| author | berghofe | 
| Wed, 11 Jul 2007 11:46:44 +0200 | |
| changeset 23767 | 7272a839ccd9 | 
| parent 23684 | 8c508c4dc53b | 
| child 23853 | 2c69bb1374b8 | 
| permissions | -rw-r--r-- | 
| 23164 | 1 | (* Title: HOL/IntDiv.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1999 University of Cambridge | |
| 5 | ||
| 6 | *) | |
| 7 | ||
| 8 | header{*The Division Operators div and mod; the Divides Relation dvd*}
 | |
| 9 | ||
| 10 | theory IntDiv | |
| 11 | imports IntArith Divides FunDef | |
| 12 | begin | |
| 13 | ||
| 14 | constdefs | |
| 15 | quorem :: "(int*int) * (int*int) => bool" | |
| 16 |     --{*definition of quotient and remainder*}
 | |
| 17 | [code func]: "quorem == %((a,b), (q,r)). | |
| 18 | a = b*q + r & | |
| 19 | (if 0 < b then 0\<le>r & r<b else b<r & r \<le> 0)" | |
| 20 | ||
| 21 | adjust :: "[int, int*int] => int*int" | |
| 22 |     --{*for the division algorithm*}
 | |
| 23 | [code func]: "adjust b == %(q,r). if 0 \<le> r-b then (2*q + 1, r-b) | |
| 24 | else (2*q, r)" | |
| 25 | ||
| 26 | text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
 | |
| 27 | function | |
| 28 | posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" | |
| 29 | where | |
| 30 | "posDivAlg a b = | |
| 31 | (if (a<b | b\<le>0) then (0,a) | |
| 32 | else adjust b (posDivAlg a (2*b)))" | |
| 33 | by auto | |
| 34 | termination by (relation "measure (%(a,b). nat(a - b + 1))") auto | |
| 35 | ||
| 36 | text{*algorithm for the case @{text "a<0, b>0"}*}
 | |
| 37 | function | |
| 38 | negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" | |
| 39 | where | |
| 40 | "negDivAlg a b = | |
| 41 | (if (0\<le>a+b | b\<le>0) then (-1,a+b) | |
| 42 | else adjust b (negDivAlg a (2*b)))" | |
| 43 | by auto | |
| 44 | termination by (relation "measure (%(a,b). nat(- a - b))") auto | |
| 45 | ||
| 46 | text{*algorithm for the general case @{term "b\<noteq>0"}*}
 | |
| 47 | constdefs | |
| 48 | negateSnd :: "int*int => int*int" | |
| 49 | [code func]: "negateSnd == %(q,r). (q,-r)" | |
| 50 | ||
| 51 | definition | |
| 52 | divAlg :: "int \<times> int \<Rightarrow> int \<times> int" | |
| 53 |     --{*The full division algorithm considers all possible signs for a, b
 | |
| 54 |        including the special case @{text "a=0, b<0"} because 
 | |
| 55 |        @{term negDivAlg} requires @{term "a<0"}.*}
 | |
| 56 | where | |
| 57 | "divAlg = (\<lambda>(a, b). (if 0\<le>a then | |
| 58 | if 0\<le>b then posDivAlg a b | |
| 59 | else if a=0 then (0, 0) | |
| 60 | else negateSnd (negDivAlg (-a) (-b)) | |
| 61 | else | |
| 62 | if 0<b then negDivAlg a b | |
| 63 | else negateSnd (posDivAlg (-a) (-b))))" | |
| 64 | ||
| 65 | instance int :: Divides.div | |
| 66 | div_def: "a div b == fst (divAlg (a, b))" | |
| 67 | mod_def: "a mod b == snd (divAlg (a, b))" .. | |
| 68 | ||
| 69 | lemma divAlg_mod_div: | |
| 70 | "divAlg (p, q) = (p div q, p mod q)" | |
| 71 | by (auto simp add: div_def mod_def) | |
| 72 | ||
| 73 | text{*
 | |
| 74 | Here is the division algorithm in ML: | |
| 75 | ||
| 76 | \begin{verbatim}
 | |
| 77 | fun posDivAlg (a,b) = | |
| 78 | if a<b then (0,a) | |
| 79 | else let val (q,r) = posDivAlg(a, 2*b) | |
| 80 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | |
| 81 | end | |
| 82 | ||
| 83 | fun negDivAlg (a,b) = | |
| 84 | if 0\<le>a+b then (~1,a+b) | |
| 85 | else let val (q,r) = negDivAlg(a, 2*b) | |
| 86 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | |
| 87 | end; | |
| 88 | ||
| 89 | fun negateSnd (q,r:int) = (q,~r); | |
| 90 | ||
| 91 | fun divAlg (a,b) = if 0\<le>a then | |
| 92 | if b>0 then posDivAlg (a,b) | |
| 93 | else if a=0 then (0,0) | |
| 94 | else negateSnd (negDivAlg (~a,~b)) | |
| 95 | else | |
| 96 | if 0<b then negDivAlg (a,b) | |
| 97 | else negateSnd (posDivAlg (~a,~b)); | |
| 98 | \end{verbatim}
 | |
| 99 | *} | |
| 100 | ||
| 101 | ||
| 102 | ||
| 103 | subsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
 | |
| 104 | ||
| 105 | lemma unique_quotient_lemma: | |
| 106 | "[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |] | |
| 107 | ==> q' \<le> (q::int)" | |
| 108 | apply (subgoal_tac "r' + b * (q'-q) \<le> r") | |
| 109 | prefer 2 apply (simp add: right_diff_distrib) | |
| 110 | apply (subgoal_tac "0 < b * (1 + q - q') ") | |
| 111 | apply (erule_tac [2] order_le_less_trans) | |
| 112 | prefer 2 apply (simp add: right_diff_distrib right_distrib) | |
| 113 | apply (subgoal_tac "b * q' < b * (1 + q) ") | |
| 114 | prefer 2 apply (simp add: right_diff_distrib right_distrib) | |
| 115 | apply (simp add: mult_less_cancel_left) | |
| 116 | done | |
| 117 | ||
| 118 | lemma unique_quotient_lemma_neg: | |
| 119 | "[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |] | |
| 120 | ==> q \<le> (q'::int)" | |
| 121 | by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, | |
| 122 | auto) | |
| 123 | ||
| 124 | lemma unique_quotient: | |
| 125 | "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |] | |
| 126 | ==> q = q'" | |
| 127 | apply (simp add: quorem_def linorder_neq_iff split: split_if_asm) | |
| 128 | apply (blast intro: order_antisym | |
| 129 | dest: order_eq_refl [THEN unique_quotient_lemma] | |
| 130 | order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ | |
| 131 | done | |
| 132 | ||
| 133 | ||
| 134 | lemma unique_remainder: | |
| 135 | "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |] | |
| 136 | ==> r = r'" | |
| 137 | apply (subgoal_tac "q = q'") | |
| 138 | apply (simp add: quorem_def) | |
| 139 | apply (blast intro: unique_quotient) | |
| 140 | done | |
| 141 | ||
| 142 | ||
| 143 | subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*}
 | |
| 144 | ||
| 145 | text{*And positive divisors*}
 | |
| 146 | ||
| 147 | lemma adjust_eq [simp]: | |
| 148 | "adjust b (q,r) = | |
| 149 | (let diff = r-b in | |
| 150 | if 0 \<le> diff then (2*q + 1, diff) | |
| 151 | else (2*q, r))" | |
| 152 | by (simp add: Let_def adjust_def) | |
| 153 | ||
| 154 | declare posDivAlg.simps [simp del] | |
| 155 | ||
| 156 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | |
| 157 | lemma posDivAlg_eqn: | |
| 158 | "0 < b ==> | |
| 159 | posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))" | |
| 160 | by (rule posDivAlg.simps [THEN trans], simp) | |
| 161 | ||
| 162 | text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
 | |
| 163 | theorem posDivAlg_correct: | |
| 164 | assumes "0 \<le> a" and "0 < b" | |
| 165 | shows "quorem ((a, b), posDivAlg a b)" | |
| 166 | using prems apply (induct a b rule: posDivAlg.induct) | |
| 167 | apply auto | |
| 168 | apply (simp add: quorem_def) | |
| 169 | apply (subst posDivAlg_eqn, simp add: right_distrib) | |
| 170 | apply (case_tac "a < b") | |
| 171 | apply simp_all | |
| 172 | apply (erule splitE) | |
| 173 | apply (auto simp add: right_distrib Let_def) | |
| 174 | done | |
| 175 | ||
| 176 | ||
| 177 | subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*}
 | |
| 178 | ||
| 179 | text{*And positive divisors*}
 | |
| 180 | ||
| 181 | declare negDivAlg.simps [simp del] | |
| 182 | ||
| 183 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | |
| 184 | lemma negDivAlg_eqn: | |
| 185 | "0 < b ==> | |
| 186 | negDivAlg a b = | |
| 187 | (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))" | |
| 188 | by (rule negDivAlg.simps [THEN trans], simp) | |
| 189 | ||
| 190 | (*Correctness of negDivAlg: it computes quotients correctly | |
| 191 | It doesn't work if a=0 because the 0/b equals 0, not -1*) | |
| 192 | lemma negDivAlg_correct: | |
| 193 | assumes "a < 0" and "b > 0" | |
