| author | haftmann | 
| Mon, 20 Oct 2014 07:45:58 +0200 | |
| changeset 58710 | 7216a10d69ba | 
| parent 56199 | 8e8d28ed7529 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 17456 | 1  | 
(* Title: CCL/Type.thy  | 
| 0 | 2  | 
Author: Martin Coen  | 
3  | 
Copyright 1993 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 17456 | 6  | 
header {* Types in CCL are defined as sets of terms *}
 | 
7  | 
||
8  | 
theory Type  | 
|
9  | 
imports Term  | 
|
10  | 
begin  | 
|
| 0 | 11  | 
|
12  | 
consts  | 
|
13  | 
||
14  | 
Subtype :: "['a set, 'a => o] => 'a set"  | 
|
15  | 
Bool :: "i set"  | 
|
16  | 
Unit :: "i set"  | 
|
| 24825 | 17  | 
Plus :: "[i set, i set] => i set" (infixr "+" 55)  | 
| 0 | 18  | 
Pi :: "[i set, i => i set] => i set"  | 
19  | 
Sigma :: "[i set, i => i set] => i set"  | 
|
20  | 
Nat :: "i set"  | 
|
21  | 
List :: "i set => i set"  | 
|
22  | 
Lists :: "i set => i set"  | 
|
23  | 
ILists :: "i set => i set"  | 
|
| 
999
 
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
 
lcp 
parents: 
22 
diff
changeset
 | 
24  | 
TAll :: "(i set => i set) => i set" (binder "TALL " 55)  | 
| 
 
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
 
lcp 
parents: 
22 
diff
changeset
 | 
25  | 
TEx :: "(i set => i set) => i set" (binder "TEX " 55)  | 
| 
 
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
 
lcp 
parents: 
22 
diff
changeset
 | 
26  | 
  Lift          :: "i set => i set"                  ("(3[_])")
 | 
| 0 | 27  | 
|
28  | 
SPLIT :: "[i, [i, i] => i set] => i set"  | 
|
29  | 
||
| 14765 | 30  | 
syntax  | 
| 35113 | 31  | 
  "_Pi"         :: "[idt, i set, i set] => i set"    ("(3PROD _:_./ _)"
 | 
| 1474 | 32  | 
[0,0,60] 60)  | 
| 
999
 
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
 
lcp 
parents: 
22 
diff
changeset
 | 
33  | 
|
| 35113 | 34  | 
  "_Sigma"      :: "[idt, i set, i set] => i set"    ("(3SUM _:_./ _)"
 | 
| 1474 | 35  | 
[0,0,60] 60)  | 
| 17456 | 36  | 
|
| 35113 | 37  | 
  "_arrow"      :: "[i set, i set] => i set"         ("(_ ->/ _)"  [54, 53] 53)
 | 
38  | 
  "_star"       :: "[i set, i set] => i set"         ("(_ */ _)" [56, 55] 55)
 | 
|
39  | 
  "_Subtype"    :: "[idt, 'a set, o] => 'a set"      ("(1{_: _ ./ _})")
 | 
|
| 0 | 40  | 
|
41  | 
translations  | 
|
| 35054 | 42  | 
"PROD x:A. B" => "CONST Pi(A, %x. B)"  | 
43  | 
"A -> B" => "CONST Pi(A, %_. B)"  | 
|
44  | 
"SUM x:A. B" => "CONST Sigma(A, %x. B)"  | 
|
45  | 
"A * B" => "CONST Sigma(A, %_. B)"  | 
|
46  | 
  "{x: A. B}"   == "CONST Subtype(A, %x. B)"
 | 
|
| 0 | 47  | 
|
| 17456 | 48  | 
print_translation {*
 | 
| 42284 | 49  | 
 [(@{const_syntax Pi},
 | 
| 52143 | 50  | 
    fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"})),
 | 
| 42284 | 51  | 
  (@{const_syntax Sigma},
 | 
| 52143 | 52  | 
    fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Sigma"}, @{syntax_const "_star"}))]
 | 
| 35113 | 53  | 
*}  | 
| 0 | 54  | 
|
| 42156 | 55  | 
defs  | 
| 17456 | 56  | 
  Subtype_def: "{x:A. P(x)} == {x. x:A & P(x)}"
 | 
57  | 
  Unit_def:          "Unit == {x. x=one}"
 | 
|
58  | 
  Bool_def:          "Bool == {x. x=true | x=false}"
 | 
|
59  | 
  Plus_def:           "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}"
 | 
|
60  | 
  Pi_def:         "Pi(A,B) == {x. EX b. x=lam x. b(x) & (ALL x:A. b(x):B(x))}"
