src/HOL/Library/Complete_Partial_Order2.thy
author Peter Lammich
Mon, 28 Oct 2019 18:50:40 +0000
changeset 70961 70fb697be418
parent 69593 3dda49e08b9d
child 73411 1f1366966296
permissions -rw-r--r--
Removed dup lemma that inhibited locale instantiations (dup fact error)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
62858
d72a6f9ee690 tuned headers;
wenzelm
parents: 62837
diff changeset
     1
(*  Title:      HOL/Library/Complete_Partial_Order2.thy
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     2
    Author:     Andreas Lochbihler, ETH Zurich
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     3
*)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     4
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
     5
section \<open>Formalisation of chain-complete partial orders, continuity and admissibility\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     6
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     7
theory Complete_Partial_Order2 imports 
65366
10ca63a18e56 proper imports;
wenzelm
parents: 63649
diff changeset
     8
  Main Lattice_Syntax
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
     9
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    10
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    11
lemma chain_transfer [transfer_rule]:
63343
fb5d8a50c641 bundle lifting_syntax;
wenzelm
parents: 63243
diff changeset
    12
  includes lifting_syntax
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    13
  shows "((A ===> A ===> (=)) ===> rel_set A ===> (=)) Complete_Partial_Order.chain Complete_Partial_Order.chain"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    14
unfolding chain_def[abs_def] by transfer_prover
68980
5717fbc55521 added spaces because otherwise nonatomic arguments look awful: BIGf x -> BIG f x
nipkow
parents: 67399
diff changeset
    15
                             
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    16
lemma linorder_chain [simp, intro!]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    17
  fixes Y :: "_ :: linorder set"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    18
  shows "Complete_Partial_Order.chain (\<le>) Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    19
by(auto intro: chainI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    20
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    21
lemma fun_lub_apply: "\<And>Sup. fun_lub Sup Y x = Sup ((\<lambda>f. f x) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    22
by(simp add: fun_lub_def image_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    23
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    24
lemma fun_lub_empty [simp]: "fun_lub lub {} = (\<lambda>_. lub {})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    25
by(rule ext)(simp add: fun_lub_apply)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    26
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    27
lemma chain_fun_ordD: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    28
  assumes "Complete_Partial_Order.chain (fun_ord le) Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    29
  shows "Complete_Partial_Order.chain le ((\<lambda>f. f x) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    30
by(rule chainI)(auto dest: chainD[OF assms] simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    31
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    32
lemma chain_Diff:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    33
  "Complete_Partial_Order.chain ord A
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    34
  \<Longrightarrow> Complete_Partial_Order.chain ord (A - B)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    35
by(erule chain_subset) blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    36
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    37
lemma chain_rel_prodD1:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    38
  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    39
  \<Longrightarrow> Complete_Partial_Order.chain orda (fst ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    40
by(auto 4 3 simp add: chain_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    41
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    42
lemma chain_rel_prodD2:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    43
  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    44
  \<Longrightarrow> Complete_Partial_Order.chain ordb (snd ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    45
by(auto 4 3 simp add: chain_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    46
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    47
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    48
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    49
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    50
lemma ccpo_fun: "class.ccpo (fun_lub Sup) (fun_ord (\<le>)) (mk_less (fun_ord (\<le>)))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    51
  by standard (auto 4 3 simp add: mk_less_def fun_ord_def fun_lub_apply
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    52
    intro: order.trans antisym chain_imageI ccpo_Sup_upper ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    53
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    54
lemma ccpo_Sup_below_iff: "Complete_Partial_Order.chain (\<le>) Y \<Longrightarrow> Sup Y \<le> x \<longleftrightarrow> (\<forall>y\<in>Y. y \<le> x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    55
by(fast intro: order_trans[OF ccpo_Sup_upper] ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    56
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    57
lemma Sup_minus_bot: 
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    58
  assumes chain: "Complete_Partial_Order.chain (\<le>) A"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    59
  shows "\<Squnion>(A - {\<Squnion>{}}) = \<Squnion>A"
63649
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    60
    (is "?lhs = ?rhs")
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    61
proof (rule antisym)
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    62
  show "?lhs \<le> ?rhs"
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    63
    by (blast intro: ccpo_Sup_least chain_Diff[OF chain] ccpo_Sup_upper[OF chain])
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    64
  show "?rhs \<le> ?lhs"
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    65
  proof (rule ccpo_Sup_least [OF chain])
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    66
    show "x \<in> A \<Longrightarrow> x \<le> ?lhs" for x
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    67
      by (cases "x = \<Squnion>{}")
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    68
        (blast intro: ccpo_Sup_least chain_empty ccpo_Sup_upper[OF chain_Diff[OF chain]])+
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    69
  qed
e690d6f2185b tuned proofs;
wenzelm
parents: 63343
diff changeset
    70
qed
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    71
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    72
lemma mono_lub:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    73
  fixes le_b (infix "\<sqsubseteq>" 60)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    74
  assumes chain: "Complete_Partial_Order.chain (fun_ord (\<le>)) Y"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    75
  and mono: "\<And>f. f \<in> Y \<Longrightarrow> monotone le_b (\<le>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    76
  shows "monotone (\<sqsubseteq>) (\<le>) (fun_lub Sup Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    77
proof(rule monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    78
  fix x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    79
  assume "x \<sqsubseteq> y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    80
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    81
  have chain'': "\<And>x. Complete_Partial_Order.chain (\<le>) ((\<lambda>f. f x) ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    82
    using chain by(rule chain_imageI)(simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    83
  then show "fun_lub Sup Y x \<le> fun_lub Sup Y y" unfolding fun_lub_apply
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    84
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    85
    fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    86
    assume "x' \<in> (\<lambda>f. f x) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    87
    then obtain f where "f \<in> Y" "x' = f x" by blast
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
    88
    note \<open>x' = f x\<close> also
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
    89
    from \<open>f \<in> Y\<close> \<open>x \<sqsubseteq> y\<close> have "f x \<le> f y" by(blast dest: mono monotoneD)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    90
    also have "\<dots> \<le> \<Squnion>((\<lambda>f. f y) ` Y)" using chain''
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
    91
      by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    92
    finally show "x' \<le> \<Squnion>((\<lambda>f. f y) ` Y)" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    93
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    94
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    95
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    96
context
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    97
  fixes le_b (infix "\<sqsubseteq>" 60) and Y f
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
    98
  assumes chain: "Complete_Partial_Order.chain le_b Y" 
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
    99
  and mono1: "\<And>y. y \<in> Y \<Longrightarrow> monotone le_b (\<le>) (\<lambda>x. f x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   100
  and mono2: "\<And>x a b. \<lbrakk> x \<in> Y; a \<sqsubseteq> b; a \<in> Y; b \<in> Y \<rbrakk> \<Longrightarrow> f x a \<le> f x b"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   101
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   102
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   103
lemma Sup_mono: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   104
  assumes le: "x \<sqsubseteq> y" and x: "x \<in> Y" and y: "y \<in> Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   105
  shows "\<Squnion>(f x ` Y) \<le> \<Squnion>(f y ` Y)" (is "_ \<le> ?rhs")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   106
proof(rule ccpo_Sup_least)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   107
  from chain show chain': "Complete_Partial_Order.chain (\<le>) (f x ` Y)" when "x \<in> Y" for x
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   108
    by(rule chain_imageI) (insert that, auto dest: mono2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   109
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   110
  fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   111
  assume "x' \<in> f x ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   112
  then obtain y' where "y' \<in> Y" "x' = f x y'" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   113
  also from mono1[OF \<open>y' \<in> Y\<close>] le have "\<dots> \<le> f y y'" by(rule monotoneD)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   114
  also have "\<dots> \<le> ?rhs" using chain'[OF y]
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   115
    by (auto intro!: ccpo_Sup_upper simp add: \<open>y' \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   116
  finally show "x' \<le> ?rhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   117
qed(rule x)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   118
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   119
lemma diag_Sup: "\<Squnion>((\<lambda>x. \<Squnion>(f x ` Y)) ` Y) = \<Squnion>((\<lambda>x. f x x) ` Y)" (is "?lhs = ?rhs")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   120
proof(rule antisym)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   121
  have chain1: "Complete_Partial_Order.chain (\<le>) ((\<lambda>x. \<Squnion>(f x ` Y)) ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   122
    using chain by(rule chain_imageI)(rule Sup_mono)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   123
  have chain2: "\<And>y'. y' \<in> Y \<Longrightarrow> Complete_Partial_Order.chain (\<le>) (f y' ` Y)" using chain
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   124
    by(rule chain_imageI)(auto dest: mono2)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   125
  have chain3: "Complete_Partial_Order.chain (\<le>) ((\<lambda>x. f x x) ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   126
    using chain by(rule chain_imageI)(auto intro: monotoneD[OF mono1] mono2 order.trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   127
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   128
  show "?lhs \<le> ?rhs" using chain1
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   129
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   130
    fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   131
    assume "x' \<in> (\<lambda>x. \<Squnion>(f x ` Y)) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   132
    then obtain y' where "y' \<in> Y" "x' = \<Squnion>(f y' ` Y)" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   133
    also have "\<dots> \<le> ?rhs" using chain2[OF \<open>y' \<in> Y\<close>]
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   134
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   135
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   136
      assume "x \<in> f y' ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   137
      then obtain y where "y \<in> Y" and x: "x = f y' y" by blast
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62858
diff changeset
   138
      define y'' where "y'' = (if y \<sqsubseteq> y' then y' else y)"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   139
      from chain \<open>y \<in> Y\<close> \<open>y' \<in> Y\<close> have "y \<sqsubseteq> y' \<or> y' \<sqsubseteq> y" by(rule chainD)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   140
      hence "f y' y \<le> f y'' y''" using \<open>y \<in> Y\<close> \<open>y' \<in> Y\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   141
        by(auto simp add: y''_def intro: mono2 monotoneD[OF mono1])
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   142
      also from \<open>y \<in> Y\<close> \<open>y' \<in> Y\<close> have "y'' \<in> Y" by(simp add: y''_def)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   143
      from chain3 have "f y'' y'' \<le> ?rhs" by(rule ccpo_Sup_upper)(simp add: \<open>y'' \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   144
      finally show "x \<le> ?rhs" by(simp add: x)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   145
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   146
    finally show "x' \<le> ?rhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   147
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   148
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   149
  show "?rhs \<le> ?lhs" using chain3
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   150
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   151
    fix y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   152
    assume "y \<in> (\<lambda>x. f x x) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   153
    then obtain x where "x \<in> Y" and "y = f x x" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   154
    also from chain2[OF \<open>x \<in> Y\<close>] have "\<dots> \<le> \<Squnion>(f x ` Y)"
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   155
      by(rule ccpo_Sup_upper)(simp add: \<open>x \<in> Y\<close>)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   156
    also have "\<dots> \<le> ?lhs" by(rule ccpo_Sup_upper[OF chain1])(simp add: \<open>x \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   157
    finally show "y \<le> ?lhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   158
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   159
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   160
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   161
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   162
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   163
lemma Sup_image_mono_le:
69038
2ce9bc515a64 more standard syntax
nipkow
parents: 68980
diff changeset
   164
  fixes le_b (infix "\<sqsubseteq>" 60) and Sup_b ("\<Or>")
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   165
  assumes ccpo: "class.ccpo Sup_b (\<sqsubseteq>) lt_b"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   166
  assumes chain: "Complete_Partial_Order.chain (\<sqsubseteq>) Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   167
  and mono: "\<And>x y. \<lbrakk> x \<sqsubseteq> y; x \<in> Y \<rbrakk> \<Longrightarrow> f x \<le> f y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   168
  shows "Sup (f ` Y) \<le> f (\<Or>Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   169
proof(rule ccpo_Sup_least)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   170
  show "Complete_Partial_Order.chain (\<le>) (f ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   171
    using chain by(rule chain_imageI)(rule mono)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   172
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   173
  fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   174
  assume "x \<in> f ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   175
  then obtain y where "y \<in> Y" and "x = f y" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   176
  also have "y \<sqsubseteq> \<Or>Y" using ccpo chain \<open>y \<in> Y\<close> by(rule ccpo.ccpo_Sup_upper)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   177
  hence "f y \<le> f (\<Or>Y)" using \<open>y \<in> Y\<close> by(rule mono)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   178
  finally show "x \<le> \<dots>" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   179
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   180
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   181
lemma swap_Sup:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   182
  fixes le_b (infix "\<sqsubseteq>" 60)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   183
  assumes Y: "Complete_Partial_Order.chain (\<sqsubseteq>) Y"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   184
  and Z: "Complete_Partial_Order.chain (fun_ord (\<le>)) Z"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   185
  and mono: "\<And>f. f \<in> Z \<Longrightarrow> monotone (\<sqsubseteq>) (\<le>) f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   186
  shows "\<Squnion>((\<lambda>x. \<Squnion>(x ` Y)) ` Z) = \<Squnion>((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   187
  (is "?lhs = ?rhs")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   188
proof(cases "Y = {}")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   189
  case True
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   190
  then show ?thesis
69546
27dae626822b prefer naming convention from datatype package for strong congruence rules
haftmann
parents: 69164
diff changeset
   191
    by (simp add: image_constant_conv cong del: SUP_cong_simp)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   192
next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   193
  case False
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   194
  have chain1: "\<And>f. f \<in> Z \<Longrightarrow> Complete_Partial_Order.chain (\<le>) (f ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   195
    by(rule chain_imageI[OF Y])(rule monotoneD[OF mono])
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   196
  have chain2: "Complete_Partial_Order.chain (\<le>) ((\<lambda>x. \<Squnion>(x ` Y)) ` Z)" using Z
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   197
  proof(rule chain_imageI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   198
    fix f g
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   199
    assume "f \<in> Z" "g \<in> Z"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   200
      and "fun_ord (\<le>) f g"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   201
    from chain1[OF \<open>f \<in> Z\<close>] show "\<Squnion>(f ` Y) \<le> \<Squnion>(g ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   202
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   203
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   204
      assume "x \<in> f ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   205
      then obtain y where "y \<in> Y" "x = f y" by blast note this(2)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   206
      also have "\<dots> \<le> g y" using \<open>fun_ord (\<le>) f g\<close> by(simp add: fun_ord_def)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   207
      also have "\<dots> \<le> \<Squnion>(g ` Y)" using chain1[OF \<open>g \<in> Z\<close>]
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   208
        by(rule ccpo_Sup_upper)(simp add: \<open>y \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   209
      finally show "x \<le> \<Squnion>(g ` Y)" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   210