| 194 | shows "quorem ((a, b), negDivAlg a b)" | |
| 195 | using prems apply (induct a b rule: negDivAlg.induct) | |
| 196 | apply (auto simp add: linorder_not_le) | |
| 197 | apply (simp add: quorem_def) | |
| 198 | apply (subst negDivAlg_eqn, assumption) | |
| 199 | apply (case_tac "a + b < (0\<Colon>int)") | |
| 200 | apply simp_all | |
| 201 | apply (erule splitE) | |
| 202 | apply (auto simp add: right_distrib Let_def) | |
| 203 | done | |
| 204 | ||
| 205 | ||
| 206 | subsection{*Existence Shown by Proving the Division Algorithm to be Correct*}
 | |
| 207 | ||
| 208 | (*the case a=0*) | |
| 209 | lemma quorem_0: "b \<noteq> 0 ==> quorem ((0,b), (0,0))" | |
| 210 | by (auto simp add: quorem_def linorder_neq_iff) | |
| 211 | ||
| 212 | lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)" | |
| 213 | by (subst posDivAlg.simps, auto) | |
| 214 | ||
| 215 | lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)" | |
| 216 | by (subst negDivAlg.simps, auto) | |
| 217 | ||
| 218 | lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)" | |
| 219 | by (simp add: negateSnd_def) | |
| 220 | ||
| 221 | lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)" | |
| 222 | by (auto simp add: split_ifs quorem_def) | |
| 223 | ||
| 224 | lemma divAlg_correct: "b \<noteq> 0 ==> quorem ((a,b), divAlg (a, b))" | |
| 225 | by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg | |
| 226 | posDivAlg_correct negDivAlg_correct) | |
| 227 | ||
| 228 | text{*Arbitrary definitions for division by zero.  Useful to simplify 
 | |
| 229 | certain equations.*} | |
| 230 | ||
| 231 | lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a" | |
| 232 | by (simp add: div_def mod_def divAlg_def posDivAlg.simps) | |
| 233 | ||
| 234 | ||
| 235 | text{*Basic laws about division and remainder*}
 | |
| 236 | ||
| 237 | lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" | |
| 238 | apply (case_tac "b = 0", simp) | |
| 239 | apply (cut_tac a = a and b = b in divAlg_correct) | |
| 240 | apply (auto simp add: quorem_def div_def mod_def) | |
| 241 | done | |
| 242 | ||
| 243 | lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k" | |
| 244 | by(simp add: zmod_zdiv_equality[symmetric]) | |
| 245 | ||
| 246 | lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k" | |
| 247 | by(simp add: mult_commute zmod_zdiv_equality[symmetric]) | |
| 248 | ||
| 249 | text {* Tool setup *}
 | |
| 250 | ||
| 251 | ML_setup {*
 | |
| 252 | local | |
| 253 | ||
| 254 | structure CancelDivMod = CancelDivModFun( | |
| 255 | struct | |
| 256 |   val div_name = @{const_name Divides.div};
 | |
| 257 |   val mod_name = @{const_name Divides.mod};
 | |
| 258 | val mk_binop = HOLogic.mk_binop; | |
| 259 | val mk_sum = Int_Numeral_Simprocs.mk_sum HOLogic.intT; | |
| 260 | val dest_sum = Int_Numeral_Simprocs.dest_sum; | |
| 261 | val div_mod_eqs = | |
| 262 |     map mk_meta_eq [@{thm zdiv_zmod_equality},
 | |
| 263 |       @{thm zdiv_zmod_equality2}];
 | |
| 264 | val trans = trans; | |
| 265 | val prove_eq_sums = | |
| 266 | let | |
| 23365 | 267 |       val simps = @{thm diff_int_def} :: Int_Numeral_Simprocs.add_0s @ @{thms zadd_ac}
 | 
| 23164 | 268 | in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end; | 
| 269 | end) | |
| 270 | ||
| 271 | in | |
| 272 | ||
| 273 | val cancel_zdiv_zmod_proc = NatArithUtils.prep_simproc | |
| 274 |   ("cancel_zdiv_zmod", ["(m::int) + n"], K CancelDivMod.proc)
 | |
| 275 | ||
| 276 | end; | |
| 277 | ||
| 278 | Addsimprocs [cancel_zdiv_zmod_proc] | |
| 279 | *} | |
| 280 | ||
| 281 | lemma pos_mod_conj : "(0::int) < b ==> 0 \<le> a mod b & a mod b < b" | |
| 282 | apply (cut_tac a = a and b = b in divAlg_correct) | |
| 283 | apply (auto simp add: quorem_def mod_def) | |
| 284 | done | |
| 285 | ||
| 286 | lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1, standard] | |
| 287 | and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2, standard] | |
| 288 | ||
| 289 | lemma neg_mod_conj : "b < (0::int) ==> a mod b \<le> 0 & b < a mod b" | |
| 290 | apply (cut_tac a = a and b = b in divAlg_correct) | |
| 291 | apply (auto simp add: quorem_def div_def mod_def) | |
| 292 | done | |
| 293 | ||
| 294 | lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1, standard] | |
| 295 | and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2, standard] | |
| 296 | ||
| 297 | ||
| 298 | ||
| 299 | subsection{*General Properties of div and mod*}
 | |
| 300 | ||
| 301 | lemma quorem_div_mod: "b \<noteq> 0 ==> quorem ((a, b), (a div b, a mod b))" | |
| 302 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 303 | apply (force simp add: quorem_def linorder_neq_iff) | |
| 304 | done | |
| 305 | ||
| 306 | lemma quorem_div: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a div b = q" | |
| 307 | by (simp add: quorem_div_mod [THEN unique_quotient]) | |
| 308 | ||
| 309 | lemma quorem_mod: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a mod b = r" | |
| 310 | by (simp add: quorem_div_mod [THEN unique_remainder]) | |
| 311 | ||
| 312 | lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0" | |
| 313 | apply (rule quorem_div) | |
| 314 | apply (auto simp add: quorem_def) | |
| 315 | done | |
| 316 | ||
| 317 | lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0" | |
| 318 | apply (rule quorem_div) | |
| 319 | apply (auto simp add: quorem_def) | |
| 320 | done | |
| 321 | ||
| 322 | lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1" | |
| 323 | apply (rule quorem_div) | |
| 324 | apply (auto simp add: quorem_def) | |
| 325 | done | |
| 326 | ||
| 327 | (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) | |
| 328 | ||
| 329 | lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a" | |
| 330 | apply (rule_tac q = 0 in quorem_mod) | |
| 331 | apply (auto simp add: quorem_def) | |
| 332 | done | |
| 333 | ||
| 334 | lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a" | |
| 335 | apply (rule_tac q = 0 in quorem_mod) | |
| 336 | apply (auto simp add: quorem_def) | |
| 337 | done | |
| 338 | ||
| 339 | lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b" | |
| 340 | apply (rule_tac q = "-1" in quorem_mod) | |
| 341 | apply (auto simp add: quorem_def) | |
| 342 | done | |
| 343 | ||
| 344 | text{*There is no @{text mod_neg_pos_trivial}.*}
 | |
| 345 | ||
| 346 | ||
| 347 | (*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*) | |
| 348 | lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)" | |
| 349 | apply (case_tac "b = 0", simp) | |
| 350 | apply (simp add: quorem_div_mod [THEN quorem_neg, simplified, | |
| 351 | THEN quorem_div, THEN sym]) | |
| 352 | ||
| 353 | done | |
| 354 | ||
| 355 | (*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*) | |
| 356 | lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))" | |
| 357 | apply (case_tac "b = 0", simp) | |
| 358 | apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod], | |
| 359 | auto) | |
| 360 | done | |
| 361 | ||
| 362 | ||
| 363 | subsection{*Laws for div and mod with Unary Minus*}
 | |
| 364 | ||
| 365 | lemma zminus1_lemma: | |
| 366 | "quorem((a,b),(q,r)) | |
| 367 | ==> quorem ((-a,b), (if r=0 then -q else -q - 1), | |
| 368 | (if r=0 then 0 else b-r))" | |
| 369 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_diff_distrib) | |
| 370 | ||
| 371 | ||
| 372 | lemma zdiv_zminus1_eq_if: | |
| 373 | "b \<noteq> (0::int) | |
| 374 | ==> (-a) div b = | |
| 375 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | |
| 376 | by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div]) | |