 | 
|
61  | 
  Sigma_def:   "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}"
 | 
|
62  | 
Nat_def: "Nat == lfp(% X. Unit + X)"  | 
|
63  | 
List_def: "List(A) == lfp(% X. Unit + A*X)"  | 
|
| 0 | 64  | 
|
| 17456 | 65  | 
Lists_def: "Lists(A) == gfp(% X. Unit + A*X)"  | 
66  | 
  ILists_def:   "ILists(A) == gfp(% X.{} + A*X)"
 | 
|
| 0 | 67  | 
|
| 17456 | 68  | 
  Tall_def:   "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})"
 | 
69  | 
  Tex_def:     "TEX X. B(X) == Union({X. EX Y. X=B(Y)})"
 | 
|
70  | 
  Lift_def:           "[A] == A Un {bot}"
 | 
|
| 0 | 71  | 
|
| 17456 | 72  | 
  SPLIT_def:   "SPLIT(p,B) == Union({A. EX x y. p=<x,y> & A=B(x,y)})"
 | 
73  | 
||
| 20140 | 74  | 
|
75  | 
lemmas simp_type_defs =  | 
|
76  | 
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def Tall_def Tex_def  | 
|
77  | 
and ind_type_defs = Nat_def List_def  | 
|
78  | 
and simp_data_defs = one_def inl_def inr_def  | 
|
79  | 
and ind_data_defs = zero_def succ_def nil_def cons_def  | 
|
80  | 
||
81  | 
lemma subsetXH: "A <= B <-> (ALL x. x:A --> x:B)"  | 
|
82  | 
by blast  | 
|
83  | 
||
84  | 
||
85  | 
subsection {* Exhaustion Rules *}
 | 
|
86  | 
||
87  | 
lemma EmptyXH: "!!a. a : {} <-> False"
 | 
|
88  | 
  and SubtypeXH: "!!a A P. a : {x:A. P(x)} <-> (a:A & P(a))"
 | 
|
89  | 
and UnitXH: "!!a. a : Unit <-> a=one"  | 
|
90  | 
and BoolXH: "!!a. a : Bool <-> a=true | a=false"  | 
|
91  | 
and PlusXH: "!!a A B. a : A+B <-> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))"  | 
|
92  | 
and PiXH: "!!a A B. a : PROD x:A. B(x) <-> (EX b. a=lam x. b(x) & (ALL x:A. b(x):B(x)))"  | 
|
93  | 
and SgXH: "!!a A B. a : SUM x:A. B(x) <-> (EX x:A. EX y:B(x).a=<x,y>)"  | 
|
94  | 
unfolding simp_type_defs by blast+  | 
|
95  | 
||
96  | 
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH  | 
|
97  | 
||
98  | 
lemma LiftXH: "a : [A] <-> (a=bot | a:A)"  | 
|
99  | 
and TallXH: "a : TALL X. B(X) <-> (ALL X. a:B(X))"  | 
|
100  | 
and TexXH: "a : TEX X. B(X) <-> (EX X. a:B(X))"  | 
|
101  | 
unfolding simp_type_defs by blast+  | 
|
102  | 
||
103  | 
ML {*
 | 
|
| 56199 | 104  | 
ML_Thms.bind_thms ("case_rls", XH_to_Es @{thms XHs});
 | 
| 20140 | 105  | 
*}  | 
106  | 
||
107  | 
||
108  | 
subsection {* Canonical Type Rules *}
 | 
|
109  | 
||
110  | 
lemma oneT: "one : Unit"  | 
|
111  | 
and trueT: "true : Bool"  | 
|
112  | 
and falseT: "false : Bool"  | 
|
113  | 
and lamT: "!!b B. [| !!x. x:A ==> b(x):B(x) |] ==> lam x. b(x) : Pi(A,B)"  | 
|
114  | 
and pairT: "!!b B. [| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)"  | 
|
115  | 
and inlT: "a:A ==> inl(a) : A+B"  | 
|
116  | 
and inrT: "b:B ==> inr(b) : A+B"  | 
|
117  | 
by (blast intro: XHs [THEN iffD2])+  | 
|
118  | 
||
119  | 
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT  | 
|
120  | 
||
121  | 
||
122  | 
subsection {* Non-Canonical Type Rules *}
 | 
|
123  | 
||
124  | 
lemma lem: "[| a:B(u); u=v |] ==> a : B(v)"  | 
|
125  | 
by blast  | 
|
126  | 
||
127  | 
||
128  | 
ML {*
 | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
129  | 
fun mk_ncanT_tac top_crls crls =  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
130  | 
  SUBPROOF (fn {context = ctxt, prems = major :: prems, ...} =>