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   211
  qed
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   212
  have chain3: "\<And>x. Complete_Partial_Order.chain (\<le>) ((\<lambda>f. f x) ` Z)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   213
    using Z by(rule chain_imageI)(simp add: fun_ord_def)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   214
  have chain4: "Complete_Partial_Order.chain (\<le>) ((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   215
    using Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   216
  proof(rule chain_imageI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   217
    fix f x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   218
    assume "x \<sqsubseteq> y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   219
    show "\<Squnion>((\<lambda>f. f x) ` Z) \<le> \<Squnion>((\<lambda>f. f y) ` Z)" (is "_ \<le> ?rhs") using chain3
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   220
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   221
      fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   222
      assume "x' \<in> (\<lambda>f. f x) ` Z"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   223
      then obtain f where "f \<in> Z" "x' = f x" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   224
      also have "f x \<le> f y" using \<open>f \<in> Z\<close> \<open>x \<sqsubseteq> y\<close> by(rule monotoneD[OF mono])
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   225
      also have "f y \<le> ?rhs" using chain3
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   226
        by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> Z\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   227
      finally show "x' \<le> ?rhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   228
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   229
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   230
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   231
  from chain2 have "?lhs \<le> ?rhs"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   232
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   233
    fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   234
    assume "x \<in> (\<lambda>x. \<Squnion>(x ` Y)) ` Z"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   235
    then obtain f where "f \<in> Z" "x = \<Squnion>(f ` Y)" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   236
    also have "\<dots> \<le> ?rhs" using chain1[OF \<open>f \<in> Z\<close>]
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   237
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   238
      fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   239
      assume "x' \<in> f ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   240
      then obtain y where "y \<in> Y" "x' = f y" by blast note this(2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   241
      also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` Z)" using chain3
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   242
        by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> Z\<close>)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   243
      also have "\<dots> \<le> ?rhs" using chain4 by(rule ccpo_Sup_upper)(simp add: \<open>y \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   244
      finally show "x' \<le> ?rhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   245
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   246
    finally show "x \<le> ?rhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   247
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   248
  moreover
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   249
  have "?rhs \<le> ?lhs" using chain4
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   250
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   251
    fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   252
    assume "x \<in> (\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   253
    then obtain y where "y \<in> Y" "x = \<Squnion>((\<lambda>f. f y) ` Z)" by blast note this(2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   254
    also have "\<dots> \<le> ?lhs" using chain3
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   255
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   256
      fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   257
      assume "x' \<in> (\<lambda>f. f y) ` Z"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   258
      then obtain f where "f \<in> Z" "x' = f y" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   259
      also have "f y \<le> \<Squnion>(f ` Y)" using chain1[OF \<open>f \<in> Z\<close>]
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   260
        by(rule ccpo_Sup_upper)(simp add: \<open>y \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   261
      also have "\<dots> \<le> ?lhs" using chain2
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   262
        by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> Z\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   263
      finally show "x' \<le> ?lhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   264
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   265
    finally show "x \<le> ?lhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   266
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   267
  ultimately show "?lhs = ?rhs" by(rule antisym)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   268
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   269
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   270
lemma fixp_mono:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   271
  assumes fg: "fun_ord (\<le>) f g"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   272
  and f: "monotone (\<le>) (\<le>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   273
  and g: "monotone (\<le>) (\<le>) g"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   274
  shows "ccpo_class.fixp f \<le> ccpo_class.fixp g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   275
unfolding fixp_def
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   276
proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   277
  fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   278
  assume "x \<in> ccpo_class.iterates f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   279
  thus "x \<le> \<Squnion>ccpo_class.iterates g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   280
  proof induction
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   281
    case (step x)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   282
    from f step.IH have "f x \<le> f (\<Squnion>ccpo_class.iterates g)" by(rule monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   283
    also have "\<dots> \<le> g (\<Squnion>ccpo_class.iterates g)" using fg by(simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   284
    also have "\<dots> = \<Squnion>ccpo_class.iterates g" by(fold fixp_def fixp_unfold[OF g]) simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   285
    finally show ?case .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   286
  qed(blast intro: ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   287
qed(rule chain_iterates[OF f])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   288
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   289
context fixes ordb :: "'b \<Rightarrow> 'b \<Rightarrow> bool" (infix "\<sqsubseteq>" 60) begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   290
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   291
lemma iterates_mono:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   292
  assumes f: "f \<in> ccpo.iterates (fun_lub Sup) (fun_ord (\<le>)) F"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   293
  and mono: "\<And>f. monotone (\<sqsubseteq>) (\<le>) f \<Longrightarrow> monotone (\<sqsubseteq>) (\<le>) (F f)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   294
  shows "monotone (\<sqsubseteq>) (\<le>) f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   295
using f
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   296
by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mono_lub)+
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   297
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   298
lemma fixp_preserves_mono:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   299
  assumes mono: "\<And>x. monotone (fun_ord (\<le>)) (\<le>) (\<lambda>f. F f x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   300
  and mono2: "\<And>f. monotone (\<sqsubseteq>) (\<le>) f \<Longrightarrow> monotone (\<sqsubseteq>) (\<le>) (F f)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   301
  shows "monotone (\<sqsubseteq>) (\<le>) (ccpo.fixp (fun_lub Sup) (fun_ord (\<le>)) F)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   302
  (is "monotone _ _ ?fixp")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   303
proof(rule monotoneI)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   304
  have mono: "monotone (fun_ord (\<le>)) (fun_ord (\<le>)) F"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   305
    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   306
  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord (\<le>)) F"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   307
  have chain: "\<And>x. Complete_Partial_Order.chain (\<le>) ((\<lambda>f. f x) ` ?iter)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   308
    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   309
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   310
  fix x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   311
  assume "x \<sqsubseteq> y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   312
  show "?fixp x \<le> ?fixp y"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
   313
    apply (simp only: ccpo.fixp_def[OF ccpo_fun] fun_lub_apply)
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
   314
    using chain
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   315
  proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   316
    fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   317
    assume "x' \<in> (\<lambda>f. f x) ` ?iter"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   318
    then obtain f where "f \<in> ?iter" "x' = f x" by blast note this(2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   319
    also have "f x \<le> f y"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   320
      by(rule monotoneD[OF iterates_mono[OF \<open>f \<in> ?iter\<close> mono2]])(blast intro: \<open>x \<sqsubseteq> y\<close>)+
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   321
    also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` ?iter)" using chain
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   322
      by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> ?iter\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   323
    finally show "x' \<le> \<dots>" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   324
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   325
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   326
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   327
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   328
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   329
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   330
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   331
lemma monotone2monotone:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   332
  assumes 2: "\<And>x. monotone ordb ordc (\<lambda>y. f x y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   333
  and t: "monotone orda ordb (\<lambda>x. t x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   334
  and 1: "\<And>y. monotone orda ordc (\<lambda>x. f x y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   335
  and trans: "transp ordc"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   336
  shows "monotone orda ordc (\<lambda>x. f x (t x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   337
by(blast intro: monotoneI transpD[OF trans] monotoneD[OF t] monotoneD[OF 2] monotoneD[OF 1])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   338
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   339
subsection \<open>Continuity\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   340
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   341
definition cont :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   342
where
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   343
  "cont luba orda lubb ordb f \<longleftrightarrow> 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   344
  (\<forall>Y. Complete_Partial_Order.chain orda Y \<longrightarrow> Y \<noteq> {} \<longrightarrow> f (luba Y) = lubb (f ` Y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   345
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   346
definition mcont :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   347
where
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   348
  "mcont luba orda lubb ordb f \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   349
   monotone orda ordb f \<and> cont luba orda lubb ordb f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   350
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   351
subsubsection \<open>Theorem collection \<open>cont_intro\<close>\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   352
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   353
named_theorems cont_intro "continuity and admissibility intro rules"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   354
ML \<open>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   355
(* apply cont_intro rules as intro and try to solve 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   356
   the remaining of the emerging subgoals with simp *)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   357
fun cont_intro_tac ctxt =
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
   358
  REPEAT_ALL_NEW (resolve_tac ctxt (rev (Named_Theorems.get ctxt \<^named_theorems>\<open>cont_intro\<close>)))
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   359
  THEN_ALL_NEW (SOLVED' (simp_tac ctxt))
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   360
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   361
fun cont_intro_simproc ctxt ct =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   362
  let
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   363
    fun mk_stmt t = t
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   364
      |> HOLogic.mk_Trueprop
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   365
      |> Thm.cterm_of ctxt
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   366
      |> Goal.init
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   367
    fun mk_thm t =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   368
      case SINGLE (cont_intro_tac ctxt 1) (mk_stmt t) of
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   369
        SOME thm => SOME (Goal.finish ctxt thm RS @{thm Eq_TrueI})
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   370
      | NONE => NONE
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   371
  in
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   372
    case Thm.term_of ct of
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
   373
      t as Const (\<^const_name>\<open>ccpo.admissible\<close>, _) $ _ $ _ $ _ => mk_thm t
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
   374
    | t as Const (\<^const_name>\<open>mcont\<close>, _) $ _ $ _ $ _ $ _ $ _ => mk_thm t
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
   375
    | t as Const (\<^const_name>\<open>monotone\<close>, _) $ _ $ _ $ _ => mk_thm t
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   376
    | _ => NONE
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   377
  end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   378
  handle THM _ => NONE 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   379
  | TYPE _ => NONE
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   380
\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   381
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   382
simproc_setup "cont_intro"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   383
  ( "ccpo.admissible lub ord P"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   384
  | "mcont lub ord lub' ord' f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   385
  | "monotone ord ord' f"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   386
  ) = \<open>K cont_intro_simproc\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   387
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   388
lemmas [cont_intro] =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   389
  call_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   390
  let_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   391
  if_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   392
  option.const_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   393
  tailrec.const_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   394
  bind_mono
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   395
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   396
declare if_mono[simp]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   397
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   398
lemma monotone_id' [cont_intro]: "monotone ord ord (\<lambda>x. x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   399
by(simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   400
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   401
lemma monotone_applyI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   402
  "monotone orda ordb F \<Longrightarrow> monotone (fun_ord orda) ordb (\<lambda>f. F (f x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   403
by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   404
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   405
lemma monotone_if_fun [partial_function_mono]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   406
  "\<lbrakk> monotone (fun_ord orda) (fun_ord ordb) F; monotone (fun_ord orda) (fun_ord ordb) G \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   407
  \<Longrightarrow> monotone (fun_ord orda) (fun_ord ordb) (\<lambda>f n. if c n then F f n else G f n)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   408
by(simp add: monotone_def fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   409
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   410
lemma monotone_fun_apply_fun [partial_function_mono]: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   411
  "monotone (fun_ord (fun_ord ord)) (fun_ord ord) (\<lambda>f n. f t (g n))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   412
by(rule monotoneI)(simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   413
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   414
lemma monotone_fun_ord_apply: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   415
  "monotone orda (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. monotone orda ordb (\<lambda>y. f y x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   416
by(auto simp add: monotone_def fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   417
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   418
context preorder begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   419
70961
70fb697be418 Removed dup lemma that inhibited locale instantiations (dup fact error)
Peter Lammich
parents: 69593
diff changeset
   420
declare transp_le[cont_intro]
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   421
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   422
lemma monotone_const [simp, cont_intro]: "monotone ord (\<le>) (\<lambda>_. c)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   423
by(rule monotoneI) simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   424
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   425
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   426
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   427
lemma transp_le [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   428
  "class.preorder ord (mk_less ord) \<Longrightarrow> transp ord"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   429
by(rule preorder.transp_le)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   430
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   431
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   432
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   433
declare const_mono [cont_intro, simp]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   434
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   435
lemma transp_le [cont_intro, simp]: "transp leq"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   436
by(rule transpI)(rule leq_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   437
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   438
lemma preorder [cont_intro, simp]: "class.preorder leq (mk_less leq)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   439