| 377 | ||
| 378 | lemma zmod_zminus1_eq_if: | |
| 379 | "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" | |
| 380 | apply (case_tac "b = 0", simp) | |
| 381 | apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod]) | |
| 382 | done | |
| 383 | ||
| 384 | lemma zdiv_zminus2: "a div (-b) = (-a::int) div b" | |
| 385 | by (cut_tac a = "-a" in zdiv_zminus_zminus, auto) | |
| 386 | ||
| 387 | lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)" | |
| 388 | by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto) | |
| 389 | ||
| 390 | lemma zdiv_zminus2_eq_if: | |
| 391 | "b \<noteq> (0::int) | |
| 392 | ==> a div (-b) = | |
| 393 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | |
| 394 | by (simp add: zdiv_zminus1_eq_if zdiv_zminus2) | |
| 395 | ||
| 396 | lemma zmod_zminus2_eq_if: | |
| 397 | "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" | |
| 398 | by (simp add: zmod_zminus1_eq_if zmod_zminus2) | |
| 399 | ||
| 400 | ||
| 401 | subsection{*Division of a Number by Itself*}
 | |
| 402 | ||
| 403 | lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \<le> q" | |
| 404 | apply (subgoal_tac "0 < a*q") | |
| 405 | apply (simp add: zero_less_mult_iff, arith) | |
| 406 | done | |
| 407 | ||
| 408 | lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \<le> r |] ==> q \<le> 1" | |
| 409 | apply (subgoal_tac "0 \<le> a* (1-q) ") | |
| 410 | apply (simp add: zero_le_mult_iff) | |
| 411 | apply (simp add: right_diff_distrib) | |
| 412 | done | |
| 413 | ||
| 414 | lemma self_quotient: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> q = 1" | |
| 415 | apply (simp add: split_ifs quorem_def linorder_neq_iff) | |
| 416 | apply (rule order_antisym, safe, simp_all) | |
| 417 | apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1) | |
| 418 | apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2) | |
| 419 | apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+ | |
| 420 | done | |
| 421 | ||
| 422 | lemma self_remainder: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> r = 0" | |
| 423 | apply (frule self_quotient, assumption) | |
| 424 | apply (simp add: quorem_def) | |
| 425 | done | |
| 426 | ||
| 427 | lemma zdiv_self [simp]: "a \<noteq> 0 ==> a div a = (1::int)" | |
| 428 | by (simp add: quorem_div_mod [THEN self_quotient]) | |
| 429 | ||
| 430 | (*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *) | |
| 431 | lemma zmod_self [simp]: "a mod a = (0::int)" | |
| 432 | apply (case_tac "a = 0", simp) | |
| 433 | apply (simp add: quorem_div_mod [THEN self_remainder]) | |
| 434 | done | |
| 435 | ||
| 436 | ||
| 437 | subsection{*Computation of Division and Remainder*}
 | |
| 438 | ||
| 439 | lemma zdiv_zero [simp]: "(0::int) div b = 0" | |
| 440 | by (simp add: div_def divAlg_def) | |
| 441 | ||
| 442 | lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" | |
| 443 | by (simp add: div_def divAlg_def) | |
| 444 | ||
| 445 | lemma zmod_zero [simp]: "(0::int) mod b = 0" | |
| 446 | by (simp add: mod_def divAlg_def) | |
| 447 | ||
| 448 | lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1" | |
| 449 | by (simp add: div_def divAlg_def) | |
| 450 | ||
| 451 | lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" | |
| 452 | by (simp add: mod_def divAlg_def) | |
| 453 | ||
| 454 | text{*a positive, b positive *}
 | |
| 455 | ||
| 456 | lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)" | |
| 457 | by (simp add: div_def divAlg_def) | |
| 458 | ||
| 459 | lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)" | |
| 460 | by (simp add: mod_def divAlg_def) | |
| 461 | ||
| 462 | text{*a negative, b positive *}
 | |
| 463 | ||
| 464 | lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)" | |
| 465 | by (simp add: div_def divAlg_def) | |
| 466 | ||
| 467 | lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)" | |
| 468 | by (simp add: mod_def divAlg_def) | |
| 469 | ||
| 470 | text{*a positive, b negative *}
 | |
| 471 | ||
| 472 | lemma div_pos_neg: | |
| 473 | "[| 0 < a; b < 0 |] ==> a div b = fst (negateSnd (negDivAlg (-a) (-b)))" | |
| 474 | by (simp add: div_def divAlg_def) | |
| 475 | ||
| 476 | lemma mod_pos_neg: | |
| 477 | "[| 0 < a; b < 0 |] ==> a mod b = snd (negateSnd (negDivAlg (-a) (-b)))" | |
| 478 | by (simp add: mod_def divAlg_def) | |
| 479 | ||
| 480 | text{*a negative, b negative *}
 | |
| 481 | ||
| 482 | lemma div_neg_neg: | |
| 483 | "[| a < 0; b \<le> 0 |] ==> a div b = fst (negateSnd (posDivAlg (-a) (-b)))" | |
| 484 | by (simp add: div_def divAlg_def) | |
| 485 | ||
| 486 | lemma mod_neg_neg: | |
| 487 | "[| a < 0; b \<le> 0 |] ==> a mod b = snd (negateSnd (posDivAlg (-a) (-b)))" | |
| 488 | by (simp add: mod_def divAlg_def) | |
| 489 | ||
| 490 | text {*Simplify expresions in which div and mod combine numerical constants*}
 | |
| 491 | ||
| 492 | lemmas div_pos_pos_number_of [simp] = | |
| 493 | div_pos_pos [of "number_of v" "number_of w", standard] | |
| 494 | ||
| 495 | lemmas div_neg_pos_number_of [simp] = | |
| 496 | div_neg_pos [of "number_of v" "number_of w", standard] | |
| 497 | ||
| 498 | lemmas div_pos_neg_number_of [simp] = | |
| 499 | div_pos_neg [of "number_of v" "number_of w", standard] | |
| 500 | ||
| 501 | lemmas div_neg_neg_number_of [simp] = | |
| 502 | div_neg_neg [of "number_of v" "number_of w", standard] | |
| 503 | ||
| 504 | ||
| 505 | lemmas mod_pos_pos_number_of [simp] = | |
| 506 | mod_pos_pos [of "number_of v" "number_of w", standard] | |
| 507 | ||
| 508 | lemmas mod_neg_pos_number_of [simp] = | |
| 509 | mod_neg_pos [of "number_of v" "number_of w", standard] | |
| 510 | ||
| 511 | lemmas mod_pos_neg_number_of [simp] = | |
| 512 | mod_pos_neg [of "number_of v" "number_of w", standard] | |
| 513 | ||
| 514 | lemmas mod_neg_neg_number_of [simp] = | |
| 515 | mod_neg_neg [of "number_of v" "number_of w", standard] | |
| 516 | ||
| 517 | ||
| 518 | lemmas posDivAlg_eqn_number_of [simp] = | |
| 519 | posDivAlg_eqn [of "number_of v" "number_of w", standard] | |
| 520 | ||
| 521 | lemmas negDivAlg_eqn_number_of [simp] = | |
| 522 | negDivAlg_eqn [of "number_of v" "number_of w", standard] | |
| 523 | ||
| 524 | ||
| 525 | text{*Special-case simplification *}
 | |
| 526 | ||
| 527 | lemma zmod_1 [simp]: "a mod (1::int) = 0" | |
| 528 | apply (cut_tac a = a and b = 1 in pos_mod_sign) | |
| 529 | apply (cut_tac [2] a = a and b = 1 in pos_mod_bound) | |
| 530 | apply (auto simp del:pos_mod_bound pos_mod_sign) | |
| 531 | done | |
| 532 | ||
| 533 | lemma zdiv_1 [simp]: "a div (1::int) = a" | |
| 534 | by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto) | |
| 535 | ||
| 536 | lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0" | |
| 537 | apply (cut_tac a = a and b = "-1" in neg_mod_sign) | |
| 538 | apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound) | |
| 539 | apply (auto simp del: neg_mod_sign neg_mod_bound) | |
| 540 | done | |
| 541 | ||
| 542 | lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a" | |
| 543 | by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto) | |
| 544 | ||
| 545 | (** The last remaining special cases for constant arithmetic: | |
| 546 | 1 div z and 1 mod z **) | |
| 547 | ||
| 548 | lemmas div_pos_pos_1_number_of [simp] = | |
| 549 | div_pos_pos [OF int_0_less_1, of "number_of w", standard] | |
| 550 | ||
| 551 | lemmas div_pos_neg_1_number_of [simp] = | |
| 552 | div_pos_neg [OF int_0_less_1, of "number_of w", standard] | |
| 553 | ||
| 554 | lemmas mod_pos_pos_1_number_of [simp] = | |
| 555 | mod_pos_pos [OF int_0_less_1, of "number_of w", standard] | |