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
131  | 
resolve_tac ([major] RL top_crls) 1 THEN  | 
| 35409 | 132  | 
    REPEAT_SOME (eresolve_tac (crls @ [@{thm exE}, @{thm bexE}, @{thm conjE}, @{thm disjE}])) THEN
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
133  | 
ALLGOALS (asm_simp_tac ctxt) THEN  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
134  | 
    ALLGOALS (ares_tac (prems RL [@{thm lem}]) ORELSE' etac @{thm bspec}) THEN
 | 
| 42793 | 135  | 
safe_tac (ctxt addSIs prems))  | 
| 
28272
 
ed959a0f650b
proper thm antiquotations within ML solve obscure context problems (due to update of ML environment);
 
wenzelm 
parents: 
26342 
diff
changeset
 | 
136  | 
*}  | 
| 20140 | 137  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
138  | 
method_setup ncanT = {*
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
139  | 
  Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms case_rls} @{thms case_rls})
 | 
| 42814 | 140  | 
*}  | 
| 20140 | 141  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
142  | 
lemma ifT:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
143  | 
"[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
144  | 
if b then t else u : A(b)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
145  | 
by ncanT  | 
| 20140 | 146  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
147  | 
lemma applyT: "[| f : Pi(A,B); a:A |] ==> f ` a : B(a)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
148  | 
by ncanT  | 
| 20140 | 149  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
150  | 
lemma splitT:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
151  | 
"[| p:Sigma(A,B); !!x y. [| x:A; y:B(x); p=<x,y> |] ==> c(x,y):C(<x,y>) |]  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
152  | 
==> split(p,c):C(p)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
153  | 
by ncanT  | 
| 20140 | 154  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
155  | 
lemma whenT:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
156  | 
"[| p:A+B; !!x.[| x:A; p=inl(x) |] ==> a(x):C(inl(x)); !!y.[| y:B; p=inr(y) |]  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
157  | 
==> b(y):C(inr(y)) |] ==> when(p,a,b) : C(p)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
158  | 
by ncanT  | 
| 20140 | 159  | 
|
160  | 
lemmas ncanTs = ifT applyT splitT whenT  | 
|
161  | 
||
162  | 
||
163  | 
subsection {* Subtypes *}
 | 
|
164  | 
||
165  | 
lemma SubtypeD1: "a : Subtype(A, P) ==> a : A"  | 
|
166  | 
and SubtypeD2: "a : Subtype(A, P) ==> P(a)"  | 
|
167  | 
by (simp_all add: SubtypeXH)  | 
|
168  | 
||
169  | 
lemma SubtypeI: "[| a:A;  P(a) |] ==> a : {x:A. P(x)}"
 | 
|
170  | 
by (simp add: SubtypeXH)  | 
|
171  | 
||
172  | 
lemma SubtypeE: "[| a : {x:A. P(x)};  [| a:A;  P(a) |] ==> Q |] ==> Q"
 | 
|
173  | 
by (simp add: SubtypeXH)  | 
|
174  | 
||
175  | 
||
176  | 
subsection {* Monotonicity *}
 | 
|
177  | 
||
178  | 
lemma idM: "mono (%X. X)"  | 
|
179  | 
apply (rule monoI)  | 
|
180  | 
apply assumption  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
lemma constM: "mono(%X. A)"  | 
|
184  | 
apply (rule monoI)  | 
|
185  | 
apply (rule subset_refl)  | 
|
186  | 
done  | 
|
187  | 
||
188  | 
lemma "mono(%X. A(X)) ==> mono(%X.[A(X)])"  | 
|
189  | 