by(unfold_locales)(auto simp add: mk_less_def intro: leq_refl leq_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   440
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   441
declare ccpo[cont_intro, simp]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   442
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   443
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   444
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   445
lemma contI [intro?]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   446
  "(\<And>Y. \<lbrakk> Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk> \<Longrightarrow> f (luba Y) = lubb (f ` Y)) 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   447
  \<Longrightarrow> cont luba orda lubb ordb f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   448
unfolding cont_def by blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   449
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   450
lemma contD:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   451
  "\<lbrakk> cont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk> 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   452
  \<Longrightarrow> f (luba Y) = lubb (f ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   453
unfolding cont_def by blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   454
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   455
lemma cont_id [simp, cont_intro]: "\<And>Sup. cont Sup ord Sup ord id"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   456
by(rule contI) simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   457
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   458
lemma cont_id' [simp, cont_intro]: "\<And>Sup. cont Sup ord Sup ord (\<lambda>x. x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   459
using cont_id[unfolded id_def] .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   460
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   461
lemma cont_applyI [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   462
  assumes cont: "cont luba orda lubb ordb g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   463
  shows "cont (fun_lub luba) (fun_ord orda) lubb ordb (\<lambda>f. g (f x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   464
by(rule contI)(drule chain_fun_ordD[where x=x], simp add: fun_lub_apply image_image contD[OF cont])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   465
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   466
lemma call_cont: "cont (fun_lub lub) (fun_ord ord) lub ord (\<lambda>f. f t)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   467
by(simp add: cont_def fun_lub_apply)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   468
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   469
lemma cont_if [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   470
  "\<lbrakk> cont luba orda lubb ordb f; cont luba orda lubb ordb g \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   471
  \<Longrightarrow> cont luba orda lubb ordb (\<lambda>x. if c then f x else g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   472
by(cases c) simp_all
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   473
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   474
lemma mcontI [intro?]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   475
   "\<lbrakk> monotone orda ordb f; cont luba orda lubb ordb f \<rbrakk> \<Longrightarrow> mcont luba orda lubb ordb f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   476
by(simp add: mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   477
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   478
lemma mcont_mono: "mcont luba orda lubb ordb f \<Longrightarrow> monotone orda ordb f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   479
by(simp add: mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   480
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   481
lemma mcont_cont [simp]: "mcont luba orda lubb ordb f \<Longrightarrow> cont luba orda lubb ordb f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   482
by(simp add: mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   483
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   484
lemma mcont_monoD:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   485
  "\<lbrakk> mcont luba orda lubb ordb f; orda x y \<rbrakk> \<Longrightarrow> ordb (f x) (f y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   486
by(auto simp add: mcont_def dest: monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   487
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   488
lemma mcont_contD:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   489
  "\<lbrakk> mcont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   490
  \<Longrightarrow> f (luba Y) = lubb (f ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   491
by(auto simp add: mcont_def dest: contD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   492
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   493
lemma mcont_call [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   494
  "mcont (fun_lub lub) (fun_ord ord) lub ord (\<lambda>f. f t)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   495
by(simp add: mcont_def call_mono call_cont)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   496
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   497
lemma mcont_id' [cont_intro, simp]: "mcont lub ord lub ord (\<lambda>x. x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   498
by(simp add: mcont_def monotone_id')
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   499
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   500
lemma mcont_applyI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   501
  "mcont luba orda lubb ordb (\<lambda>x. F x) \<Longrightarrow> mcont (fun_lub luba) (fun_ord orda) lubb ordb (\<lambda>f. F (f x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   502
by(simp add: mcont_def monotone_applyI cont_applyI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   503
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   504
lemma mcont_if [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   505
  "\<lbrakk> mcont luba orda lubb ordb (\<lambda>x. f x); mcont luba orda lubb ordb (\<lambda>x. g x) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   506
  \<Longrightarrow> mcont luba orda lubb ordb (\<lambda>x. if c then f x else g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   507
by(simp add: mcont_def cont_if)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   508
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   509
lemma cont_fun_lub_apply: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   510
  "cont luba orda (fun_lub lubb) (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. cont luba orda lubb ordb (\<lambda>y. f y x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   511
by(simp add: cont_def fun_lub_def fun_eq_iff)(auto simp add: image_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   512
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   513
lemma mcont_fun_lub_apply: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   514
  "mcont luba orda (fun_lub lubb) (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. mcont luba orda lubb ordb (\<lambda>y. f y x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   515
by(auto simp add: monotone_fun_ord_apply cont_fun_lub_apply mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   516
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   517
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   518
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   519
lemma cont_const [simp, cont_intro]: "cont luba orda Sup (\<le>) (\<lambda>x. c)"
69546
27dae626822b prefer naming convention from datatype package for strong congruence rules
haftmann
parents: 69164
diff changeset
   520
by (rule contI) (simp add: image_constant_conv cong del: SUP_cong_simp)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   521
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   522
lemma mcont_const [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   523
  "mcont luba orda Sup (\<le>) (\<lambda>x. c)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   524
by(simp add: mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   525
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   526
lemma cont_apply:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   527
  assumes 2: "\<And>x. cont lubb ordb Sup (\<le>) (\<lambda>y. f x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   528
  and t: "cont luba orda lubb ordb (\<lambda>x. t x)"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   529
  and 1: "\<And>y. cont luba orda Sup (\<le>) (\<lambda>x. f x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   530
  and mono: "monotone orda ordb (\<lambda>x. t x)"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   531
  and mono2: "\<And>x. monotone ordb (\<le>) (\<lambda>y. f x y)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   532
  and mono1: "\<And>y. monotone orda (\<le>) (\<lambda>x. f x y)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   533
  shows "cont luba orda Sup (\<le>) (\<lambda>x. f x (t x))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   534
proof
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   535
  fix Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   536
  assume chain: "Complete_Partial_Order.chain orda Y" and "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   537
  moreover from chain have chain': "Complete_Partial_Order.chain ordb (t ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   538
    by(rule chain_imageI)(rule monotoneD[OF mono])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   539
  ultimately show "f (luba Y) (t (luba Y)) = \<Squnion>((\<lambda>x. f x (t x)) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   540
    by(simp add: contD[OF 1] contD[OF t] contD[OF 2] image_image)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   541
      (rule diag_Sup[OF chain], auto intro: monotone2monotone[OF mono2 mono monotone_const transpI] monotoneD[OF mono1])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   542
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   543
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   544
lemma mcont2mcont':
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   545
  "\<lbrakk> \<And>x. mcont lub' ord' Sup (\<le>) (\<lambda>y. f x y);
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   546
     \<And>y. mcont lub ord Sup (\<le>) (\<lambda>x. f x y);
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   547
     mcont lub ord lub' ord' (\<lambda>y. t y) \<rbrakk>
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   548
  \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. f x (t x))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   549
unfolding mcont_def by(blast intro: transp_le monotone2monotone cont_apply)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   550
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   551
lemma mcont2mcont:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   552
  "\<lbrakk>mcont lub' ord' Sup (\<le>) (\<lambda>x. f x); mcont lub ord lub' ord' (\<lambda>x. t x)\<rbrakk> 
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   553
  \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. f (t x))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   554
by(rule mcont2mcont'[OF _ mcont_const]) 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   555
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   556
context
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   557
  fixes ord :: "'b \<Rightarrow> 'b \<Rightarrow> bool" (infix "\<sqsubseteq>" 60) 
69039
51005671bee5 More standard precedences
nipkow
parents: 69038
diff changeset
   558
  and lub :: "'b set \<Rightarrow> 'b" ("\<Or>")
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   559
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   560
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   561
lemma cont_fun_lub_Sup:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   562
  assumes chainM: "Complete_Partial_Order.chain (fun_ord (\<le>)) M"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   563
  and mcont [rule_format]: "\<forall>f\<in>M. mcont lub (\<sqsubseteq>) Sup (\<le>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   564
  shows "cont lub (\<sqsubseteq>) Sup (\<le>) (fun_lub Sup M)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   565
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   566
  fix Y
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   567
  assume chain: "Complete_Partial_Order.chain (\<sqsubseteq>) Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   568
    and Y: "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   569
  from swap_Sup[OF chain chainM mcont[THEN mcont_mono]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   570
  show "fun_lub Sup M (\<Or>Y) = \<Squnion>(fun_lub Sup M ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   571
    by(simp add: mcont_contD[OF mcont chain Y] fun_lub_apply cong: image_cong)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   572
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   573
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   574
lemma mcont_fun_lub_Sup:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   575
  "\<lbrakk> Complete_Partial_Order.chain (fun_ord (\<le>)) M;
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   576
    \<forall>f\<in>M. mcont lub ord Sup (\<le>) f \<rbrakk>
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   577
  \<Longrightarrow> mcont lub (\<sqsubseteq>) Sup (\<le>) (fun_lub Sup M)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   578
by(simp add: mcont_def cont_fun_lub_Sup mono_lub)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   579
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   580
lemma iterates_mcont:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   581
  assumes f: "f \<in> ccpo.iterates (fun_lub Sup) (fun_ord (\<le>)) F"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   582
  and mono: "\<And>f. mcont lub (\<sqsubseteq>) Sup (\<le>) f \<Longrightarrow> mcont lub (\<sqsubseteq>) Sup (\<le>) (F f)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   583
  shows "mcont lub (\<sqsubseteq>) Sup (\<le>) f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   584
using f
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   585
by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mcont_fun_lub_Sup)+
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   586
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   587
lemma fixp_preserves_mcont:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   588
  assumes mono: "\<And>x. monotone (fun_ord (\<le>)) (\<le>) (\<lambda>f. F f x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   589
  and mcont: "\<And>f. mcont lub (\<sqsubseteq>) Sup (\<le>) f \<Longrightarrow> mcont lub (\<sqsubseteq>) Sup (\<le>) (F f)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   590
  shows "mcont lub (\<sqsubseteq>) Sup (\<le>) (ccpo.fixp (fun_lub Sup) (fun_ord (\<le>)) F)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   591
  (is "mcont _ _ _ _ ?fixp")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   592
unfolding mcont_def
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   593
proof(intro conjI monotoneI contI)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   594
  have mono: "monotone (fun_ord (\<le>)) (fun_ord (\<le>)) F"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   595
    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   596
  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord (\<le>)) F"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   597
  have chain: "\<And>x. Complete_Partial_Order.chain (\<le>) ((\<lambda>f. f x) ` ?iter)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   598
    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   599
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   600
  {
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   601
    fix x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   602
    assume "x \<sqsubseteq> y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   603
    show "?fixp x \<le> ?fixp y"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
   604
      apply (simp only: ccpo.fixp_def[OF ccpo_fun] fun_lub_apply)
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
   605
      using chain
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   606
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   607
      fix x'
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   608
      assume "x' \<in> (\<lambda>f. f x) ` ?iter"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   609
      then obtain f where "f \<in> ?iter" "x' = f x" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   610
      also from _ \<open>x \<sqsubseteq> y\<close> have "f x \<le> f y"
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   611
        by(rule mcont_monoD[OF iterates_mcont[OF \<open>f \<in> ?iter\<close> mcont]])
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   612
      also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` ?iter)" using chain
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   613
        by(rule ccpo_Sup_upper)(simp add: \<open>f \<in> ?iter\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   614
      finally show "x' \<le> \<dots>" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   615
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   616
  next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   617
    fix Y
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   618
    assume chain: "Complete_Partial_Order.chain (\<sqsubseteq>) Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   619
      and Y: "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   620
    { fix f
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   621
      assume "f \<in> ?iter"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   622
      hence "f (\<Or>Y) = \<Squnion>(f ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   623
        using mcont chain Y by(rule mcont_contD[OF iterates_mcont]) }
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   624
    moreover have "\<Squnion>((\<lambda>f. \<Squnion>(f ` Y)) ` ?iter) = \<Squnion>((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` ?iter)) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   625
      using chain ccpo.chain_iterates[OF ccpo_fun mono]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   626
      by(rule swap_Sup)(rule mcont_mono[OF iterates_mcont[OF _ mcont]])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   627
    ultimately show "?fixp (\<Or>Y) = \<Squnion>(?fixp ` Y)" unfolding ccpo.fixp_def[OF ccpo_fun]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   628
      by(simp add: fun_lub_apply cong: image_cong)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   629
  }
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   630
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   631
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   632
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   633
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   634
context
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   635
  fixes F :: "'c \<Rightarrow> 'c" and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" and f
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   636
  assumes mono: "\<And>x. monotone (fun_ord (\<le>)) (\<le>) (\<lambda>f. U (F (C f)) x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   637
  and eq: "f \<equiv> C (ccpo.fixp (fun_lub Sup) (fun_ord (\<le>)) (\<lambda>f. U (F (C f))))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   638
  and inverse: "\<And>f. U (C f) = f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   639
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   640
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   641
lemma fixp_preserves_mono_uc:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   642
  assumes mono2: "\<And>f. monotone ord (\<le>) (U f) \<Longrightarrow> monotone ord (\<le>) (U (F f))"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   643
  shows "monotone ord (\<le>) (U f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   644
using fixp_preserves_mono[OF mono mono2] by(subst eq)(simp add: inverse)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   645
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   646
lemma fixp_preserves_mcont_uc:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   647
  assumes mcont: "\<And>f. mcont lubb ordb Sup (\<le>) (U f) \<Longrightarrow> mcont lubb ordb Sup (\<le>) (U (F f))"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   648
  shows "mcont lubb ordb Sup (\<le>) (U f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   649
using fixp_preserves_mcont[OF mono mcont] by(subst eq)(simp add: inverse)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   650
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   651