| 556 | ||
| 557 | lemmas mod_pos_neg_1_number_of [simp] = | |
| 558 | mod_pos_neg [OF int_0_less_1, of "number_of w", standard] | |
| 559 | ||
| 560 | ||
| 561 | lemmas posDivAlg_eqn_1_number_of [simp] = | |
| 562 | posDivAlg_eqn [of concl: 1 "number_of w", standard] | |
| 563 | ||
| 564 | lemmas negDivAlg_eqn_1_number_of [simp] = | |
| 565 | negDivAlg_eqn [of concl: 1 "number_of w", standard] | |
| 566 | ||
| 567 | ||
| 568 | ||
| 569 | subsection{*Monotonicity in the First Argument (Dividend)*}
 | |
| 570 | ||
| 571 | lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b" | |
| 572 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 573 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | |
| 574 | apply (rule unique_quotient_lemma) | |
| 575 | apply (erule subst) | |
| 576 | apply (erule subst, simp_all) | |
| 577 | done | |
| 578 | ||
| 579 | lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b" | |
| 580 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 581 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | |
| 582 | apply (rule unique_quotient_lemma_neg) | |
| 583 | apply (erule subst) | |
| 584 | apply (erule subst, simp_all) | |
| 585 | done | |
| 586 | ||
| 587 | ||
| 588 | subsection{*Monotonicity in the Second Argument (Divisor)*}
 | |
| 589 | ||
| 590 | lemma q_pos_lemma: | |
| 591 | "[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)" | |
| 592 | apply (subgoal_tac "0 < b'* (q' + 1) ") | |
| 593 | apply (simp add: zero_less_mult_iff) | |
| 594 | apply (simp add: right_distrib) | |
| 595 | done | |
| 596 | ||
| 597 | lemma zdiv_mono2_lemma: | |
| 598 | "[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r'; | |
| 599 | r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |] | |
| 600 | ==> q \<le> (q'::int)" | |
| 601 | apply (frule q_pos_lemma, assumption+) | |
| 602 | apply (subgoal_tac "b*q < b* (q' + 1) ") | |
| 603 | apply (simp add: mult_less_cancel_left) | |
| 604 | apply (subgoal_tac "b*q = r' - r + b'*q'") | |
| 605 | prefer 2 apply simp | |
| 606 | apply (simp (no_asm_simp) add: right_distrib) | |
| 607 | apply (subst add_commute, rule zadd_zless_mono, arith) | |
| 608 | apply (rule mult_right_mono, auto) | |
| 609 | done | |
| 610 | ||
| 611 | lemma zdiv_mono2: | |
| 612 | "[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'" | |
| 613 | apply (subgoal_tac "b \<noteq> 0") | |
| 614 | prefer 2 apply arith | |
| 615 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 616 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | |
| 617 | apply (rule zdiv_mono2_lemma) | |
| 618 | apply (erule subst) | |
| 619 | apply (erule subst, simp_all) | |
| 620 | done | |
| 621 | ||
| 622 | lemma q_neg_lemma: | |
| 623 | "[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)" | |
| 624 | apply (subgoal_tac "b'*q' < 0") | |
| 625 | apply (simp add: mult_less_0_iff, arith) | |
| 626 | done | |
| 627 | ||
| 628 | lemma zdiv_mono2_neg_lemma: | |
| 629 | "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; | |
| 630 | r < b; 0 \<le> r'; 0 < b'; b' \<le> b |] | |
| 631 | ==> q' \<le> (q::int)" | |
| 632 | apply (frule q_neg_lemma, assumption+) | |
| 633 | apply (subgoal_tac "b*q' < b* (q + 1) ") | |
| 634 | apply (simp add: mult_less_cancel_left) | |
| 635 | apply (simp add: right_distrib) | |
| 636 | apply (subgoal_tac "b*q' \<le> b'*q'") | |
| 637 | prefer 2 apply (simp add: mult_right_mono_neg, arith) | |
| 638 | done | |
| 639 | ||
| 640 | lemma zdiv_mono2_neg: | |
| 641 | "[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b" | |
| 642 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 643 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | |
| 644 | apply (rule zdiv_mono2_neg_lemma) | |
| 645 | apply (erule subst) | |
| 646 | apply (erule subst, simp_all) | |
| 647 | done | |
| 648 | ||
| 649 | subsection{*More Algebraic Laws for div and mod*}
 | |
| 650 | ||
| 651 | text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
 | |
| 652 | ||
| 653 | lemma zmult1_lemma: | |
| 654 | "[| quorem((b,c),(q,r)); c \<noteq> 0 |] | |
| 655 | ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))" | |
| 656 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) | |
| 657 | ||
| 658 | lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" | |
| 659 | apply (case_tac "c = 0", simp) | |
| 660 | apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div]) | |
| 661 | done | |
| 662 | ||
| 663 | lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)" | |
| 664 | apply (case_tac "c = 0", simp) | |
| 665 | apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod]) | |
| 666 | done | |
| 667 | ||
| 668 | lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c" | |
| 669 | apply (rule trans) | |
| 670 | apply (rule_tac s = "b*a mod c" in trans) | |
| 671 | apply (rule_tac [2] zmod_zmult1_eq) | |
| 672 | apply (simp_all add: mult_commute) | |
| 673 | done | |
| 674 | ||
| 675 | lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c" | |
| 676 | apply (rule zmod_zmult1_eq' [THEN trans]) | |
| 677 | apply (rule zmod_zmult1_eq) | |
| 678 | done | |
| 679 | ||
| 680 | lemma zdiv_zmult_self1 [simp]: "b \<noteq> (0::int) ==> (a*b) div b = a" | |
| 681 | by (simp add: zdiv_zmult1_eq) | |
| 682 | ||
| 683 | lemma zdiv_zmult_self2 [simp]: "b \<noteq> (0::int) ==> (b*a) div b = a" | |
| 684 | by (subst mult_commute, erule zdiv_zmult_self1) | |
| 685 | ||
| 686 | lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)" | |
| 687 | by (simp add: zmod_zmult1_eq) | |
| 688 | ||
| 689 | lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)" | |
| 690 | by (simp add: mult_commute zmod_zmult1_eq) | |
| 691 | ||
| 692 | lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" | |
| 693 | proof | |
| 694 | assume "m mod d = 0" | |
| 695 | with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto | |
| 696 | next | |
| 697 | assume "EX q::int. m = d*q" | |
| 698 | thus "m mod d = 0" by auto | |
| 699 | qed | |
| 700 | ||
| 701 | lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1] | |
| 702 | ||
| 703 | text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
 | |
| 704 | ||
| 705 | lemma zadd1_lemma: | |
| 706 | "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c \<noteq> 0 |] | |
| 707 | ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))" | |
| 708 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) | |
| 709 | ||
| 710 | (*NOT suitable for rewriting: the RHS has an instance of the LHS*) | |
| 711 | lemma zdiv_zadd1_eq: | |
| 712 | "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" | |
| 713 | apply (case_tac "c = 0", simp) | |
| 714 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div) | |
| 715 | done | |
| 716 | ||
| 717 | lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c" | |
| 718 | apply (case_tac "c = 0", simp) | |
| 719 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod) | |
| 720 | done | |
| 721 | ||
| 722 | lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)" | |
| 723 | apply (case_tac "b = 0", simp) | |
| 724 | apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial) | |
| 725 | done | |
| 726 | ||
| 727 | lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)" | |
| 728 | apply (case_tac "b = 0", simp) | |
| 729 | apply (force simp add: linorder_neq_iff mod_pos_pos_trivial mod_neg_neg_trivial) | |
| 730 | done | |
| 731 | ||
| 732 | lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c" | |
| 733 | apply (rule trans [symmetric]) | |
| 734 | apply (rule zmod_zadd1_eq, simp) | |