apply (rule subsetI [THEN monoI])  | 
|
190  | 
apply (drule LiftXH [THEN iffD1])  | 
|
191  | 
apply (erule disjE)  | 
|
192  | 
apply (erule disjI1 [THEN LiftXH [THEN iffD2]])  | 
|
193  | 
apply (rule disjI2 [THEN LiftXH [THEN iffD2]])  | 
|
194  | 
apply (drule (1) monoD)  | 
|
195  | 
apply blast  | 
|
196  | 
done  | 
|
197  | 
||
198  | 
lemma SgM:  | 
|
199  | 
"[| mono(%X. A(X)); !!x X. x:A(X) ==> mono(%X. B(X,x)) |] ==>  | 
|
200  | 
mono(%X. Sigma(A(X),B(X)))"  | 
|
201  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
|
202  | 
dest!: monoD [THEN subsetD])  | 
|
203  | 
||
204  | 
lemma PiM:  | 
|
205  | 
"[| !!x. x:A ==> mono(%X. B(X,x)) |] ==> mono(%X. Pi(A,B(X)))"  | 
|
206  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
|
207  | 
dest!: monoD [THEN subsetD])  | 
|
208  | 
||
209  | 
lemma PlusM:  | 
|
210  | 
"[| mono(%X. A(X)); mono(%X. B(X)) |] ==> mono(%X. A(X)+B(X))"  | 
|
211  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
|
212  | 
dest!: monoD [THEN subsetD])  | 
|
213  | 
||
214  | 
||
215  | 
subsection {* Recursive types *}
 | 
|
216  | 
||
217  | 
subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *}
 | 
|
218  | 
||
| 41526 | 219  | 
lemma NatM: "mono(%X. Unit+X)"  | 
| 20140 | 220  | 
apply (rule PlusM constM idM)+  | 
221  | 
done  | 
|
222  | 
||
223  | 
lemma def_NatB: "Nat = Unit + Nat"  | 
|
224  | 
apply (rule def_lfp_Tarski [OF Nat_def])  | 
|
225  | 
apply (rule NatM)  | 
|
226  | 
done  | 
|
227  | 
||
228  | 
lemma ListM: "mono(%X.(Unit+Sigma(A,%y. X)))"  | 
|
229  | 
apply (rule PlusM SgM constM idM)+  | 
|
230  | 
done  | 
|
231  | 
||
232  | 
lemma def_ListB: "List(A) = Unit + A * List(A)"  | 
|
233  | 
apply (rule def_lfp_Tarski [OF List_def])  | 
|
234  | 
apply (rule ListM)  | 
|
235  | 
done  | 
|
236  | 
||
237  | 
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)"  | 
|
238  | 
apply (rule def_gfp_Tarski [OF Lists_def])  | 
|
239  | 
apply (rule ListM)  | 
|
240  | 
done  | 
|
241  | 
||
242  | 
lemma IListsM: "mono(%X.({} + Sigma(A,%y. X)))"
 | 
|
243  | 
apply (rule PlusM SgM constM idM)+  | 
|
244  | 
done  | 
|
245  | 
||
246  | 
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)"
 | 
|
247  | 
apply (rule def_gfp_Tarski [OF ILists_def])  | 
|
248  | 
apply (rule IListsM)  | 
|
249  | 
done  | 
|
250  | 
||
251  | 
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB  | 
|
252  | 
||
253  | 
||
254  | 
subsection {* Exhaustion Rules *}
 | 
|
255  | 
||
256  | 
lemma NatXH: "a : Nat <-> (a=zero | (EX x:Nat. a=succ(x)))"  | 
|
257  | 
and ListXH: "a : List(A) <-> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))"  | 
|
258  | 
and ListsXH: "a : Lists(A) <-> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))"  | 
|
259  | 
and IListsXH: "a : ILists(A) <-> (EX x:A. EX xs:ILists(A).a=x$xs)"  | 
|
260  | 
unfolding ind_data_defs  | 
|
261  | 
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+  | 
|
262  | 
||
263  | 
lemmas iXHs = NatXH ListXH  | 
|
264  | 
||
| 56199 | 265  | 
ML {* ML_Thms.bind_thms ("icase_rls", XH_to_Es @{thms iXHs}) *}
 | 
| 20140 | 266  | 
|
267  | 
||
268  | 
subsection {* Type Rules *}
 | 
|
269  | 
||
270  | 
lemma zeroT: "zero : Nat"  | 
|
271  | 
and succT: "n:Nat ==> succ(n) : Nat"  | 
|
272  | 
and nilT: "[] : List(A)"  | 