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   653
lemmas fixp_preserves_mono1 = fixp_preserves_mono_uc[of "\<lambda>x. x" _ "\<lambda>x. x", OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   654
lemmas fixp_preserves_mono2 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   655
  fixp_preserves_mono_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   656
lemmas fixp_preserves_mono3 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   657
  fixp_preserves_mono_uc[of "\<lambda>f. case_prod (case_prod f)" _ "\<lambda>f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   658
lemmas fixp_preserves_mono4 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   659
  fixp_preserves_mono_uc[of "\<lambda>f. case_prod (case_prod (case_prod f))" _ "\<lambda>f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   660
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   661
lemmas fixp_preserves_mcont1 = fixp_preserves_mcont_uc[of "\<lambda>x. x" _ "\<lambda>x. x", OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   662
lemmas fixp_preserves_mcont2 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   663
  fixp_preserves_mcont_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   664
lemmas fixp_preserves_mcont3 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   665
  fixp_preserves_mcont_uc[of "\<lambda>f. case_prod (case_prod f)" _ "\<lambda>f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   666
lemmas fixp_preserves_mcont4 =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   667
  fixp_preserves_mcont_uc[of "\<lambda>f. case_prod (case_prod (case_prod f))" _ "\<lambda>f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   668
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   669
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   670
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   671
lemma (in preorder) monotone_if_bot:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   672
  fixes bot
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   673
  assumes mono: "\<And>x y. \<lbrakk> x \<le> y; \<not> (x \<le> bound) \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   674
  and bot: "\<And>x. \<not> x \<le> bound \<Longrightarrow> ord bot (f x)" "ord bot bot"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   675
  shows "monotone (\<le>) ord (\<lambda>x. if x \<le> bound then bot else f x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   676
by(rule monotoneI)(auto intro: bot intro: mono order_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   677
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   678
lemma (in ccpo) mcont_if_bot:
69039
51005671bee5 More standard precedences
nipkow
parents: 69038
diff changeset
   679
  fixes bot and lub ("\<Or>") and ord (infix "\<sqsubseteq>" 60)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   680
  assumes ccpo: "class.ccpo lub (\<sqsubseteq>) lt"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   681
  and mono: "\<And>x y. \<lbrakk> x \<le> y; \<not> x \<le> bound \<rbrakk> \<Longrightarrow> f x \<sqsubseteq> f y"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   682
  and cont: "\<And>Y. \<lbrakk> Complete_Partial_Order.chain (\<le>) Y; Y \<noteq> {}; \<And>x. x \<in> Y \<Longrightarrow> \<not> x \<le> bound \<rbrakk> \<Longrightarrow> f (\<Squnion>Y) = \<Or>(f ` Y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   683
  and bot: "\<And>x. \<not> x \<le> bound \<Longrightarrow> bot \<sqsubseteq> f x"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   684
  shows "mcont Sup (\<le>) lub (\<sqsubseteq>) (\<lambda>x. if x \<le> bound then bot else f x)" (is "mcont _ _ _ _ ?g")
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   685
proof(intro mcontI contI)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   686
  interpret c: ccpo lub "(\<sqsubseteq>)" lt by(fact ccpo)
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   687
  show "monotone (\<le>) (\<sqsubseteq>) ?g" by(rule monotone_if_bot)(simp_all add: mono bot)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   688
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   689
  fix Y
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   690
  assume chain: "Complete_Partial_Order.chain (\<le>) Y" and Y: "Y \<noteq> {}"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   691
  show "?g (\<Squnion>Y) = \<Or>(?g ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   692
  proof(cases "Y \<subseteq> {x. x \<le> bound}")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   693
    case True
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   694
    hence "\<Squnion>Y \<le> bound" using chain by(auto intro: ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   695
    moreover have "Y \<inter> {x. \<not> x \<le> bound} = {}" using True by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   696
    ultimately show ?thesis using True Y
69546
27dae626822b prefer naming convention from datatype package for strong congruence rules
haftmann
parents: 69164
diff changeset
   697
      by (auto simp add: image_constant_conv cong del: c.SUP_cong_simp)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   698
  next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   699
    case False
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   700
    let ?Y = "Y \<inter> {x. \<not> x \<le> bound}"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   701
    have chain': "Complete_Partial_Order.chain (\<le>) ?Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   702
      using chain by(rule chain_subset) simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   703
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   704
    from False obtain y where ybound: "\<not> y \<le> bound" and y: "y \<in> Y" by blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   705
    hence "\<not> \<Squnion>Y \<le> bound" by (metis ccpo_Sup_upper chain order.trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   706
    hence "?g (\<Squnion>Y) = f (\<Squnion>Y)" by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   707
    also have "\<Squnion>Y \<le> \<Squnion>?Y" using chain
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   708
    proof(rule ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   709
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   710
      assume x: "x \<in> Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   711
      show "x \<le> \<Squnion>?Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   712
      proof(cases "x \<le> bound")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   713
        case True
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   714
        with chainD[OF chain x y] have "x \<le> y" using ybound by(auto intro: order_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   715
        thus ?thesis by(rule order_trans)(auto intro: ccpo_Sup_upper[OF chain'] simp add: y ybound)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   716
      qed(auto intro: ccpo_Sup_upper[OF chain'] simp add: x)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   717
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   718
    hence "\<Squnion>Y = \<Squnion>?Y" by(rule antisym)(blast intro: ccpo_Sup_least[OF chain'] ccpo_Sup_upper[OF chain])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   719
    hence "f (\<Squnion>Y) = f (\<Squnion>?Y)" by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   720
    also have "f (\<Squnion>?Y) = \<Or>(f ` ?Y)" using chain' by(rule cont)(insert y ybound, auto)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   721
    also have "\<Or>(f ` ?Y) = \<Or>(?g ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   722
    proof(cases "Y \<inter> {x. x \<le> bound} = {}")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   723
      case True
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   724
      hence "f ` ?Y = ?g ` Y" by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   725
      thus ?thesis by(rule arg_cong)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   726
    next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   727
      case False
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   728
      have chain'': "Complete_Partial_Order.chain (\<sqsubseteq>) (insert bot (f ` ?Y))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   729
        using chain by(auto intro!: chainI bot dest: chainD intro: mono)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   730
      hence chain''': "Complete_Partial_Order.chain (\<sqsubseteq>) (f ` ?Y)" by(rule chain_subset) blast
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   731
      have "bot \<sqsubseteq> \<Or>(f ` ?Y)" using y ybound by(blast intro: c.order_trans[OF bot] c.ccpo_Sup_upper[OF chain'''])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   732
      hence "\<Or>(insert bot (f ` ?Y)) \<sqsubseteq> \<Or>(f ` ?Y)" using chain''
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   733
        by(auto intro: c.ccpo_Sup_least c.ccpo_Sup_upper[OF chain''']) 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   734
      with _ have "\<dots> = \<Or>(insert bot (f ` ?Y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   735
        by(rule c.antisym)(blast intro: c.ccpo_Sup_least[OF chain'''] c.ccpo_Sup_upper[OF chain''])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   736
      also have "insert bot (f ` ?Y) = ?g ` Y" using False by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   737
      finally show ?thesis .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   738
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   739
    finally show ?thesis .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   740
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   741
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   742
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   743
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   744
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   745
lemma mcont_const [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   746
  "mcont luba orda lub leq (\<lambda>x. c)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   747
by(rule ccpo.mcont_const)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   748
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   749
lemmas [cont_intro, simp] =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   750
  ccpo.cont_const[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   751
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   752
lemma mono2mono:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   753
  assumes "monotone ordb leq (\<lambda>y. f y)" "monotone orda ordb (\<lambda>x. t x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   754
  shows "monotone orda leq (\<lambda>x. f (t x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   755
using assms by(rule monotone2monotone) simp_all
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   756
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   757
lemmas mcont2mcont' = ccpo.mcont2mcont'[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   758
lemmas mcont2mcont = ccpo.mcont2mcont[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   759
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   760
lemmas fixp_preserves_mono1 = ccpo.fixp_preserves_mono1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   761
lemmas fixp_preserves_mono2 = ccpo.fixp_preserves_mono2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   762
lemmas fixp_preserves_mono3 = ccpo.fixp_preserves_mono3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   763
lemmas fixp_preserves_mono4 = ccpo.fixp_preserves_mono4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   764
lemmas fixp_preserves_mcont1 = ccpo.fixp_preserves_mcont1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   765
lemmas fixp_preserves_mcont2 = ccpo.fixp_preserves_mcont2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   766
lemmas fixp_preserves_mcont3 = ccpo.fixp_preserves_mcont3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   767
lemmas fixp_preserves_mcont4 = ccpo.fixp_preserves_mcont4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   768
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   769
lemma monotone_if_bot:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   770
  fixes bot
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   771
  assumes g: "\<And>x. g x = (if leq x bound then bot else f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   772
  and mono: "\<And>x y. \<lbrakk> leq x y; \<not> leq x bound \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   773
  and bot: "\<And>x. \<not> leq x bound \<Longrightarrow> ord bot (f x)" "ord bot bot"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   774
  shows "monotone leq ord g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   775
unfolding g[abs_def] using preorder mono bot by(rule preorder.monotone_if_bot)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   776
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   777
lemma mcont_if_bot:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   778
  fixes bot
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   779
  assumes ccpo: "class.ccpo lub' ord (mk_less ord)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   780
  and bot: "\<And>x. \<not> leq x bound \<Longrightarrow> ord bot (f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   781
  and g: "\<And>x. g x = (if leq x bound then bot else f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   782
  and mono: "\<And>x y. \<lbrakk> leq x y; \<not> leq x bound \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   783
  and cont: "\<And>Y. \<lbrakk> Complete_Partial_Order.chain leq Y; Y \<noteq> {}; \<And>x. x \<in> Y \<Longrightarrow> \<not> leq x bound \<rbrakk> \<Longrightarrow> f (lub Y) = lub' (f ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   784
  shows "mcont lub leq lub' ord g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   785
unfolding g[abs_def] using ccpo mono cont bot by(rule ccpo.mcont_if_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   786
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   787
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   788
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   789
subsection \<open>Admissibility\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   790
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   791
lemma admissible_subst:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   792
  assumes adm: "ccpo.admissible luba orda (\<lambda>x. P x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   793
  and mcont: "mcont lubb ordb luba orda f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   794
  shows "ccpo.admissible lubb ordb (\<lambda>x. P (f x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   795
apply(rule ccpo.admissibleI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   796
apply(frule (1) mcont_contD[OF mcont])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   797
apply(auto intro: ccpo.admissibleD[OF adm] chain_imageI dest: mcont_monoD[OF mcont])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   798
done
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   799
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   800
lemmas [simp, cont_intro] = 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   801
  admissible_all
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   802
  admissible_ball
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   803
  admissible_const
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   804
  admissible_conj
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   805
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   806
lemma admissible_disj' [simp, cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   807
  "\<lbrakk> class.ccpo lub ord (mk_less ord); ccpo.admissible lub ord P; ccpo.admissible lub ord Q \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   808
  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<or> Q x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   809
by(rule ccpo.admissible_disj)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   810
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   811
lemma admissible_imp' [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   812
  "\<lbrakk> class.ccpo lub ord (mk_less ord);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   813
     ccpo.admissible lub ord (\<lambda>x. \<not> P x);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   814
     ccpo.admissible lub ord (\<lambda>x. Q x) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   815
  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<longrightarrow> Q x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   816
unfolding imp_conv_disj by(rule ccpo.admissible_disj)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   817
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   818
lemma admissible_imp [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   819
  "(Q \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x))
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   820
  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. Q \<longrightarrow> P x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   821
by(rule ccpo.admissibleI)(auto dest: ccpo.admissibleD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   822
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   823
lemma admissible_not_mem' [THEN admissible_subst, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   824
  shows admissible_not_mem: "ccpo.admissible Union (\<subseteq>) (\<lambda>A. x \<notin> A)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   825
by(rule ccpo.admissibleI) auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   826
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   827
lemma admissible_eqI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   828
  assumes f: "cont luba orda lub ord (\<lambda>x. f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   829
  and g: "cont luba orda lub ord (\<lambda>x. g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   830
  shows "ccpo.admissible luba orda (\<lambda>x. f x = g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   831
apply(rule ccpo.admissibleI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   832
apply(simp_all add: contD[OF f] contD[OF g] cong: image_cong)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   833
done
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   834
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   835
corollary admissible_eq_mcontI [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   836
  "\<lbrakk> mcont luba orda lub ord (\<lambda>x. f x); 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   837
    mcont luba orda lub ord (\<lambda>x. g x) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   838
  \<Longrightarrow> ccpo.admissible luba orda (\<lambda>x. f x = g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   839
by(rule admissible_eqI)(auto simp add: mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   840
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   841
lemma admissible_iff [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   842
  "\<lbrakk> ccpo.admissible lub ord (\<lambda>x. P x \<longrightarrow> Q x); ccpo.admissible lub ord (\<lambda>x. Q x \<longrightarrow> P x) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   843
  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<longleftrightarrow> Q x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   844
by(subst iff_conv_conj_imp)(rule admissible_conj)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   845
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   846
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   847
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   848
lemma admissible_leI:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   849
  assumes f: "mcont luba orda Sup (\<le>) (\<lambda>x. f x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   850
  and g: "mcont luba orda Sup (\<le>) (\<lambda>x. g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   851
  shows "ccpo.admissible luba orda (\<lambda>x. f x \<le> g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   852
proof(rule ccpo.admissibleI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   853
  fix A
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   854
  assume chain: "Complete_Partial_Order.chain orda A"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   855
    and le: "\<forall>x\<in>A. f x \<le> g x"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   856
    and False: "A \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   857
  have "f (luba A) = \<Squnion>(f ` A)" by(simp add: mcont_contD[OF f] chain False)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   858
  also have "\<dots> \<le> \<Squnion>(g ` A)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   859
  proof(rule ccpo_Sup_least)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   860