| 735 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 736 | done | |
| 737 | ||
| 738 | lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c" | |
| 739 | apply (rule trans [symmetric]) | |
| 740 | apply (rule zmod_zadd1_eq, simp) | |
| 741 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 742 | done | |
| 743 | ||
| 744 | lemma zdiv_zadd_self1[simp]: "a \<noteq> (0::int) ==> (a+b) div a = b div a + 1" | |
| 745 | by (simp add: zdiv_zadd1_eq) | |
| 746 | ||
| 747 | lemma zdiv_zadd_self2[simp]: "a \<noteq> (0::int) ==> (b+a) div a = b div a + 1" | |
| 748 | by (simp add: zdiv_zadd1_eq) | |
| 749 | ||
| 750 | lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)" | |
| 751 | apply (case_tac "a = 0", simp) | |
| 752 | apply (simp add: zmod_zadd1_eq) | |
| 753 | done | |
| 754 | ||
| 755 | lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)" | |
| 756 | apply (case_tac "a = 0", simp) | |
| 757 | apply (simp add: zmod_zadd1_eq) | |
| 758 | done | |
| 759 | ||
| 760 | ||
| 761 | subsection{*Proving  @{term "a div (b*c) = (a div b) div c"} *}
 | |
| 762 | ||
| 763 | (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but | |
| 764 | 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems | |
| 765 | to cause particular problems.*) | |
| 766 | ||
| 767 | text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
 | |
| 768 | ||
| 769 | lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r" | |
| 770 | apply (subgoal_tac "b * (c - q mod c) < r * 1") | |
| 771 | apply (simp add: right_diff_distrib) | |
| 772 | apply (rule order_le_less_trans) | |
| 773 | apply (erule_tac [2] mult_strict_right_mono) | |
| 774 | apply (rule mult_left_mono_neg) | |
| 775 | apply (auto simp add: compare_rls add_commute [of 1] | |
| 776 | add1_zle_eq pos_mod_bound) | |
| 777 | done | |
| 778 | ||
| 779 | lemma zmult2_lemma_aux2: | |
| 780 | "[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0" | |
| 781 | apply (subgoal_tac "b * (q mod c) \<le> 0") | |
| 782 | apply arith | |
| 783 | apply (simp add: mult_le_0_iff) | |
| 784 | done | |
| 785 | ||
| 786 | lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r" | |
| 787 | apply (subgoal_tac "0 \<le> b * (q mod c) ") | |
| 788 | apply arith | |
| 789 | apply (simp add: zero_le_mult_iff) | |
| 790 | done | |
| 791 | ||
| 792 | lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c" | |
| 793 | apply (subgoal_tac "r * 1 < b * (c - q mod c) ") | |
| 794 | apply (simp add: right_diff_distrib) | |
| 795 | apply (rule order_less_le_trans) | |
| 796 | apply (erule mult_strict_right_mono) | |
| 797 | apply (rule_tac [2] mult_left_mono) | |
| 798 | apply (auto simp add: compare_rls add_commute [of 1] | |
| 799 | add1_zle_eq pos_mod_bound) | |
| 800 | done | |
| 801 | ||
| 802 | lemma zmult2_lemma: "[| quorem ((a,b), (q,r)); b \<noteq> 0; 0 < c |] | |
| 803 | ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))" | |
| 804 | by (auto simp add: mult_ac quorem_def linorder_neq_iff | |
| 805 | zero_less_mult_iff right_distrib [symmetric] | |
| 806 | zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4) | |
| 807 | ||
| 808 | lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c" | |
| 809 | apply (case_tac "b = 0", simp) | |
| 810 | apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div]) | |
| 811 | done | |
| 812 | ||
| 813 | lemma zmod_zmult2_eq: | |
| 814 | "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b" | |
| 815 | apply (case_tac "b = 0", simp) | |
| 816 | apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod]) | |
| 817 | done | |
| 818 | ||
| 819 | ||
| 820 | subsection{*Cancellation of Common Factors in div*}
 | |
| 821 | ||
| 822 | lemma zdiv_zmult_zmult1_aux1: | |
| 823 | "[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b" | |
| 824 | by (subst zdiv_zmult2_eq, auto) | |
| 825 | ||
| 826 | lemma zdiv_zmult_zmult1_aux2: | |
| 827 | "[| b < (0::int); c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b" | |
| 828 | apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ") | |
| 829 | apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto) | |
| 830 | done | |
| 831 | ||
| 832 | lemma zdiv_zmult_zmult1: "c \<noteq> (0::int) ==> (c*a) div (c*b) = a div b" | |
| 833 | apply (case_tac "b = 0", simp) | |
| 834 | apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2) | |
| 835 | done | |
| 836 | ||
| 23401 | 837 | lemma zdiv_zmult_zmult1_if[simp]: | 
| 838 | "(k*m) div (k*n) = (if k = (0::int) then 0 else m div n)" | |
| 839 | by (simp add:zdiv_zmult_zmult1) | |
| 840 | ||
| 841 | (* | |
| 23164 | 842 | lemma zdiv_zmult_zmult2: "c \<noteq> (0::int) ==> (a*c) div (b*c) = a div b" | 
| 843 | apply (drule zdiv_zmult_zmult1) | |
| 844 | apply (auto simp add: mult_commute) | |
| 845 | done | |
| 23401 | 846 | *) | 
| 23164 | 847 | |
| 848 | ||
| 849 | subsection{*Distribution of Factors over mod*}
 | |
| 850 | ||
| 851 | lemma zmod_zmult_zmult1_aux1: | |
| 852 | "[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" | |
| 853 | by (subst zmod_zmult2_eq, auto) | |
| 854 | ||
| 855 | lemma zmod_zmult_zmult1_aux2: | |
| 856 | "[| b < (0::int); c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" | |
| 857 | apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))") | |
| 858 | apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto) | |
| 859 | done | |
| 860 | ||
| 861 | lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)" | |
| 862 | apply (case_tac "b = 0", simp) | |
| 863 | apply (case_tac "c = 0", simp) | |
| 864 | apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2) | |
| 865 | done | |
| 866 | ||
| 867 | lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)" | |
| 868 | apply (cut_tac c = c in zmod_zmult_zmult1) | |
| 869 | apply (auto simp add: mult_commute) | |
| 870 | done | |
| 871 | ||
| 872 | ||
| 873 | subsection {*Splitting Rules for div and mod*}
 | |
| 874 | ||
| 875 | text{*The proofs of the two lemmas below are essentially identical*}
 | |
| 876 | ||
| 877 | lemma split_pos_lemma: | |
| 878 | "0<k ==> | |
| 879 | P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)" | |
| 880 | apply (rule iffI, clarify) | |
| 881 | apply (erule_tac P="P ?x ?y" in rev_mp) | |
| 882 | apply (subst zmod_zadd1_eq) | |
| 883 | apply (subst zdiv_zadd1_eq) | |
| 884 | apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) | |
| 885 | txt{*converse direction*}
 | |
| 886 | apply (drule_tac x = "n div k" in spec) | |
| 887 | apply (drule_tac x = "n mod k" in spec, simp) | |
| 888 | done | |
| 889 | ||
| 890 | lemma split_neg_lemma: | |
| 891 | "k<0 ==> | |
| 892 | P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)" | |
| 893 | apply (rule iffI, clarify) | |
| 894 | apply (erule_tac P="P ?x ?y" in rev_mp) | |
| 895 | apply (subst zmod_zadd1_eq) | |
| 896 | apply (subst zdiv_zadd1_eq) | |
| 897 | apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) | |
| 898 | txt{*converse direction*}
 | |
| 899 | apply (drule_tac x = "n div k" in spec) | |
| 900 | apply (drule_tac x = "n mod k" in spec, simp) | |
| 901 | done | |
| 902 | ||
| 903 | lemma split_zdiv: | |
| 904 | "P(n div k :: int) = | |
| 905 | ((k = 0 --> P 0) & | |
| 906 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & | |
| 907 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))" | |
| 908 | apply (case_tac "k=0", simp) | |
| 909 | apply (simp only: linorder_neq_iff) | |
| 910 | apply (erule disjE) | |
| 911 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] | |
| 912 | split_neg_lemma [of concl: "%x y. P x"]) | |
| 913 | done | |
| 914 | ||