|
273  | 
and consT: "[| h:A; t:List(A) |] ==> h$t : List(A)"  | 
|
274  | 
by (blast intro: iXHs [THEN iffD2])+  | 
|
275  | 
||
276  | 
lemmas icanTs = zeroT succT nilT consT  | 
|
277  | 
||
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
278  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
279  | 
method_setup incanT = {*
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
280  | 
  Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms icase_rls} @{thms case_rls})
 | 
| 42814 | 281  | 
*}  | 
| 20140 | 282  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
283  | 
lemma ncaseT:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
284  | 
"[| n:Nat; n=zero ==> b:C(zero); !!x.[| x:Nat; n=succ(x) |] ==> c(x):C(succ(x)) |]  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
285  | 
==> ncase(n,b,c) : C(n)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
286  | 
by incanT  | 
| 20140 | 287  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
288  | 
lemma lcaseT:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
289  | 
"[| l:List(A); l=[] ==> b:C([]); !!h t.[| h:A; t:List(A); l=h$t |] ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
290  | 
c(h,t):C(h$t) |] ==> lcase(l,b,c) : C(l)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
291  | 
by incanT  | 
| 20140 | 292  | 
|
293  | 
lemmas incanTs = ncaseT lcaseT  | 
|
294  | 
||
295  | 
||
296  | 
subsection {* Induction Rules *}
 | 
|
297  | 
||
298  | 
lemmas ind_Ms = NatM ListM  | 
|
299  | 
||
300  | 
lemma Nat_ind: "[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==> P(n)"  | 
|
301  | 
apply (unfold ind_data_defs)  | 
|
302  | 
apply (erule def_induct [OF Nat_def _ NatM])  | 
|
303  | 
apply (blast intro: canTs elim!: case_rls)  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
lemma List_ind:  | 
|
307  | 
"[| l:List(A); P([]); !!x xs.[| x:A; xs:List(A); P(xs) |] ==> P(x$xs) |] ==> P(l)"  | 
|
308  | 
apply (unfold ind_data_defs)  | 
|
309  | 
apply (erule def_induct [OF List_def _ ListM])  | 
|
310  | 
apply (blast intro: canTs elim!: case_rls)  | 
|
311  | 
done  | 
|
312  | 
||
313  | 
lemmas inds = Nat_ind List_ind  | 
|
314  | 
||
315  | 
||
316  | 
subsection {* Primitive Recursive Rules *}
 | 
|
317  | 
||
318  | 
lemma nrecT:  | 
|
319  | 
"[| n:Nat; b:C(zero);  | 
|
320  | 
!!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==>  | 
|
321  | 
nrec(n,b,c) : C(n)"  | 
|
322  | 
by (erule Nat_ind) auto  | 
|
323  | 
||
324  | 
lemma lrecT:  | 
|
325  | 
"[| l:List(A); b:C([]);  | 
|
326  | 
!!x xs g.[| x:A; xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x$xs) |] ==>  | 
|
327  | 
lrec(l,b,c) : C(l)"  | 
|
328  | 
by (erule List_ind) auto  | 
|
329  | 
||
330  | 
lemmas precTs = nrecT lrecT  | 
|
331  | 
||
332  | 
||
333  | 
subsection {* Theorem proving *}
 | 
|
334  | 
||
335  | 
lemma SgE2:  | 
|
336  | 
"[| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P"  | 
|
337  | 
unfolding SgXH by blast  | 
|
338  | 
||
339  | 
(* General theorem proving ignores non-canonical term-formers, *)  | 
|
340  | 
(* - intro rules are type rules for canonical terms *)  | 
|
341  | 
(* - elim rules are case rules (no non-canonical terms appear) *)  | 
|
342  | 
||
| 56199 | 343  | 
ML {* ML_Thms.bind_thms ("XHEs", XH_to_Es @{thms XHs}) *}