    from chain show "Complete_Partial_Order.chain (\<le>) (f ` A)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   861
      by(rule chain_imageI)(rule mcont_monoD[OF f])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   862
    
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   863
    fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   864
    assume "x \<in> f ` A"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   865
    then obtain y where "y \<in> A" "x = f y" by blast note this(2)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   866
    also have "f y \<le> g y" using le \<open>y \<in> A\<close> by simp
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   867
    also have "Complete_Partial_Order.chain (\<le>) (g ` A)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   868
      using chain by(rule chain_imageI)(rule mcont_monoD[OF g])
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
   869
    hence "g y \<le> \<Squnion>(g ` A)" by(rule ccpo_Sup_upper)(simp add: \<open>y \<in> A\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   870
    finally show "x \<le> \<dots>" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   871
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   872
  also have "\<dots> = g (luba A)" by(simp add: mcont_contD[OF g] chain False)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   873
  finally show "f (luba A) \<le> g (luba A)" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   874
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   875
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   876
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   877
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   878
lemma admissible_leI:
69039
51005671bee5 More standard precedences
nipkow
parents: 69038
diff changeset
   879
  fixes ord (infix "\<sqsubseteq>" 60) and lub ("\<Or>")
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   880
  assumes "class.ccpo lub (\<sqsubseteq>) (mk_less (\<sqsubseteq>))"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   881
  and "mcont luba orda lub (\<sqsubseteq>) (\<lambda>x. f x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   882
  and "mcont luba orda lub (\<sqsubseteq>) (\<lambda>x. g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   883
  shows "ccpo.admissible luba orda (\<lambda>x. f x \<sqsubseteq> g x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   884
using assms by(rule ccpo.admissible_leI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   885
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   886
declare ccpo_class.admissible_leI[cont_intro]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   887
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   888
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   889
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   890
lemma admissible_not_below: "ccpo.admissible Sup (\<le>) (\<lambda>x. \<not> (\<le>) x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   891
by(rule ccpo.admissibleI)(simp add: ccpo_Sup_below_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   892
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   893
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   894
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   895
lemma (in preorder) preorder [cont_intro, simp]: "class.preorder (\<le>) (mk_less (\<le>))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   896
by(unfold_locales)(auto simp add: mk_less_def intro: order_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   897
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   898
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   899
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   900
lemmas [cont_intro, simp] =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   901
  admissible_leI[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   902
  ccpo.admissible_not_below[THEN admissible_subst, OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   903
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   904
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   905
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   906
setup \<open>Sign.map_naming (Name_Space.mandatory_path "ccpo")\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   907
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   908
inductive compact :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   909
  for lub ord x 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   910
where compact:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   911
  "\<lbrakk> ccpo.admissible lub ord (\<lambda>y. \<not> ord x y);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   912
     ccpo.admissible lub ord (\<lambda>y. x \<noteq> y) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   913
  \<Longrightarrow> compact lub ord x"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   914
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   915
setup \<open>Sign.map_naming Name_Space.parent_path\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   916
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   917
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   918
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   919
lemma compactI:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   920
  assumes "ccpo.admissible Sup (\<le>) (\<lambda>y. \<not> x \<le> y)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   921
  shows "ccpo.compact Sup (\<le>) x"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   922
using assms
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   923
proof(rule ccpo.compact.intros)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   924
  have neq: "(\<lambda>y. x \<noteq> y) = (\<lambda>y. \<not> x \<le> y \<or> \<not> y \<le> x)" by(auto)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   925
  show "ccpo.admissible Sup (\<le>) (\<lambda>y. x \<noteq> y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   926
    by(subst neq)(rule admissible_disj admissible_not_below assms)+
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   927
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   928
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   929
lemma compact_bot:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   930
  assumes "x = Sup {}"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   931
  shows "ccpo.compact Sup (\<le>) x"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   932
proof(rule compactI)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   933
  show "ccpo.admissible Sup (\<le>) (\<lambda>y. \<not> x \<le> y)" using assms
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   934
    by(auto intro!: ccpo.admissibleI intro: ccpo_Sup_least chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   935
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   936
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   937
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   938
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   939
lemma admissible_compact_neq' [THEN admissible_subst, cont_intro, simp]:
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   940
  shows admissible_compact_neq: "ccpo.compact lub ord k \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. k \<noteq> x)"
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   941
by(simp add: ccpo.compact.simps)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   942
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   943
lemma admissible_neq_compact' [THEN admissible_subst, cont_intro, simp]:
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
   944
  shows admissible_neq_compact: "ccpo.compact lub ord k \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. x \<noteq> k)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   945
by(subst eq_commute)(rule admissible_compact_neq)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   946
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   947
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   948
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   949
lemmas [cont_intro, simp] = ccpo.compact_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   950
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   951
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   952
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   953
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   954
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   955
lemma fixp_strong_induct:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   956
  assumes [cont_intro]: "ccpo.admissible Sup (\<le>) P"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   957
  and mono: "monotone (\<le>) (\<le>) f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   958
  and bot: "P (\<Squnion>{})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   959
  and step: "\<And>x. \<lbrakk> x \<le> ccpo_class.fixp f; P x \<rbrakk> \<Longrightarrow> P (f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   960
  shows "P (ccpo_class.fixp f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   961
proof(rule fixp_induct[where P="\<lambda>x. x \<le> ccpo_class.fixp f \<and> P x", THEN conjunct2])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   962
  note [cont_intro] = admissible_leI
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
   963
  show "ccpo.admissible Sup (\<le>) (\<lambda>x. x \<le> ccpo_class.fixp f \<and> P x)" by simp
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   964
next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   965
  show "\<Squnion>{} \<le> ccpo_class.fixp f \<and> P (\<Squnion>{})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   966
    by(auto simp add: bot intro: ccpo_Sup_least chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   967
next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   968
  fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   969
  assume "x \<le> ccpo_class.fixp f \<and> P x"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   970
  thus "f x \<le> ccpo_class.fixp f \<and> P (f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   971
    by(subst fixp_unfold[OF mono])(auto dest: monotoneD[OF mono] intro: step)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   972
qed(rule mono)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   973
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   974
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   975
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   976
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   977
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   978
lemma fixp_strong_induct_uc:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   979
  fixes F :: "'c \<Rightarrow> 'c"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   980
    and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   981
    and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   982
    and P :: "('b \<Rightarrow> 'a) \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   983
  assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   984
    and eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   985
    and inverse: "\<And>f. U (C f) = f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   986
    and adm: "ccpo.admissible lub_fun le_fun P"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   987
    and bot: "P (\<lambda>_. lub {})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   988
    and step: "\<And>f'. \<lbrakk> P (U f'); le_fun (U f') (U f) \<rbrakk> \<Longrightarrow> P (U (F f'))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   989
  shows "P (U f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   990
unfolding eq inverse
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   991
apply (rule ccpo.fixp_strong_induct[OF ccpo adm])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   992
apply (insert mono, auto simp: monotone_def fun_ord_def bot fun_lub_def)[2]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   993
apply (rule_tac f'5="C x" in step)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   994
apply (simp_all add: inverse eq)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   995
done
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   996
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   997
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
   998
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
   999
subsection \<open>\<^term>\<open>(=)\<close> as order\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1000
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1001
definition lub_singleton :: "('a set \<Rightarrow> 'a) \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1002
where "lub_singleton lub \<longleftrightarrow> (\<forall>a. lub {a} = a)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1003
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1004
definition the_Sup :: "'a set \<Rightarrow> 'a"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1005
where "the_Sup A = (THE a. a \<in> A)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1006
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1007
lemma lub_singleton_the_Sup [cont_intro, simp]: "lub_singleton the_Sup"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1008
by(simp add: lub_singleton_def the_Sup_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1009
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1010
lemma (in ccpo) lub_singleton: "lub_singleton Sup"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1011
by(simp add: lub_singleton_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1012
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1013
lemma (in partial_function_definitions) lub_singleton [cont_intro, simp]: "lub_singleton lub"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1014
by(rule ccpo.lub_singleton)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1015
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1016
lemma preorder_eq [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1017
  "class.preorder (=) (mk_less (=))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1018
by(unfold_locales)(simp_all add: mk_less_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1019
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1020
lemma monotone_eqI [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1021
  assumes "class.preorder ord (mk_less ord)"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1022
  shows "monotone (=) ord f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1023
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1024
  interpret preorder ord "mk_less ord" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1025
  show ?thesis by(simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1026
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1027
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1028
lemma cont_eqI [cont_intro]: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1029
  fixes f :: "'a \<Rightarrow> 'b"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1030
  assumes "lub_singleton lub"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1031
  shows "cont the_Sup (=) lub ord f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1032
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1033
  fix Y :: "'a set"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1034
  assume "Complete_Partial_Order.chain (=) Y" "Y \<noteq> {}"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1035
  then obtain a where "Y = {a}" by(auto simp add: chain_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1036
  thus "f (the_Sup Y) = lub (f ` Y)" using assms
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1037
    by(simp add: the_Sup_def lub_singleton_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1038
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1039
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1040
lemma mcont_eqI [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1041
  "\<lbrakk> class.preorder ord (mk_less ord); lub_singleton lub \<rbrakk>
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1042
  \<Longrightarrow> mcont the_Sup (=) lub ord f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1043
by(simp add: mcont_def cont_eqI monotone_eqI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1044
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1045
subsection \<open>ccpo for products\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1046
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1047
definition prod_lub :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) set \<Rightarrow> 'a \<times> 'b"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1048
where "prod_lub Sup_a Sup_b Y = (Sup_a (fst ` Y), Sup_b (snd ` Y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1049
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1050
lemma lub_singleton_prod_lub [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1051
  "\<lbrakk> lub_singleton luba; lub_singleton lubb \<rbrakk> \<Longrightarrow> lub_singleton (prod_lub luba lubb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1052
by(simp add: lub_singleton_def prod_lub_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1053
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1054
lemma prod_lub_empty [simp]: "prod_lub luba lubb {} = (luba {}, lubb {})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1055
by(simp add: prod_lub_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1056
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1057
lemma preorder_rel_prodI [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1058
  assumes "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1059
  and "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1060
  shows "class.preorder (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1061
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1062
  interpret a: preorder orda "mk_less orda" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1063
  interpret b: preorder ordb "mk_less ordb" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1064
  show ?thesis by(unfold_locales)(auto simp add: mk_less_def intro: a.order_trans b.order_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1065
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1066
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1067
lemma order_rel_prodI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1068
  assumes a: "class.order orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1069
  and b: "class.order ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1070
  shows "class.order (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1071
  (is "class.order ?ord ?ord'")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1072
proof(intro class.order.intro class.order_axioms.intro)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1073
  interpret a: order orda "mk_less orda" by(fact a)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1074
  interpret b: order ordb "mk_less ordb" by(fact b)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1075
  show "class.preorder ?ord ?ord'" by(rule preorder_rel_prodI) unfold_locales
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1076
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1077
  fix x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1078
  assume "?ord x y" "?ord y x"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1079
  thus "x = y" by(cases x y rule: prod.exhaust[case_product prod.exhaust]) auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1080
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1081
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1082
lemma monotone_rel_prodI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1083
  assumes mono2: "\<And>a. monotone ordb ordc (\<lambda>b. f (a, b))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1084
  and mono1: "\<And>b. monotone orda ordc (\<lambda>a. f (a, b))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1085
  and a: "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1086
  and b: "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1087
  and c: "class.preorder ordc (mk_less ordc)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1088
  shows "monotone (rel_prod orda ordb) ordc f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1089
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1090
  interpret a: preorder orda "mk_less orda" by(rule a)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1091
  interpret b: preorder ordb "mk_less ordb" by(rule b)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1092
  interpret c: preorder ordc "mk_less ordc" by(rule c)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1093
  show ?thesis using mono2 mono1
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1094
    by(auto 7 2 simp add: monotone_def intro: c.order_trans)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1095
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1096
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1097