| 915 | lemma split_zmod: | |
| 916 | "P(n mod k :: int) = | |
| 917 | ((k = 0 --> P n) & | |
| 918 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & | |
| 919 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))" | |
| 920 | apply (case_tac "k=0", simp) | |
| 921 | apply (simp only: linorder_neq_iff) | |
| 922 | apply (erule disjE) | |
| 923 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] | |
| 924 | split_neg_lemma [of concl: "%x y. P y"]) | |
| 925 | done | |
| 926 | ||
| 927 | (* Enable arith to deal with div 2 and mod 2: *) | |
| 928 | declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split] | |
| 929 | declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split] | |
| 930 | ||
| 931 | ||
| 932 | subsection{*Speeding up the Division Algorithm with Shifting*}
 | |
| 933 | ||
| 934 | text{*computing div by shifting *}
 | |
| 935 | ||
| 936 | lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a" | |
| 937 | proof cases | |
| 938 | assume "a=0" | |
| 939 | thus ?thesis by simp | |
| 940 | next | |
| 941 | assume "a\<noteq>0" and le_a: "0\<le>a" | |
| 942 | hence a_pos: "1 \<le> a" by arith | |
| 943 | hence one_less_a2: "1 < 2*a" by arith | |
| 944 | hence le_2a: "2 * (1 + b mod a) \<le> 2 * a" | |
| 945 | by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq) | |
| 946 | with a_pos have "0 \<le> b mod a" by simp | |
| 947 | hence le_addm: "0 \<le> 1 mod (2*a) + 2*(b mod a)" | |
| 948 | by (simp add: mod_pos_pos_trivial one_less_a2) | |
| 949 | with le_2a | |
| 950 | have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0" | |
| 951 | by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2 | |
| 952 | right_distrib) | |
| 953 | thus ?thesis | |
| 954 | by (subst zdiv_zadd1_eq, | |
| 955 | simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2 | |
| 956 | div_pos_pos_trivial) | |
| 957 | qed | |
| 958 | ||
| 959 | lemma neg_zdiv_mult_2: "a \<le> (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a" | |
| 960 | apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ") | |
| 961 | apply (rule_tac [2] pos_zdiv_mult_2) | |
| 962 | apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) | |
| 963 | apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") | |
| 964 | apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric], | |
| 965 | simp) | |
| 966 | done | |
| 967 | ||
| 968 | ||
| 969 | (*Not clear why this must be proved separately; probably number_of causes | |
| 970 | simplification problems*) | |
| 971 | lemma not_0_le_lemma: "~ 0 \<le> x ==> x \<le> (0::int)" | |
| 972 | by auto | |
| 973 | ||
| 974 | lemma zdiv_number_of_BIT[simp]: | |
| 975 | "number_of (v BIT b) div number_of (w BIT bit.B0) = | |
| 976 | (if b=bit.B0 | (0::int) \<le> number_of w | |
| 977 | then number_of v div (number_of w) | |
| 978 | else (number_of v + (1::int)) div (number_of w))" | |
| 979 | apply (simp only: number_of_eq numeral_simps UNIV_I split: split_if) | |
| 980 | apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac | |
| 981 | split: bit.split) | |
| 982 | done | |
| 983 | ||
| 984 | ||
| 985 | subsection{*Computing mod by Shifting (proofs resemble those for div)*}
 | |
| 986 | ||
| 987 | lemma pos_zmod_mult_2: | |
| 988 | "(0::int) \<le> a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)" | |
| 989 | apply (case_tac "a = 0", simp) | |
| 990 | apply (subgoal_tac "1 < a * 2") | |
| 991 | prefer 2 apply arith | |
| 992 | apply (subgoal_tac "2* (1 + b mod a) \<le> 2*a") | |
| 993 | apply (rule_tac [2] mult_left_mono) | |
| 994 | apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq | |
| 995 | pos_mod_bound) | |
| 996 | apply (subst zmod_zadd1_eq) | |
| 997 | apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial) | |
| 998 | apply (rule mod_pos_pos_trivial) | |
| 999 | apply (auto simp add: mod_pos_pos_trivial left_distrib) | |
| 1000 | apply (subgoal_tac "0 \<le> b mod a", arith, simp) | |
| 1001 | done | |
| 1002 | ||
| 1003 | lemma neg_zmod_mult_2: | |
| 1004 | "a \<le> (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1" | |
| 1005 | apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) = | |
| 1006 | 1 + 2* ((-b - 1) mod (-a))") | |
| 1007 | apply (rule_tac [2] pos_zmod_mult_2) | |
| 1008 | apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) | |
| 1009 | apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") | |
| 1010 | prefer 2 apply simp | |
| 1011 | apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric]) | |
| 1012 | done | |
| 1013 | ||
| 1014 | lemma zmod_number_of_BIT [simp]: | |
| 1015 | "number_of (v BIT b) mod number_of (w BIT bit.B0) = | |
| 1016 | (case b of | |
| 1017 | bit.B0 => 2 * (number_of v mod number_of w) | |
| 1018 | | bit.B1 => if (0::int) \<le> number_of w | |
| 1019 | then 2 * (number_of v mod number_of w) + 1 | |
| 1020 | else 2 * ((number_of v + (1::int)) mod number_of w) - 1)" | |
| 1021 | apply (simp only: number_of_eq numeral_simps UNIV_I split: bit.split) | |
| 1022 | apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 | |
| 1023 | not_0_le_lemma neg_zmod_mult_2 add_ac) | |
| 1024 | done | |
| 1025 | ||
| 1026 | ||
| 1027 | subsection{*Quotients of Signs*}
 | |
| 1028 | ||
| 1029 | lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" | |
| 1030 | apply (subgoal_tac "a div b \<le> -1", force) | |
| 1031 | apply (rule order_trans) | |
| 1032 | apply (rule_tac a' = "-1" in zdiv_mono1) | |
| 1033 | apply (auto simp add: zdiv_minus1) | |
| 1034 | done | |
| 1035 | ||
| 1036 | lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0" | |
| 1037 | by (drule zdiv_mono1_neg, auto) | |
| 1038 | ||
| 1039 | lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)" | |
| 1040 | apply auto | |
| 1041 | apply (drule_tac [2] zdiv_mono1) | |
| 1042 | apply (auto simp add: linorder_neq_iff) | |
| 1043 | apply (simp (no_asm_use) add: linorder_not_less [symmetric]) | |
| 1044 | apply (blast intro: div_neg_pos_less0) | |
| 1045 | done | |
| 1046 | ||
| 1047 | lemma neg_imp_zdiv_nonneg_iff: | |
| 1048 | "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))" | |
| 1049 | apply (subst zdiv_zminus_zminus [symmetric]) | |
| 1050 | apply (subst pos_imp_zdiv_nonneg_iff, auto) | |
| 1051 | done | |
| 1052 | ||
| 1053 | (*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*) | |
| 1054 | lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" | |
| 1055 | by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) | |
| 1056 | ||
| 1057 | (*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*) | |
| 1058 | lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" | |
| 1059 | by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) | |
| 1060 | ||
| 1061 | ||
| 1062 | subsection {* The Divides Relation *}
 | |
| 1063 | ||
| 1064 | lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))" | |
| 23512 | 1065 | by (simp add: dvd_def zmod_eq_0_iff) | 
| 1066 | ||
| 23684 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 haftmann parents: 
23512diff
changeset | 1067 | instance int :: dvd_mod | 
| 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 haftmann parents: 
23512diff
changeset | 1068 | by default (simp add: times_class.dvd [symmetric] zdvd_iff_zmod_eq_0) | 
| 23164 | 1069 | |
| 1070 | lemmas zdvd_iff_zmod_eq_0_number_of [simp] = | |
| 1071 | zdvd_iff_zmod_eq_0 [of "number_of x" "number_of y", standard] | |
| 1072 | ||
| 1073 | lemma zdvd_0_right [iff]: "(m::int) dvd 0" | |
| 23512 | 1074 | by (simp add: dvd_def) | 
| 23164 | 1075 | |
| 1076 | lemma zdvd_0_left [iff]: "(0 dvd (m::int)) = (m = 0)" | |