 | 
| 20140 | 344  | 
|
345  | 
lemmas [intro!] = SubtypeI canTs icanTs  | 
|
346  | 
and [elim!] = SubtypeE XHEs  | 
|
347  | 
||
348  | 
||
349  | 
subsection {* Infinite Data Types *}
 | 
|
350  | 
||
351  | 
lemma lfp_subset_gfp: "mono(f) ==> lfp(f) <= gfp(f)"  | 
|
352  | 
apply (rule lfp_lowerbound [THEN subset_trans])  | 
|
353  | 
apply (erule gfp_lemma3)  | 
|
354  | 
apply (rule subset_refl)  | 
|
355  | 
done  | 
|
356  | 
||
357  | 
lemma gfpI:  | 
|
358  | 
assumes "a:A"  | 
|
359  | 
and "!!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X)"  | 
|
360  | 
shows "t(a) : gfp(B)"  | 
|
361  | 
apply (rule coinduct)  | 
|
362  | 
apply (rule_tac P = "%x. EX y:A. x=t (y)" in CollectI)  | 
|
| 41526 | 363  | 
apply (blast intro!: assms)+  | 
| 20140 | 364  | 
done  | 
365  | 
||
366  | 
lemma def_gfpI:  | 
|
367  | 
"[| C==gfp(B); a:A; !!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X) |] ==>  | 
|
368  | 
t(a) : C"  | 
|
369  | 
apply unfold  | 
|
370  | 
apply (erule gfpI)  | 
|
371  | 
apply blast  | 
|
372  | 
done  | 
|
373  | 
||
374  | 
(* EG *)  | 
|
375  | 
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)"  | 
|
376  | 
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]])  | 
|
377  | 
apply (subst letrecB)  | 
|
378  | 
apply (unfold cons_def)  | 
|
379  | 
apply blast  | 
|
380  | 
done  | 
|
381  | 
||
382  | 
||
383  | 
subsection {* Lemmas and tactics for using the rule @{text
 | 
|
384  | 
  "coinduct3"} on @{text "[="} and @{text "="} *}
 | 
|
385  | 
||
386  | 
lemma lfpI: "[| mono(f); a : f(lfp(f)) |] ==> a : lfp(f)"  | 
|
387  | 
apply (erule lfp_Tarski [THEN ssubst])  | 
|
388  | 
apply assumption  | 
|
389  | 
done  | 
|
390  | 
||
391  | 
lemma ssubst_single: "[| a=a'; a' : A |] ==> a : A"  | 
|
392  | 
by simp  | 
|
393  | 
||
394  | 
lemma ssubst_pair: "[| a=a'; b=b'; <a',b'> : A |] ==> <a,b> : A"  | 
|
395  | 
by simp  | 
|
396  | 
||
397  | 
||
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
398  | 
ML {*
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
399  | 
  val coinduct3_tac = SUBPROOF (fn {context = ctxt, prems = mono :: prems, ...} =>
 | 
| 42793 | 400  | 
    fast_tac (ctxt addIs (mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}) :: prems) 1);
 | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
401  | 
*}  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
402  | 
|
| 42814 | 403  | 
method_setup coinduct3 = {* Scan.succeed (SIMPLE_METHOD' o coinduct3_tac) *}
 | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
404  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
405  | 
lemma ci3_RI: "[| mono(Agen); a : R |] ==> a : lfp(%x. Agen(x) Un R Un A)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
406  | 
by coinduct3  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
407  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
408  | 
lemma ci3_AgenI: "[| mono(Agen); a : Agen(lfp(%x. Agen(x) Un R Un A)) |] ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
409  | 
a : lfp(%x. Agen(x) Un R Un A)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
410  | 
by coinduct3  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
411  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
412  | 
