdomains.thy
 huffman parents: 
41288diff
changeset | 458 | subsection {* Upper powerdomain is bifinite *}
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 459 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 460 | lemma approx_chain_upper_map: | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 461 | assumes "approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 462 | shows "approx_chain (\<lambda>i. upper_map\<cdot>(a i))" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 463 | using assms unfolding approx_chain_def | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 464 | by (simp add: lub_APP upper_map_ID finite_deflation_upper_map) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 465 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 466 | instance upper_pd :: (bifinite) bifinite | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 467 | proof | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 468 | show "\<exists>(a::nat \<Rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd). approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 469 | using bifinite [where 'a='a] | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 470 | by (fast intro!: approx_chain_upper_map) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 471 | qed | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 472 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 473 | subsection {* Join *}
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 474 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 475 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 476 | upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 477 | "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 478 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 479 | lemma upper_join_unit [simp]: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 480 |   "upper_join\<cdot>{xs}\<sharp> = xs"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 481 | unfolding upper_join_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 482 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 483 | lemma upper_join_plus [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 484 | "upper_join\<cdot>(xss \<union>\<sharp> yss) = upper_join\<cdot>xss \<union>\<sharp> upper_join\<cdot>yss" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 485 | unfolding upper_join_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 486 | |
| 40577 | 487 | lemma upper_join_bottom [simp]: "upper_join\<cdot>\<bottom> = \<bottom>" | 
| 488 | unfolding upper_join_def by simp | |
| 489 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 490 | lemma upper_join_map_unit: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 491 | "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 492 | by (induct xs rule: upper_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 493 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 494 | lemma upper_join_map_join: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 495 | "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 496 | by (induct xsss rule: upper_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 497 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 498 | lemma upper_join_map_map: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 499 | "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) = | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 500 | upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 501 | by (induct xss rule: upper_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 502 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 503 | end |