| 1077 | by (simp add: dvd_def) | |
| 1078 | ||
| 1079 | lemma zdvd_1_left [iff]: "1 dvd (m::int)" | |
| 1080 | by (simp add: dvd_def) | |
| 1081 | ||
| 1082 | lemma zdvd_refl [simp]: "m dvd (m::int)" | |
| 23512 | 1083 | by (auto simp add: dvd_def intro: zmult_1_right [symmetric]) | 
| 23164 | 1084 | |
| 1085 | lemma zdvd_trans: "m dvd n ==> n dvd k ==> m dvd (k::int)" | |
| 23512 | 1086 | by (auto simp add: dvd_def intro: mult_assoc) | 
| 23164 | 1087 | |
| 1088 | lemma zdvd_zminus_iff: "(m dvd -n) = (m dvd (n::int))" | |
| 1089 | apply (simp add: dvd_def, auto) | |
| 1090 | apply (rule_tac [!] x = "-k" in exI, auto) | |
| 1091 | done | |
| 1092 | ||
| 1093 | lemma zdvd_zminus2_iff: "(-m dvd n) = (m dvd (n::int))" | |
| 1094 | apply (simp add: dvd_def, auto) | |
| 1095 | apply (rule_tac [!] x = "-k" in exI, auto) | |
| 1096 | done | |
| 1097 | lemma zdvd_abs1: "( \<bar>i::int\<bar> dvd j) = (i dvd j)" | |
| 1098 | apply (cases "i > 0", simp) | |
| 1099 | apply (simp add: dvd_def) | |
| 1100 | apply (rule iffI) | |
| 1101 | apply (erule exE) | |
| 1102 | apply (rule_tac x="- k" in exI, simp) | |
| 1103 | apply (erule exE) | |
| 1104 | apply (rule_tac x="- k" in exI, simp) | |
| 1105 | done | |
| 1106 | lemma zdvd_abs2: "( (i::int) dvd \<bar>j\<bar>) = (i dvd j)" | |
| 1107 | apply (cases "j > 0", simp) | |
| 1108 | apply (simp add: dvd_def) | |
| 1109 | apply (rule iffI) | |
| 1110 | apply (erule exE) | |
| 1111 | apply (rule_tac x="- k" in exI, simp) | |
| 1112 | apply (erule exE) | |
| 1113 | apply (rule_tac x="- k" in exI, simp) | |
| 1114 | done | |
| 1115 | ||
| 1116 | lemma zdvd_anti_sym: | |
| 1117 | "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)" | |
| 1118 | apply (simp add: dvd_def, auto) | |
| 1119 | apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff) | |
| 1120 | done | |
| 1121 | ||
| 1122 | lemma zdvd_zadd: "k dvd m ==> k dvd n ==> k dvd (m + n :: int)" | |
| 1123 | apply (simp add: dvd_def) | |
| 1124 | apply (blast intro: right_distrib [symmetric]) | |
| 1125 | done | |
| 1126 | ||
| 1127 | lemma zdvd_dvd_eq: assumes anz:"a \<noteq> 0" and ab: "(a::int) dvd b" and ba:"b dvd a" | |
| 1128 | shows "\<bar>a\<bar> = \<bar>b\<bar>" | |
| 1129 | proof- | |
| 1130 | from ab obtain k where k:"b = a*k" unfolding dvd_def by blast | |
| 1131 | from ba obtain k' where k':"a = b*k'" unfolding dvd_def by blast | |
| 1132 | from k k' have "a = a*k*k'" by simp | |
| 1133 | with mult_cancel_left1[where c="a" and b="k*k'"] | |
| 1134 | have kk':"k*k' = 1" using anz by (simp add: mult_assoc) | |
| 1135 | hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff) | |
| 1136 | thus ?thesis using k k' by auto | |
| 1137 | qed | |
| 1138 | ||
| 1139 | lemma zdvd_zdiff: "k dvd m ==> k dvd n ==> k dvd (m - n :: int)" | |
| 1140 | apply (simp add: dvd_def) | |
| 1141 | apply (blast intro: right_diff_distrib [symmetric]) | |
| 1142 | done | |
| 1143 | ||
| 1144 | lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)" | |
| 1145 | apply (subgoal_tac "m = n + (m - n)") | |
| 1146 | apply (erule ssubst) | |
| 1147 | apply (blast intro: zdvd_zadd, simp) | |
| 1148 | done | |
| 1149 | ||
| 1150 | lemma zdvd_zmult: "k dvd (n::int) ==> k dvd m * n" | |
| 1151 | apply (simp add: dvd_def) | |
| 1152 | apply (blast intro: mult_left_commute) | |
| 1153 | done | |
| 1154 | ||
| 1155 | lemma zdvd_zmult2: "k dvd (m::int) ==> k dvd m * n" | |
| 1156 | apply (subst mult_commute) | |
| 1157 | apply (erule zdvd_zmult) | |
| 1158 | done | |
| 1159 | ||
| 1160 | lemma zdvd_triv_right [iff]: "(k::int) dvd m * k" | |
| 1161 | apply (rule zdvd_zmult) | |
| 1162 | apply (rule zdvd_refl) | |
| 1163 | done | |
| 1164 | ||
| 1165 | lemma zdvd_triv_left [iff]: "(k::int) dvd k * m" | |
| 1166 | apply (rule zdvd_zmult2) | |
| 1167 | apply (rule zdvd_refl) | |
| 1168 | done | |
| 1169 | ||
| 1170 | lemma zdvd_zmultD2: "j * k dvd n ==> j dvd (n::int)" | |
| 1171 | apply (simp add: dvd_def) | |
| 1172 | apply (simp add: mult_assoc, blast) | |
| 1173 | done | |
| 1174 | ||
| 1175 | lemma zdvd_zmultD: "j * k dvd n ==> k dvd (n::int)" | |
| 1176 | apply (rule zdvd_zmultD2) | |
| 1177 | apply (subst mult_commute, assumption) | |
| 1178 | done | |
| 1179 | ||
| 1180 | lemma zdvd_zmult_mono: "i dvd m ==> j dvd (n::int) ==> i * j dvd m * n" | |
| 1181 | apply (simp add: dvd_def, clarify) | |
| 1182 | apply (rule_tac x = "k * ka" in exI) | |
| 1183 | apply (simp add: mult_ac) | |
| 1184 | done | |
| 1185 | ||
| 1186 | lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))" | |
| 1187 | apply (rule iffI) | |
| 1188 | apply (erule_tac [2] zdvd_zadd) | |
| 1189 | apply (subgoal_tac "n = (n + k * m) - k * m") | |
| 1190 | apply (erule ssubst) | |
| 1191 | apply (erule zdvd_zdiff, simp_all) | |
| 1192 | done | |
| 1193 | ||
| 1194 | lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n" | |
| 1195 | apply (simp add: dvd_def) | |
| 1196 | apply (auto simp add: zmod_zmult_zmult1) | |
| 1197 | done | |
| 1198 | ||
| 1199 | lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)" | |
| 1200 | apply (subgoal_tac "k dvd n * (m div n) + m mod n") | |
| 1201 | apply (simp add: zmod_zdiv_equality [symmetric]) | |
| 1202 | apply (simp only: zdvd_zadd zdvd_zmult2) | |
| 1203 | done | |
| 1204 | ||
| 1205 | lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)" | |
| 1206 | apply (simp add: dvd_def, auto) | |
| 1207 | apply (subgoal_tac "0 < n") | |
| 1208 | prefer 2 | |
| 1209 | apply (blast intro: order_less_trans) | |
| 1210 | apply (simp add: zero_less_mult_iff) | |
| 1211 | apply (subgoal_tac "n * k < n * 1") | |
| 1212 | apply (drule mult_less_cancel_left [THEN iffD1], auto) | |
| 1213 | done | |
| 1214 | lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)" | |
| 1215 | using zmod_zdiv_equality[where a="m" and b="n"] | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23431diff
changeset | 1216 | by (simp add: ring_simps) | 
| 23164 | 1217 | |
| 1218 | lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m" | |
| 1219 | apply (subgoal_tac "m mod n = 0") | |
| 1220 | apply (simp add: zmult_div_cancel) | |
| 1221 | apply (simp only: zdvd_iff_zmod_eq_0) | |
| 1222 | done | |
| 1223 | ||
| 1224 | lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)" | |
| 1225 | shows "m dvd n" | |
| 1226 | proof- | |
| 1227 | from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast | |
| 1228 |   {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
 | |
| 1229 | with h have False by (simp add: mult_assoc)} | |
| 1230 | hence "n = m * h" by blast | |
| 1231 | thus ?thesis by blast | |
| 1232 | qed | |
| 1233 | ||
| 1234 | theorem ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))" | |
| 1235 | apply (simp split add: split_nat) | |
| 1236 | apply (rule iffI) | |
| 1237 | apply (erule exE) | |
| 1238 | apply (rule_tac x = "int x" in exI) | |
| 1239 | apply simp | |
| 1240 | apply (erule exE) | |
| 1241 | apply (rule_tac x = "nat x" in exI) | |
| 1242 | apply (erule conjE) | |
| 1243 | apply (erule_tac x = "nat x" in allE) | |
| 1244 | apply simp | |
| 1245 | done | |
| 1246 | ||
| 23365 | 1247 | theorem zdvd_int: "(x dvd y) = (int x dvd int y)" | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1248 | apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric] | 
| 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1249 | nat_0_le cong add: conj_cong) | 
| 23164 | 1250 | apply (rule iffI) | 
| 1251 | apply iprover | |
| 1252 | apply (erule exE) | |
| 1253 | apply (case_tac "x=0") | |
| 1254 | apply (rule_tac x=0 in exI) | |