lemma ci3_AI: "[| mono(Agen); a : A |] ==> a : lfp(%x. Agen(x) Un R Un A)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
413  | 
by coinduct3  | 
| 20140 | 414  | 
|
415  | 
ML {*
 | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
416  | 
fun genIs_tac ctxt genXH gen_mono =  | 
| 42480 | 417  | 
  rtac (genXH RS @{thm iffD2}) THEN'
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
418  | 
simp_tac ctxt THEN'  | 
| 42793 | 419  | 
TRY o fast_tac  | 
420  | 
    (ctxt addIs [genXH RS @{thm iffD2}, gen_mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}])
 | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
421  | 
*}  | 
| 20140 | 422  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
423  | 
method_setup genIs = {*
 | 
| 42814 | 424  | 
Attrib.thm -- Attrib.thm >>  | 
425  | 
(fn (genXH, gen_mono) => fn ctxt => SIMPLE_METHOD' (genIs_tac ctxt genXH gen_mono))  | 
|
426  | 
*}  | 
|
| 20140 | 427  | 
|
428  | 
||
429  | 
subsection {* POgen *}
 | 
|
430  | 
||
431  | 
lemma PO_refl: "<a,a> : PO"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
432  | 
by (rule po_refl [THEN PO_iff [THEN iffD1]])  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
433  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
434  | 
lemma POgenIs:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
435  | 
"<true,true> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
436  | 
"<false,false> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
437  | 
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
438  | 
"!!b b'. [|!!x. <b(x),b'(x)> : R |] ==><lam x. b(x),lam x. b'(x)> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
439  | 
"<one,one> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
440  | 
"<a,a'> : lfp(%x. POgen(x) Un R Un PO) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
441  | 
<inl(a),inl(a')> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
442  | 
"<b,b'> : lfp(%x. POgen(x) Un R Un PO) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
443  | 
<inr(b),inr(b')> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
444  | 
"<zero,zero> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
445  | 
"<n,n'> : lfp(%x. POgen(x) Un R Un PO) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
446  | 
<succ(n),succ(n')> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
447  | 
"<[],[]> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
448  | 
"[| <h,h'> : lfp(%x. POgen(x) Un R Un PO); <t,t'> : lfp(%x. POgen(x) Un R Un PO) |]  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
449  | 
==> <h$t,h'$t'> : POgen(lfp(%x. POgen(x) Un R Un PO))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
450  | 
unfolding data_defs by (genIs POgenXH POgen_mono)+  | 
| 20140 | 451  | 
|
452  | 
ML {*
 | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
453  | 
fun POgen_tac ctxt (rla, rlb) i =  | 
| 42793 | 454  | 
SELECT_GOAL (safe_tac ctxt) i THEN  | 
| 32010 | 455  | 
  rtac (rlb RS (rla RS @{thm ssubst_pair})) i THEN
 | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
456  | 
(REPEAT (resolve_tac  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
457  | 
      (@{thms POgenIs} @ [@{thm PO_refl} RS (@{thm POgen_mono} RS @{thm ci3_AI})] @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
458  | 