lemma monotone_rel_prodD1:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1098
  assumes mono: "monotone (rel_prod orda ordb) ordc f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1099
  and preorder: "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1100
  shows "monotone orda ordc (\<lambda>a. f (a, b))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1101
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1102
  interpret preorder ordb "mk_less ordb" by(rule preorder)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1103
  show ?thesis using mono by(simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1104
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1105
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1106
lemma monotone_rel_prodD2:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1107
  assumes mono: "monotone (rel_prod orda ordb) ordc f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1108
  and preorder: "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1109
  shows "monotone ordb ordc (\<lambda>b. f (a, b))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1110
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1111
  interpret preorder orda "mk_less orda" by(rule preorder)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1112
  show ?thesis using mono by(simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1113
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1114
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1115
lemma monotone_case_prodI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1116
  "\<lbrakk> \<And>a. monotone ordb ordc (f a); \<And>b. monotone orda ordc (\<lambda>a. f a b);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1117
    class.preorder orda (mk_less orda); class.preorder ordb (mk_less ordb);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1118
    class.preorder ordc (mk_less ordc) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1119
  \<Longrightarrow> monotone (rel_prod orda ordb) ordc (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1120
by(rule monotone_rel_prodI) simp_all
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1121
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1122
lemma monotone_case_prodD1:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1123
  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1124
  and preorder: "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1125
  shows "monotone orda ordc (\<lambda>a. f a b)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1126
using monotone_rel_prodD1[OF assms] by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1127
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1128
lemma monotone_case_prodD2:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1129
  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1130
  and preorder: "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1131
  shows "monotone ordb ordc (f a)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1132
using monotone_rel_prodD2[OF assms] by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1133
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1134
context 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1135
  fixes orda ordb ordc
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1136
  assumes a: "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1137
  and b: "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1138
  and c: "class.preorder ordc (mk_less ordc)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1139
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1140
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1141
lemma monotone_rel_prod_iff:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1142
  "monotone (rel_prod orda ordb) ordc f \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1143
   (\<forall>a. monotone ordb ordc (\<lambda>b. f (a, b))) \<and> 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1144
   (\<forall>b. monotone orda ordc (\<lambda>a. f (a, b)))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1145
using a b c by(blast intro: monotone_rel_prodI dest: monotone_rel_prodD1 monotone_rel_prodD2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1146
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1147
lemma monotone_case_prod_iff [simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1148
  "monotone (rel_prod orda ordb) ordc (case_prod f) \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1149
   (\<forall>a. monotone ordb ordc (f a)) \<and> (\<forall>b. monotone orda ordc (\<lambda>a. f a b))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1150
by(simp add: monotone_rel_prod_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1151
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1152
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1153
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1154
lemma monotone_case_prod_apply_iff:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1155
  "monotone orda ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> monotone orda ordb (case_prod (\<lambda>a b. f a b y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1156
by(simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1157
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1158
lemma monotone_case_prod_applyD:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1159
  "monotone orda ordb (\<lambda>x. (case_prod f x) y)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1160
  \<Longrightarrow> monotone orda ordb (case_prod (\<lambda>a b. f a b y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1161
by(simp add: monotone_case_prod_apply_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1162
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1163
lemma monotone_case_prod_applyI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1164
  "monotone orda ordb (case_prod (\<lambda>a b. f a b y))
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1165
  \<Longrightarrow> monotone orda ordb (\<lambda>x. (case_prod f x) y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1166
by(simp add: monotone_case_prod_apply_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1167
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1168
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1169
lemma cont_case_prod_apply_iff:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1170
  "cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1171
by(simp add: cont_def split_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1172
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1173
lemma cont_case_prod_applyI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1174
  "cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1175
  \<Longrightarrow> cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1176
by(simp add: cont_case_prod_apply_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1177
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1178
lemma cont_case_prod_applyD:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1179
  "cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1180
  \<Longrightarrow> cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1181
by(simp add: cont_case_prod_apply_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1182
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1183
lemma mcont_case_prod_apply_iff [simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1184
  "mcont luba orda lubb ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1185
   mcont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1186
by(simp add: mcont_def monotone_case_prod_apply_iff cont_case_prod_apply_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1187
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1188
lemma cont_prodD1: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1189
  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1190
  and "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1191
  and luba: "lub_singleton luba"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1192
  shows "cont lubb ordb lubc ordc (\<lambda>y. f (x, y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1193
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1194
  interpret preorder orda "mk_less orda" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1195
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1196
  fix Y :: "'b set"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1197
  let ?Y = "{x} \<times> Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1198
  assume "Complete_Partial_Order.chain ordb Y" "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1199
  hence "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \<noteq> {}" 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1200
    by(simp_all add: chain_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1201
  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1202
  moreover have "f ` ?Y = (\<lambda>y. f (x, y)) ` Y" by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1203
  ultimately show "f (x, lubb Y) = lubc ((\<lambda>y. f (x, y)) ` Y)" using luba
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1204
    by(simp add: prod_lub_def \<open>Y \<noteq> {}\<close> lub_singleton_def)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1205
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1206
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1207
lemma cont_prodD2: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1208
  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1209
  and "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1210
  and lubb: "lub_singleton lubb"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1211
  shows "cont luba orda lubc ordc (\<lambda>x. f (x, y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1212
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1213
  interpret preorder ordb "mk_less ordb" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1214
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1215
  fix Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1216
  assume Y: "Complete_Partial_Order.chain orda Y" "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1217
  let ?Y = "Y \<times> {y}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1218
  have "f (luba Y, y) = f (prod_lub luba lubb ?Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1219
    using lubb by(simp add: prod_lub_def Y lub_singleton_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1220
  also from Y have "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1221
    by(simp_all add: chain_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1222
  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1223
  also have "f ` ?Y = (\<lambda>x. f (x, y)) ` Y" by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1224
  finally show "f (luba Y, y) = lubc \<dots>" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1225
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1226
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1227
lemma cont_case_prodD1:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1228
  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1229
  and "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1230
  and "lub_singleton luba"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1231
  shows "cont lubb ordb lubc ordc (f x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1232
using cont_prodD1[OF assms] by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1233
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1234
lemma cont_case_prodD2:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1235
  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1236
  and "class.preorder ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1237
  and "lub_singleton lubb"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1238
  shows "cont luba orda lubc ordc (\<lambda>x. f x y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1239
using cont_prodD2[OF assms] by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1240
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1241
context ccpo begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1242
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1243
lemma cont_prodI: 
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1244
  assumes mono: "monotone (rel_prod orda ordb) (\<le>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1245
  and cont1: "\<And>x. cont lubb ordb Sup (\<le>) (\<lambda>y. f (x, y))"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1246
  and cont2: "\<And>y. cont luba orda Sup (\<le>) (\<lambda>x. f (x, y))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1247
  and "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1248
  and "class.preorder ordb (mk_less ordb)"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1249
  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\<le>) f"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1250
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1251
  interpret a: preorder orda "mk_less orda" by fact 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1252
  interpret b: preorder ordb "mk_less ordb" by fact
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1253
  
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1254
  fix Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1255
  assume chain: "Complete_Partial_Order.chain (rel_prod orda ordb) Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1256
    and "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1257
  have "f (prod_lub luba lubb Y) = f (luba (fst ` Y), lubb (snd ` Y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1258
    by(simp add: prod_lub_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1259
  also from cont2 have "f (luba (fst ` Y), lubb (snd ` Y)) = \<Squnion>((\<lambda>x. f (x, lubb (snd ` Y))) ` fst ` Y)"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1260
    by(rule contD)(simp_all add: chain_rel_prodD1[OF chain] \<open>Y \<noteq> {}\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1261
  also from cont1 have "\<And>x. f (x, lubb (snd ` Y)) = \<Squnion>((\<lambda>y. f (x, y)) ` snd ` Y)"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1262
    by(rule contD)(simp_all add: chain_rel_prodD2[OF chain] \<open>Y \<noteq> {}\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1263
  hence "\<Squnion>((\<lambda>x. f (x, lubb (snd ` Y))) ` fst ` Y) = \<Squnion>((\<lambda>x. \<dots> x) ` fst ` Y)" by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1264
  also have "\<dots> = \<Squnion>((\<lambda>x. f (fst x, snd x)) ` Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1265
    unfolding image_image split_def using chain
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1266
    apply(rule diag_Sup)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1267
    using monotoneD[OF mono]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1268
    by(auto intro: monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1269
  finally show "f (prod_lub luba lubb Y) = \<Squnion>(f ` Y)" by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1270
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1271
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1272
lemma cont_case_prodI:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1273
  assumes "monotone (rel_prod orda ordb) (\<le>) (case_prod f)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1274
  and "\<And>x. cont lubb ordb Sup (\<le>) (\<lambda>y. f x y)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1275
  and "\<And>y. cont luba orda Sup (\<le>) (\<lambda>x. f x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1276
  and "class.preorder orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1277
  and "class.preorder ordb (mk_less ordb)"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1278
  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\<le>) (case_prod f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1279
by(rule cont_prodI)(simp_all add: assms)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1280
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1281
lemma cont_case_prod_iff:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1282
  "\<lbrakk> monotone (rel_prod orda ordb) (\<le>) (case_prod f);
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1283
     class.preorder orda (mk_less orda); lub_singleton luba;
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1284
     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1285
  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) Sup (\<le>) (case_prod f) \<longleftrightarrow>
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1286
   (\<forall>x. cont lubb ordb Sup (\<le>) (\<lambda>y. f x y)) \<and> (\<forall>y. cont luba orda Sup (\<le>) (\<lambda>x. f x y))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1287
by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1288
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1289
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1290
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1291
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1292
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1293
lemma mono2mono2:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1294
  assumes f: "monotone (rel_prod ordb ordc) leq (\<lambda>(x, y). f x y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1295
  and t: "monotone orda ordb (\<lambda>x. t x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1296
  and t': "monotone orda ordc (\<lambda>x. t' x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1297
  shows "monotone orda leq (\<lambda>x. f (t x) (t' x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1298
proof(rule monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1299
  fix x y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1300
  assume "orda x y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1301
  hence "rel_prod ordb ordc (t x, t' x) (t y, t' y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1302
    using t t' by(auto dest: monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1303
  from monotoneD[OF f this] show "leq (f (t x) (t' x)) (f (t y) (t' y))" by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1304
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1305
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1306
lemma cont_case_prodI [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1307
  "\<lbrakk> monotone (rel_prod orda ordb) leq (case_prod f);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1308
    \<And>x. cont lubb ordb lub leq (\<lambda>y. f x y);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1309
    \<And>y. cont luba orda lub leq (\<lambda>x. f x y);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1310
    class.preorder orda (mk_less orda);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1311
    class.preorder ordb (mk_less ordb) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1312
  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1313
by(rule ccpo.cont_case_prodI)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1314
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1315
lemma cont_case_prod_iff:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1316
  "\<lbrakk> monotone (rel_prod orda ordb) leq (case_prod f);
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1317
     class.preorder orda (mk_less orda); lub_singleton luba;
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1318
     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1319
  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1320
   (\<forall>x. cont lubb ordb lub leq (\<lambda>y. f x y)) \<and> (\<forall>y. cont luba orda lub leq (\<lambda>x. f x y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1321
by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1322
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1323
lemma mcont_case_prod_iff [simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1324
  "\<lbrakk> class.preorder orda (mk_less orda); lub_singleton luba;
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1325
     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1326
  \<Longrightarrow> mcont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1327
   (\<forall>x. mcont lubb ordb lub leq (\<lambda>y. f x y)) \<and> (\<forall>y. mcont luba orda lub leq (\<lambda>x. f x y))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1328
unfolding mcont_def by(auto simp add: cont_case_prod_iff)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1329
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1330
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1331
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1332
lemma mono2mono_case_prod [cont_intro]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1333
  assumes "\<And>x y. monotone orda ordb (\<lambda>f. pair f x y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1334
  shows "monotone orda ordb (\<lambda>f. case_prod (pair f) x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1335
by(rule monotoneI)(auto split: prod.split dest: monotoneD[OF assms])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1336