| 1255 | apply simp | |
| 1256 | apply (case_tac "0 \<le> k") | |
| 1257 | apply iprover | |
| 1258 | apply (simp add: linorder_not_le) | |
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1259 | apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]]) | 
| 23164 | 1260 | apply assumption | 
| 1261 | apply (simp add: mult_ac) | |
| 1262 | done | |
| 1263 | ||
| 1264 | lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)" | |
| 1265 | proof | |
| 1266 | assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by (simp add: zdvd_abs1) | |
| 1267 | hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int) | |
| 1268 | hence "nat \<bar>x\<bar> = 1" by simp | |
| 1269 | thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto) | |
| 1270 | next | |
| 1271 | assume "\<bar>x\<bar>=1" thus "x dvd 1" | |
| 1272 | by(cases "x < 0",simp_all add: minus_equation_iff zdvd_iff_zmod_eq_0) | |
| 1273 | qed | |
| 1274 | lemma zdvd_mult_cancel1: | |
| 1275 | assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)" | |
| 1276 | proof | |
| 1277 | assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" | |
| 1278 | by (cases "n >0", auto simp add: zdvd_zminus2_iff minus_equation_iff) | |
| 1279 | next | |
| 1280 | assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp | |
| 1281 | from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq) | |
| 1282 | qed | |
| 1283 | ||
| 23365 | 1284 | lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))" | 
| 23164 | 1285 | apply (auto simp add: dvd_def nat_abs_mult_distrib) | 
| 23365 | 1286 | apply (auto simp add: nat_eq_iff abs_if split add: split_if_asm) | 
| 1287 | apply (rule_tac x = "-(int k)" in exI) | |
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1288 | apply (auto simp add: int_mult) | 
| 23306 
cdb027d0637e
add int_of_nat versions of lemmas about int::nat=>int
 huffman parents: 
23164diff
changeset | 1289 | done | 
| 
cdb027d0637e
add int_of_nat versions of lemmas about int::nat=>int
 huffman parents: 
23164diff
changeset | 1290 | |
| 23365 | 1291 | lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)" | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1292 | apply (auto simp add: dvd_def abs_if int_mult) | 
| 23306 
cdb027d0637e
add int_of_nat versions of lemmas about int::nat=>int
 huffman parents: 
23164diff
changeset | 1293 | apply (rule_tac [3] x = "nat k" in exI) | 
| 23365 | 1294 | apply (rule_tac [2] x = "-(int k)" in exI) | 
| 23306 
cdb027d0637e
add int_of_nat versions of lemmas about int::nat=>int
 huffman parents: 
23164diff
changeset | 1295 | apply (rule_tac x = "nat (-k)" in exI) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1296 | apply (cut_tac [3] k = m in int_less_0_conv) | 
| 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1297 | apply (cut_tac k = m in int_less_0_conv) | 
| 23306 
cdb027d0637e
add int_of_nat versions of lemmas about int::nat=>int
 huffman parents: 
23164diff
changeset | 1298 | apply (auto simp add: zero_le_mult_iff mult_less_0_iff | 
| 23365 | 1299 | nat_mult_distrib [symmetric] nat_eq_iff2) | 
| 23164 | 1300 | done | 
| 1301 | ||
| 1302 | lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)" | |
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1303 | apply (auto simp add: dvd_def int_mult) | 
| 23365 | 1304 | apply (rule_tac x = "nat k" in exI) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1305 | apply (cut_tac k = m in int_less_0_conv) | 
| 23365 | 1306 | apply (auto simp add: zero_le_mult_iff mult_less_0_iff | 
| 1307 | nat_mult_distrib [symmetric] nat_eq_iff2) | |
| 1308 | done | |
| 23164 | 1309 | |
| 1310 | lemma zminus_dvd_iff [iff]: "(-z dvd w) = (z dvd (w::int))" | |
| 1311 | apply (auto simp add: dvd_def) | |
| 1312 | apply (rule_tac [!] x = "-k" in exI, auto) | |
| 1313 | done | |
| 1314 | ||
| 1315 | lemma dvd_zminus_iff [iff]: "(z dvd -w) = (z dvd (w::int))" | |
| 1316 | apply (auto simp add: dvd_def) | |
| 1317 | apply (drule minus_equation_iff [THEN iffD1]) | |
| 1318 | apply (rule_tac [!] x = "-k" in exI, auto) | |
| 1319 | done | |
| 1320 | ||
| 1321 | lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)" | |
| 23365 | 1322 | apply (rule_tac z=n in int_cases) | 
| 1323 | apply (auto simp add: dvd_int_iff) | |
| 1324 | apply (rule_tac z=z in int_cases) | |
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23306diff
changeset | 1325 | apply (auto simp add: dvd_imp_le) | 
| 23164 | 1326 | done | 
| 1327 | ||
| 1328 | ||
| 1329 | subsection{*Integer Powers*} 
 | |
| 1330 | ||
| 1331 | instance int :: power .. | |
| 1332 | ||
| 1333 | primrec | |
| 1334 | "p ^ 0 = 1" | |
| 1335 | "p ^ (Suc n) = (p::int) * (p ^ n)" | |
| 1336 | ||
| 1337 | ||
| 1338 | instance int :: recpower | |
| 1339 | proof | |
| 1340 | fix z :: int | |
| 1341 | fix n :: nat | |
| 1342 | show "z^0 = 1" by simp | |
| 1343 | show "z^(Suc n) = z * (z^n)" by simp | |
| 1344 | qed | |
| 1345 | ||
| 1346 | ||
| 1347 | lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m" | |
| 1348 | apply (induct "y", auto) | |
| 1349 | apply (rule zmod_zmult1_eq [THEN trans]) | |
| 1350 | apply (simp (no_asm_simp)) | |
| 1351 | apply (rule zmod_zmult_distrib [symmetric]) | |
| 1352 | done | |
| 1353 | ||
| 1354 | lemma zpower_zadd_distrib: "x^(y+z) = ((x^y)*(x^z)::int)" | |
| 1355 | by (rule Power.power_add) | |
| 1356 | ||
| 1357 | lemma zpower_zpower: "(x^y)^z = (x^(y*z)::int)" | |
| 1358 | by (rule Power.power_mult [symmetric]) | |
| 1359 | ||
| 1360 | lemma zero_less_zpower_abs_iff [simp]: | |
| 1361 | "(0 < (abs x)^n) = (x \<noteq> (0::int) | n=0)" | |
| 1362 | apply (induct "n") | |
| 1363 | apply (auto simp add: zero_less_mult_iff) | |
| 1364 | done | |
| 1365 | ||
| 1366 | lemma zero_le_zpower_abs [simp]: "(0::int) <= (abs x)^n" | |
| 1367 | apply (induct "n") | |
| 1368 | apply (auto simp add: zero_le_mult_iff) | |
| 1369 | done | |
| 1370 | ||
| 1371 | lemma int_power: "int (m^n) = (int m) ^ n" | |
| 23365 | 1372 | by (rule of_nat_power) | 
| 23164 | 1373 | |
| 1374 | text{*Compatibility binding*}
 | |
| 1375 | lemmas zpower_int = int_power [symmetric] | |
| 1376 | ||
| 23365 | 1377 | lemma zdiv_int: "int (a div b) = (int a) div (int b)" | 
| 23164 | 1378 | apply (subst split_div, auto) | 
| 1379 | apply (subst split_zdiv, auto) | |
| 23365 | 1380 | apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1381 | apply (auto simp add: IntDiv.quorem_def of_nat_mult) | 
| 23164 | 1382 | done | 
| 1383 | ||
| 1384 | lemma zmod_int: "int (a mod b) = (int a) mod (int b)" | |
| 23365 | 1385 | apply (subst split_mod, auto) | 
| 1386 | apply (subst split_zmod, auto) | |
| 1387 | apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia | |
| 1388 | in unique_remainder) | |
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23401diff
changeset | 1389 | apply (auto simp add: IntDiv.quorem_def of_nat_mult) | 
| 23365 | 1390 | done | 
| 23164 | 1391 | |
| 1392 | text{*Suggested by Matthias Daum*}
 | |
| 1393 | lemma int_power_div_base: | |
| 1394 | "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)" | |
| 1395 | apply (subgoal_tac "k ^ m = k ^ ((m - 1) + 1)") | |
| 1396 | apply (erule ssubst) | |
| 1397 | apply (simp only: power_add) | |
| 1398 | apply simp_all | |
| 1399 | done | |
| 1400 | ||
| 1401 | text {* code serializer setup *}
 | |
| 1402 | ||
| 1403 | code_modulename SML | |
| 1404 | IntDiv Integer | |
| 1405 | ||
| 1406 | code_modulename OCaml | |
| 1407 | IntDiv Integer | |
| 1408 | ||
| 1409 | code_modulename Haskell | |
| 1410 | IntDiv Divides | |
| 1411 | ||
| 1412 | end |