        (@{thms POgenIs} RL [@{thm POgen_mono} RS @{thm ci3_AgenI}]) @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
459  | 
        [@{thm POgen_mono} RS @{thm ci3_RI}]) i))
 | 
| 20140 | 460  | 
*}  | 
461  | 
||
462  | 
||
463  | 
subsection {* EQgen *}
 | 
|
464  | 
||
465  | 
lemma EQ_refl: "<a,a> : EQ"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
466  | 
by (rule refl [THEN EQ_iff [THEN iffD1]])  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
467  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
468  | 
lemma EQgenIs:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
469  | 
"<true,true> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
470  | 
"<false,false> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
471  | 
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
472  | 
"!!b b'. [|!!x. <b(x),b'(x)> : R |] ==> <lam x. b(x),lam x. b'(x)> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
473  | 
"<one,one> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
474  | 
"<a,a'> : lfp(%x. EQgen(x) Un R Un EQ) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
475  | 
<inl(a),inl(a')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
476  | 
"<b,b'> : lfp(%x. EQgen(x) Un R Un EQ) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
477  | 
<inr(b),inr(b')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
478  | 
"<zero,zero> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
479  | 
"<n,n'> : lfp(%x. EQgen(x) Un R Un EQ) ==>  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
480  | 
<succ(n),succ(n')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
481  | 
"<[],[]> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
482  | 
"[| <h,h'> : lfp(%x. EQgen(x) Un R Un EQ); <t,t'> : lfp(%x. EQgen(x) Un R Un EQ) |]  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
483  | 
==> <h$t,h'$t'> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
484  | 
unfolding data_defs by (genIs EQgenXH EQgen_mono)+  | 
| 20140 | 485  | 
|
486  | 
ML {*
 | 
|
487  | 
fun EQgen_raw_tac i =  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
488  | 
  (REPEAT (resolve_tac (@{thms EQgenIs} @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
489  | 
        [@{thm EQ_refl} RS (@{thm EQgen_mono} RS @{thm ci3_AI})] @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
490  | 
        (@{thms EQgenIs} RL [@{thm EQgen_mono} RS @{thm ci3_AgenI}]) @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
491  | 
        [@{thm EQgen_mono} RS @{thm ci3_RI}]) i))
 | 
| 20140 | 492  | 
|
493  | 
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *)  | 
|
494  | 
(* then reduce this to a goal <a',b'> : R (hopefully?) *)  | 
|
495  | 
(* rews are rewrite rules that would cause looping in the simpifier *)  | 
|
496  | 
||
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
20140 
diff
changeset
 | 
497  | 
fun EQgen_tac ctxt rews i =  | 
| 20140 | 498  | 
SELECT_GOAL  | 
| 42793 | 499  | 
(TRY (safe_tac ctxt) THEN  | 
| 35409 | 500  | 
    resolve_tac ((rews @ [@{thm refl}]) RL ((rews @ [@{thm refl}]) RL [@{thm ssubst_pair}])) i THEN
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
501  | 
ALLGOALS (simp_tac ctxt) THEN  | 
| 20140 | 502  | 
ALLGOALS EQgen_raw_tac) i  | 
503  | 
*}  | 
|
| 0 | 504  | 
|
505  | 
end  |