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1337
subsection \<open>Complete lattices as ccpo\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1338
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1339
context complete_lattice begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1340
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1341
lemma complete_lattice_ccpo: "class.ccpo Sup (\<le>) (<)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1342
by(unfold_locales)(fast intro: Sup_upper Sup_least)+
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1343
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1344
lemma complete_lattice_ccpo': "class.ccpo Sup (\<le>) (mk_less (\<le>))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1345
by(unfold_locales)(auto simp add: mk_less_def intro: Sup_upper Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1346
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1347
lemma complete_lattice_partial_function_definitions: 
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1348
  "partial_function_definitions (\<le>) Sup"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1349
by(unfold_locales)(auto intro: Sup_least Sup_upper)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1350
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1351
lemma complete_lattice_partial_function_definitions_dual:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1352
  "partial_function_definitions (\<ge>) Inf"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1353
by(unfold_locales)(auto intro: Inf_lower Inf_greatest)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1354
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1355
lemmas [cont_intro, simp] =
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1356
  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1357
  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions_dual]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1358
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1359
lemma mono2mono_inf:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1360
  assumes f: "monotone ord (\<le>) (\<lambda>x. f x)" 
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1361
  and g: "monotone ord (\<le>) (\<lambda>x. g x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1362
  shows "monotone ord (\<le>) (\<lambda>x. f x \<sqinter> g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1363
by(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] intro: le_infI1 le_infI2 intro!: monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1364
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1365
lemma mcont_const [simp]: "mcont lub ord Sup (\<le>) (\<lambda>_. c)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1366
by(rule ccpo.mcont_const[OF complete_lattice_ccpo])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1367
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1368
lemma mono2mono_sup:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1369
  assumes f: "monotone ord (\<le>) (\<lambda>x. f x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1370
  and g: "monotone ord (\<le>) (\<lambda>x. g x)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1371
  shows "monotone ord (\<le>) (\<lambda>x. f x \<squnion> g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1372
by(auto 4 3 intro!: monotoneI intro: sup.coboundedI1 sup.coboundedI2 dest: monotoneD[OF f] monotoneD[OF g])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1373
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1374
lemma Sup_image_sup: 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1375
  assumes "Y \<noteq> {}"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1376
  shows "\<Squnion>((\<squnion>) x ` Y) = x \<squnion> \<Squnion>Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1377
proof(rule Sup_eqI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1378
  fix y
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1379
  assume "y \<in> (\<squnion>) x ` Y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1380
  then obtain z where "y = x \<squnion> z" and "z \<in> Y" by blast
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1381
  from \<open>z \<in> Y\<close> have "z \<le> \<Squnion>Y" by(rule Sup_upper)
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1382
  with _ show "y \<le> x \<squnion> \<Squnion>Y" unfolding \<open>y = x \<squnion> z\<close> by(rule sup_mono) simp
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1383
next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1384
  fix y
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1385
  assume upper: "\<And>z. z \<in> (\<squnion>) x ` Y \<Longrightarrow> z \<le> y"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1386
  show "x \<squnion> \<Squnion>Y \<le> y" unfolding Sup_insert[symmetric]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1387
  proof(rule Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1388
    fix z
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1389
    assume "z \<in> insert x Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1390
    from assms obtain z' where "z' \<in> Y" by blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1391
    let ?z = "if z \<in> Y then x \<squnion> z else x \<squnion> z'"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1392
    have "z \<le> x \<squnion> ?z" using \<open>z' \<in> Y\<close> \<open>z \<in> insert x Y\<close> by auto
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1393
    also have "\<dots> \<le> y" by(rule upper)(auto split: if_split_asm intro: \<open>z' \<in> Y\<close>)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1394
    finally show "z \<le> y" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1395
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1396
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1397
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1398
lemma mcont_sup1: "mcont Sup (\<le>) Sup (\<le>) (\<lambda>y. x \<squnion> y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1399
by(auto 4 3 simp add: mcont_def sup.coboundedI1 sup.coboundedI2 intro!: monotoneI contI intro: Sup_image_sup[symmetric])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1400
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1401
lemma mcont_sup2: "mcont Sup (\<le>) Sup (\<le>) (\<lambda>x. x \<squnion> y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1402
by(subst sup_commute)(rule mcont_sup1)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1403
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1404
lemma mcont2mcont_sup [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1405
  "\<lbrakk> mcont lub ord Sup (\<le>) (\<lambda>x. f x);
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1406
     mcont lub ord Sup (\<le>) (\<lambda>x. g x) \<rbrakk>
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1407
  \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. f x \<squnion> g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1408
by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_sup1 mcont_sup2 ccpo.mcont_const[OF complete_lattice_ccpo])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1409
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1410
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1411
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1412
lemmas [cont_intro] = admissible_leI[OF complete_lattice_ccpo']
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1413
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1414
context complete_distrib_lattice begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1415
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1416
lemma mcont_inf1: "mcont Sup (\<le>) Sup (\<le>) (\<lambda>y. x \<sqinter> y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1417
by(auto intro: monotoneI contI simp add: le_infI2 inf_Sup mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1418
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1419
lemma mcont_inf2: "mcont Sup (\<le>) Sup (\<le>) (\<lambda>x. x \<sqinter> y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1420
by(auto intro: monotoneI contI simp add: le_infI1 Sup_inf mcont_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1421
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1422
lemma mcont2mcont_inf [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1423
  "\<lbrakk> mcont lub ord Sup (\<le>) (\<lambda>x. f x);
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1424
    mcont lub ord Sup (\<le>) (\<lambda>x. g x) \<rbrakk>
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1425
  \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. f x \<sqinter> g x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1426
by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_inf1 mcont_inf2 ccpo.mcont_const[OF complete_lattice_ccpo])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1427
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1428
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1429
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1430
interpretation lfp: partial_function_definitions "(\<le>) :: _ :: complete_lattice \<Rightarrow> _" Sup
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1431
by(rule complete_lattice_partial_function_definitions)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1432
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
  1433
declaration \<open>Partial_Function.init "lfp" \<^term>\<open>lfp.fixp_fun\<close> \<^term>\<open>lfp.mono_body\<close>
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1434
  @{thm lfp.fixp_rule_uc} @{thm lfp.fixp_induct_uc} NONE\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1435
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1436
interpretation gfp: partial_function_definitions "(\<ge>) :: _ :: complete_lattice \<Rightarrow> _" Inf
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1437
by(rule complete_lattice_partial_function_definitions_dual)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1438
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69546
diff changeset
  1439
declaration \<open>Partial_Function.init "gfp" \<^term>\<open>gfp.fixp_fun\<close> \<^term>\<open>gfp.mono_body\<close>
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1440
  @{thm gfp.fixp_rule_uc} @{thm gfp.fixp_induct_uc} NONE\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1441
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1442
lemma insert_mono [partial_function_mono]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1443
   "monotone (fun_ord (\<subseteq>)) (\<subseteq>) A \<Longrightarrow> monotone (fun_ord (\<subseteq>)) (\<subseteq>) (\<lambda>y. insert x (A y))"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1444
by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1445
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1446
lemma mono2mono_insert [THEN lfp.mono2mono, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1447
  shows monotone_insert: "monotone (\<subseteq>) (\<subseteq>) (insert x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1448
by(rule monotoneI) blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1449
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1450
lemma mcont2mcont_insert[THEN lfp.mcont2mcont, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1451
  shows mcont_insert: "mcont Union (\<subseteq>) Union (\<subseteq>) (insert x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1452
by(blast intro: mcontI contI monotone_insert)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1453
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1454
lemma mono2mono_image [THEN lfp.mono2mono, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1455
  shows monotone_image: "monotone (\<subseteq>) (\<subseteq>) ((`) f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1456
by(rule monotoneI) blast
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1457
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1458
lemma cont_image: "cont Union (\<subseteq>) Union (\<subseteq>) ((`) f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1459
by(rule contI)(auto)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1460
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1461
lemma mcont2mcont_image [THEN lfp.mcont2mcont, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1462
  shows mcont_image: "mcont Union (\<subseteq>) Union (\<subseteq>) ((`) f)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1463
by(blast intro: mcontI monotone_image cont_image)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1464
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1465
context complete_lattice begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1466
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1467
lemma monotone_Sup [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1468
  "monotone ord (\<subseteq>) f \<Longrightarrow> monotone ord (\<le>) (\<lambda>x. \<Squnion>f x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1469
by(blast intro: monotoneI Sup_least Sup_upper dest: monotoneD)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1470
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1471
lemma cont_Sup:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1472
  assumes "cont lub ord Union (\<subseteq>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1473
  shows "cont lub ord Sup (\<le>) (\<lambda>x. \<Squnion>f x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1474
apply(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1475
apply(simp add: contD[OF assms])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1476
apply(blast intro: Sup_least Sup_upper order_trans antisym)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1477
done
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1478
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1479
lemma mcont_Sup: "mcont lub ord Union (\<subseteq>) f \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. \<Squnion>f x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1480
unfolding mcont_def by(blast intro: monotone_Sup cont_Sup)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1481
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1482
lemma monotone_SUP:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1483
  "\<lbrakk> monotone ord (\<subseteq>) f; \<And>y. monotone ord (\<le>) (\<lambda>x. g x y) \<rbrakk> \<Longrightarrow> monotone ord (\<le>) (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1484
by(rule monotoneI)(blast dest: monotoneD intro: Sup_upper order_trans intro!: Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1485
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1486
lemma monotone_SUP2:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1487
  "(\<And>y. y \<in> A \<Longrightarrow> monotone ord (\<le>) (\<lambda>x. g x y)) \<Longrightarrow> monotone ord (\<le>) (\<lambda>x. \<Squnion>y\<in>A. g x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1488
by(rule monotoneI)(blast intro: Sup_upper order_trans dest: monotoneD intro!: Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1489
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1490
lemma cont_SUP:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1491
  assumes f: "mcont lub ord Union (\<subseteq>) f"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1492
  and g: "\<And>y. mcont lub ord Sup (\<le>) (\<lambda>x. g x y)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1493
  shows "cont lub ord Sup (\<le>) (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1494
proof(rule contI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1495
  fix Y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1496
  assume chain: "Complete_Partial_Order.chain ord Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1497
    and Y: "Y \<noteq> {}"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1498
  show "\<Squnion>(g (lub Y) ` f (lub Y)) = \<Squnion>((\<lambda>x. \<Squnion>(g x ` f x)) ` Y)" (is "?lhs = ?rhs")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1499
  proof(rule antisym)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1500
    show "?lhs \<le> ?rhs"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1501
    proof(rule Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1502
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1503
      assume "x \<in> g (lub Y) ` f (lub Y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1504
      with mcont_contD[OF f chain Y] mcont_contD[OF g chain Y]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1505
      obtain y z where "y \<in> Y" "z \<in> f y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1506
        and x: "x = \<Squnion>((\<lambda>x. g x z) ` Y)" by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1507
      show "x \<le> ?rhs" unfolding x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1508
      proof(rule Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1509
        fix u
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1510
        assume "u \<in> (\<lambda>x. g x z) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1511
        then obtain y' where "u = g y' z" "y' \<in> Y" by auto
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1512
        from chain \<open>y \<in> Y\<close> \<open>y' \<in> Y\<close> have "ord y y' \<or> ord y' y" by(rule chainD)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1513
        thus "u \<le> ?rhs"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1514
        proof
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1515
          note \<open>u = g y' z\<close> also
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1516
          assume "ord y y'"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1517
          with f have "f y \<subseteq> f y'" by(rule mcont_monoD)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1518
          with \<open>z \<in> f y\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1519
          have "g y' z \<le> \<Squnion>(g y' ` f y')" by(auto intro: Sup_upper)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1520
          also have "\<dots> \<le> ?rhs" using \<open>y' \<in> Y\<close> by(auto intro: Sup_upper)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1521
          finally show ?thesis .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1522
        next
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1523
          note \<open>u = g y' z\<close> also
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1524
          assume "ord y' y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1525
          with g have "g y' z \<le> g y z" by(rule mcont_monoD)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1526
          also have "\<dots> \<le> \<Squnion>(g y ` f y)" using \<open>z \<in> f y\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1527
            by(auto intro: Sup_upper)
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1528
          also have "\<dots> \<le> ?rhs" using \<open>y \<in> Y\<close> by(auto intro: Sup_upper)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1529
          finally show ?thesis .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1530
        qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1531
      qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1532
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1533
  next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1534
    show "?rhs \<le> ?lhs"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1535
    proof(rule Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1536
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1537
      assume "x \<in> (\<lambda>x. \<Squnion>(g x ` f x)) ` Y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1538
      then obtain y where x: "x = \<Squnion>(g y ` f y)" and "y \<in> Y" by auto
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1539
      show "x \<le> ?lhs" unfolding x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1540
      proof(rule Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1541
        fix u
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1542
        assume "u \<in> g y ` f y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1543
        then obtain z where "u = g y z" "z \<in> f y" by auto
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1544
        note \<open>u = g y z\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1545
        also have "g y z \<le> \<Squnion>((\<lambda>x. g x z) ` Y)"
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1546
          using \<open>y \<in> Y\<close> by(auto intro: Sup_upper)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1547
        also have "\<dots> = g (lub Y) z" by(simp add: mcont_contD[OF g chain Y])
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1548
        also have "\<dots> \<le> ?lhs" using \<open>z \<in> f y\<close> \<open>y \<in> Y\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1549
          by(auto intro: Sup_upper simp add: mcont_contD[OF f chain Y])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1550
        finally show "u \<le> ?lhs" .
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1551
      qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1552
    qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1553
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1554
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1555
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1556
lemma mcont_SUP [cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1557
  "\<lbrakk> mcont lub ord Union (\<subseteq>) f; \<And>y. mcont lub ord Sup (\<le>) (\<lambda>x. g x y) \<rbrakk>
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1558
  \<Longrightarrow> mcont lub ord Sup (\<le>) (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1559
by(blast intro: mcontI cont_SUP monotone_SUP mcont_mono)
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1560
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1561
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1562
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1563
lemma admissible_Ball [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1564
  "\<lbrakk> \<And>x. ccpo.admissible lub ord (\<lambda>A. P A x);
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1565
     mcont lub ord Union (\<subseteq>) f;
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1566
     class.ccpo lub ord (mk_less ord) \<rbrakk>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1567
  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>A. \<forall>x\<in>f A. P A x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1568
unfolding Ball_def by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1569
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1570
lemma admissible_Bex'[THEN admissible_subst, cont_intro, simp]:
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66244
diff changeset
  1571
  shows admissible_Bex: "ccpo.admissible Union (\<subseteq>) (\<lambda>A. \<exists>x\<in>A. P x)"
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1572
by(rule ccpo.admissibleI)(auto)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1573
62837
237ef2bab6c7 isabelle update_cartouches -c -t;
wenzelm
parents: 62652
diff changeset
  1574
subsection \<open>Parallel fixpoint induction\<close>
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1575
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1576
context
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1577
  fixes luba :: "'a set \<Rightarrow> 'a"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1578
  and orda :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1579
  and lubb :: "'b set \<Rightarrow> 'b"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1580
  and ordb :: "'b \<Rightarrow> 'b \<Rightarrow> bool"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1581
  assumes a: "class.ccpo luba orda (mk_less orda)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1582
  and b: "class.ccpo lubb ordb (mk_less ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1583
begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1584
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1585
interpretation a: ccpo luba orda "mk_less orda" by(rule a)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1586
interpretation b: ccpo lubb ordb "mk_less ordb" by(rule b)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1587
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1588
lemma ccpo_rel_prodI:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1589
  "class.ccpo (prod_lub luba lubb) (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1590
  (is "class.ccpo ?lub ?ord ?ord'")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1591
proof(intro class.ccpo.intro class.ccpo_axioms.intro)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1592
  show "class.order ?ord ?ord'" by(rule order_rel_prodI) intro_locales
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1593
qed(auto 4 4 simp add: prod_lub_def intro: a.ccpo_Sup_upper b.ccpo_Sup_upper a.ccpo_Sup_least b.ccpo_Sup_least rev_image_eqI dest: chain_rel_prodD1 chain_rel_prodD2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1594
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1595
interpretation ab: ccpo "prod_lub luba lubb" "rel_prod orda ordb" "mk_less (rel_prod orda ordb)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1596
by(rule ccpo_rel_prodI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1597
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1598
lemma monotone_map_prod [simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1599
  "monotone (rel_prod orda ordb) (rel_prod ordc ordd) (map_prod f g) \<longleftrightarrow>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1600
   monotone orda ordc f \<and> monotone ordb ordd g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1601
by(auto simp add: monotone_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1602
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1603
lemma parallel_fixp_induct:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1604
  assumes adm: "ccpo.admissible (prod_lub luba lubb) (rel_prod orda ordb) (\<lambda>x. P (fst x) (snd x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1605
  and f: "monotone orda orda f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1606
  and g: "monotone ordb ordb g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1607
  and bot: "P (luba {}) (lubb {})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1608
  and step: "\<And>x y. P x y \<Longrightarrow> P (f x) (g y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1609
  shows "P (ccpo.fixp luba orda f) (ccpo.fixp lubb ordb g)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1610
proof -
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1611
  let ?lub = "prod_lub luba lubb"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1612
    and ?ord = "rel_prod orda ordb"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1613
    and ?P = "\<lambda>(x, y). P x y"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1614
  from adm have adm': "ccpo.admissible ?lub ?ord ?P" by(simp add: split_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1615
  hence "?P (ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1616
    by(rule ab.fixp_induct)(auto simp add: f g step bot)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1617
  also have "ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g) = 
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1618
            (ccpo.fixp luba orda f, ccpo.fixp lubb ordb g)" (is "?lhs = (?rhs1, ?rhs2)")
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1619
  proof(rule ab.antisym)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1620
    have "ccpo.admissible ?lub ?ord (\<lambda>xy. ?ord xy (?rhs1, ?rhs2))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1621
      by(rule admissible_leI[OF ccpo_rel_prodI])(auto simp add: prod_lub_def chain_empty intro: a.ccpo_Sup_least b.ccpo_Sup_least)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1622
    thus "?ord ?lhs (?rhs1, ?rhs2)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1623
      by(rule ab.fixp_induct)(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] simp add: b.fixp_unfold[OF g, symmetric] a.fixp_unfold[OF f, symmetric] f g intro: a.ccpo_Sup_least b.ccpo_Sup_least chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1624
  next
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1625
    have "ccpo.admissible luba orda (\<lambda>x. orda x (fst ?lhs))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1626
      by(rule admissible_leI[OF a])(auto intro: a.ccpo_Sup_least simp add: chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1627
    hence "orda ?rhs1 (fst ?lhs)" using f
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1628
    proof(rule a.fixp_induct)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1629
      fix x
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1630
      assume "orda x (fst ?lhs)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1631
      thus "orda (f x) (fst ?lhs)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1632
        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF f])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1633
    qed(auto intro: a.ccpo_Sup_least chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1634
    moreover
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1635
    have "ccpo.admissible lubb ordb (\<lambda>y. ordb y (snd ?lhs))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1636
      by(rule admissible_leI[OF b])(auto intro: b.ccpo_Sup_least simp add: chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1637
    hence "ordb ?rhs2 (snd ?lhs)" using g
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1638
    proof(rule b.fixp_induct)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1639
      fix y
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1640
      assume "ordb y (snd ?lhs)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1641
      thus "ordb (g y) (snd ?lhs)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1642
        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF g])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1643
    qed(auto intro: b.ccpo_Sup_least chain_empty)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1644
    ultimately show "?ord (?rhs1, ?rhs2) ?lhs"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1645
      by(simp add: rel_prod_conv split_beta)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1646
  qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1647
  finally show ?thesis by simp
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1648
qed
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1649
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1650
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1651
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1652
lemma parallel_fixp_induct_uc:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1653
  assumes a: "partial_function_definitions orda luba"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1654
  and b: "partial_function_definitions ordb lubb"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1655
  and F: "\<And>x. monotone (fun_ord orda) orda (\<lambda>f. U1 (F (C1 f)) x)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1656
  and G: "\<And>y. monotone (fun_ord ordb) ordb (\<lambda>g. U2 (G (C2 g)) y)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1657
  and eq1: "f \<equiv> C1 (ccpo.fixp (fun_lub luba) (fun_ord orda) (\<lambda>f. U1 (F (C1 f))))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1658
  and eq2: "g \<equiv> C2 (ccpo.fixp (fun_lub lubb) (fun_ord ordb) (\<lambda>g. U2 (G (C2 g))))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1659
  and inverse: "\<And>f. U1 (C1 f) = f"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1660
  and inverse2: "\<And>g. U2 (C2 g) = g"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1661
  and adm: "ccpo.admissible (prod_lub (fun_lub luba) (fun_lub lubb)) (rel_prod (fun_ord orda) (fun_ord ordb)) (\<lambda>x. P (fst x) (snd x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1662
  and bot: "P (\<lambda>_. luba {}) (\<lambda>_. lubb {})"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1663
  and step: "\<And>f g. P (U1 f) (U2 g) \<Longrightarrow> P (U1 (F f)) (U2 (G g))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1664
  shows "P (U1 f) (U2 g)"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1665
apply(unfold eq1 eq2 inverse inverse2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1666
apply(rule parallel_fixp_induct[OF partial_function_definitions.ccpo[OF a] partial_function_definitions.ccpo[OF b] adm])
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1667
using F apply(simp add: monotone_def fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1668
using G apply(simp add: monotone_def fun_ord_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1669
apply(simp add: fun_lub_def bot)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1670
apply(rule step, simp add: inverse inverse2)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1671
done
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1672
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1673
lemmas parallel_fixp_induct_1_1 = parallel_fixp_induct_uc[
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1674
  of _ _ _ _ "\<lambda>x. x" _ "\<lambda>x. x" "\<lambda>x. x" _ "\<lambda>x. x",
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1675
  OF _ _ _ _ _ _ refl refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1676
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1677
lemmas parallel_fixp_induct_2_2 = parallel_fixp_induct_uc[
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1678
  of _ _ _ _ "case_prod" _ "curry" "case_prod" _ "curry",
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1679
  where P="\<lambda>f g. P (curry f) (curry g)",
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1680
  unfolded case_prod_curry curry_case_prod curry_K,
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1681
  OF _ _ _ _ _ _ refl refl]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1682
  for P
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1683
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1684
lemma monotone_fst: "monotone (rel_prod orda ordb) orda fst"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1685
by(auto intro: monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1686
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1687
lemma mcont_fst: "mcont (prod_lub luba lubb) (rel_prod orda ordb) luba orda fst"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1688
by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1689
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1690
lemma mcont2mcont_fst [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1691
  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1692
  \<Longrightarrow> mcont lub ord luba orda (\<lambda>x. fst (t x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1693
by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1694
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1695
lemma monotone_snd: "monotone (rel_prod orda ordb) ordb snd"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1696
by(auto intro: monotoneI)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1697
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1698
lemma mcont_snd: "mcont (prod_lub luba lubb) (rel_prod orda ordb) lubb ordb snd"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1699
by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1700
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1701
lemma mcont2mcont_snd [cont_intro, simp]:
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1702
  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1703
  \<Longrightarrow> mcont lub ord lubb ordb (\<lambda>x. snd (t x))"
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1704
by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1705
63243
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1706
lemma monotone_Pair:
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1707
  "\<lbrakk> monotone ord orda f; monotone ord ordb g \<rbrakk>
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1708
  \<Longrightarrow> monotone ord (rel_prod orda ordb) (\<lambda>x. (f x, g x))"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1709
by(simp add: monotone_def)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1710
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1711
lemma cont_Pair:
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1712
  "\<lbrakk> cont lub ord luba orda f; cont lub ord lubb ordb g \<rbrakk>
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1713
  \<Longrightarrow> cont lub ord (prod_lub luba lubb) (rel_prod orda ordb) (\<lambda>x. (f x, g x))"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1714
by(rule contI)(auto simp add: prod_lub_def image_image dest!: contD)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1715
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1716
lemma mcont_Pair:
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1717
  "\<lbrakk> mcont lub ord luba orda f; mcont lub ord lubb ordb g \<rbrakk>
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1718
  \<Longrightarrow> mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) (\<lambda>x. (f x, g x))"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1719
by(rule mcontI)(simp_all add: monotone_Pair mcont_mono cont_Pair)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1720
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1721
context partial_function_definitions begin
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1722
text \<open>Specialised versions of @{thm [source] mcont_call} for admissibility proofs for parallel fixpoint inductions\<close>
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1723
lemmas mcont_call_fst [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_fst]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1724
lemmas mcont_call_snd [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_snd]
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1725
end
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1726
63243
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1727
lemma map_option_mono [partial_function_mono]:
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1728
  "mono_option B \<Longrightarrow> mono_option (\<lambda>f. map_option g (B f))"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1729
unfolding map_conv_bind_option by(rule bind_mono) simp_all
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1730
66244
4c999b5d78e2 qualify Complete_Partial_Order2.compact
Andreas Lochbihler
parents: 65366
diff changeset
  1731
lemma compact_flat_lub [cont_intro]: "ccpo.compact (flat_lub x) (flat_ord x) y"
63243
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1732
using flat_interpretation[THEN ccpo]
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1733
proof(rule ccpo.compactI[OF _ ccpo.admissibleI])
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1734
  fix A
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1735
  assume chain: "Complete_Partial_Order.chain (flat_ord x) A"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1736
    and A: "A \<noteq> {}"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1737
    and *: "\<forall>z\<in>A. \<not> flat_ord x y z"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1738
  from A obtain z where "z \<in> A" by blast
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1739
  with * have z: "\<not> flat_ord x y z" ..
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1740
  hence y: "x \<noteq> y" "y \<noteq> z" by(auto simp add: flat_ord_def)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1741
  { assume "\<not> A \<subseteq> {x}"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1742
    then obtain z' where "z' \<in> A" "z' \<noteq> x" by auto
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1743
    then have "(THE z. z \<in> A - {x}) = z'"
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1744
      by(intro the_equality)(auto dest: chainD[OF chain] simp add: flat_ord_def)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1745
    moreover have "z' \<noteq> y" using \<open>z' \<in> A\<close> * by(auto simp add: flat_ord_def)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1746
    ultimately have "y \<noteq> (THE z. z \<in> A - {x})" by simp }
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1747
  with z show "\<not> flat_ord x y (flat_lub x A)" by(simp add: flat_ord_def flat_lub_def)
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1748
qed
1bc6816fd525 add theory of discrete subprobability distributions
Andreas Lochbihler
parents: 63170
diff changeset
  1749
62652
7248d106c607 move Complete_Partial_Orders2 from AFP/Coinductive to HOL/Library
Andreas Lochbihler
parents:
diff changeset
  1750
end