23164
|
1 |
(* Title: HOL/IntDiv.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1999 University of Cambridge
|
|
5 |
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*The Division Operators div and mod; the Divides Relation dvd*}
|
|
9 |
|
|
10 |
theory IntDiv
|
|
11 |
imports IntArith Divides FunDef
|
|
12 |
begin
|
|
13 |
|
|
14 |
declare zless_nat_conj [simp]
|
|
15 |
|
|
16 |
constdefs
|
|
17 |
quorem :: "(int*int) * (int*int) => bool"
|
|
18 |
--{*definition of quotient and remainder*}
|
|
19 |
[code func]: "quorem == %((a,b), (q,r)).
|
|
20 |
a = b*q + r &
|
|
21 |
(if 0 < b then 0\<le>r & r<b else b<r & r \<le> 0)"
|
|
22 |
|
|
23 |
adjust :: "[int, int*int] => int*int"
|
|
24 |
--{*for the division algorithm*}
|
|
25 |
[code func]: "adjust b == %(q,r). if 0 \<le> r-b then (2*q + 1, r-b)
|
|
26 |
else (2*q, r)"
|
|
27 |
|
|
28 |
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
|
|
29 |
function
|
|
30 |
posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int"
|
|
31 |
where
|
|
32 |
"posDivAlg a b =
|
|
33 |
(if (a<b | b\<le>0) then (0,a)
|
|
34 |
else adjust b (posDivAlg a (2*b)))"
|
|
35 |
by auto
|
|
36 |
termination by (relation "measure (%(a,b). nat(a - b + 1))") auto
|
|
37 |
|
|
38 |
text{*algorithm for the case @{text "a<0, b>0"}*}
|
|
39 |
function
|
|
40 |
negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int"
|
|
41 |
where
|
|
42 |
"negDivAlg a b =
|
|
43 |
(if (0\<le>a+b | b\<le>0) then (-1,a+b)
|
|
44 |
else adjust b (negDivAlg a (2*b)))"
|
|
45 |
by auto
|
|
46 |
termination by (relation "measure (%(a,b). nat(- a - b))") auto
|
|
47 |
|
|
48 |
text{*algorithm for the general case @{term "b\<noteq>0"}*}
|
|
49 |
constdefs
|
|
50 |
negateSnd :: "int*int => int*int"
|
|
51 |
[code func]: "negateSnd == %(q,r). (q,-r)"
|
|
52 |
|
|
53 |
definition
|
|
54 |
divAlg :: "int \<times> int \<Rightarrow> int \<times> int"
|
|
55 |
--{*The full division algorithm considers all possible signs for a, b
|
|
56 |
including the special case @{text "a=0, b<0"} because
|
|
57 |
@{term negDivAlg} requires @{term "a<0"}.*}
|
|
58 |
where
|
|
59 |
"divAlg = (\<lambda>(a, b). (if 0\<le>a then
|
|
60 |
if 0\<le>b then posDivAlg a b
|
|
61 |
else if a=0 then (0, 0)
|
|
62 |
else negateSnd (negDivAlg (-a) (-b))
|
|
63 |
else
|
|
64 |
if 0<b then negDivAlg a b
|
|
65 |
else negateSnd (posDivAlg (-a) (-b))))"
|
|
66 |
|
|
67 |
instance int :: Divides.div
|
|
68 |
div_def: "a div b == fst (divAlg (a, b))"
|
|
69 |
mod_def: "a mod b == snd (divAlg (a, b))" ..
|
|
70 |
|
|
71 |
lemma divAlg_mod_div:
|
|
72 |
"divAlg (p, q) = (p div q, p mod q)"
|
|
73 |
by (auto simp add: div_def mod_def)
|
|
74 |
|
|
75 |
text{*
|
|
76 |
Here is the division algorithm in ML:
|
|
77 |
|
|
78 |
\begin{verbatim}
|
|
79 |
fun posDivAlg (a,b) =
|
|
80 |
if a<b then (0,a)
|
|
81 |
else let val (q,r) = posDivAlg(a, 2*b)
|
|
82 |
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
|
|
83 |
end
|
|
84 |
|
|
85 |
fun negDivAlg (a,b) =
|
|
86 |
if 0\<le>a+b then (~1,a+b)
|
|
87 |
else let val (q,r) = negDivAlg(a, 2*b)
|
|
88 |
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
|
|
89 |
end;
|
|
90 |
|
|
91 |
fun negateSnd (q,r:int) = (q,~r);
|
|
92 |
|
|
93 |
fun divAlg (a,b) = if 0\<le>a then
|
|
94 |
if b>0 then posDivAlg (a,b)
|
|
95 |
else if a=0 then (0,0)
|
|
96 |
else negateSnd (negDivAlg (~a,~b))
|
|
97 |
else
|
|
98 |
if 0<b then negDivAlg (a,b)
|
|
99 |
else negateSnd (posDivAlg (~a,~b));
|
|
100 |
\end{verbatim}
|
|
101 |
*}
|
|
102 |
|
|
103 |
|
|
104 |
|
|
105 |
subsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
|
|
106 |
|
|
107 |
lemma unique_quotient_lemma:
|
|
108 |
"[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |]
|
|
109 |
==> q' \<le> (q::int)"
|
|
110 |
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
|
|
111 |
prefer 2 apply (simp add: right_diff_distrib)
|
|
112 |
apply (subgoal_tac "0 < b * (1 + q - q') ")
|
|
113 |
apply (erule_tac [2] order_le_less_trans)
|
|
114 |
prefer 2 apply (simp add: right_diff_distrib right_distrib)
|
|
115 |
apply (subgoal_tac "b * q' < b * (1 + q) ")
|
|
116 |
prefer 2 apply (simp add: right_diff_distrib right_distrib)
|
|
117 |
apply (simp add: mult_less_cancel_left)
|
|
118 |
done
|
|
119 |
|
|
120 |
lemma unique_quotient_lemma_neg:
|
|
121 |
"[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |]
|
|
122 |
==> q \<le> (q'::int)"
|
|
123 |
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma,
|
|
124 |
auto)
|
|
125 |
|
|
126 |
lemma unique_quotient:
|
|
127 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |]
|
|
128 |
==> q = q'"
|
|
129 |
apply (simp add: quorem_def linorder_neq_iff split: split_if_asm)
|
|
130 |
apply (blast intro: order_antisym
|
|
131 |
dest: order_eq_refl [THEN unique_quotient_lemma]
|
|
132 |
order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
|
|
133 |
done
|
|
134 |
|
|
135 |
|
|
136 |
lemma unique_remainder:
|
|
137 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |]
|
|
138 |
==> r = r'"
|
|
139 |
apply (subgoal_tac "q = q'")
|
|
140 |
apply (simp add: quorem_def)
|
|
141 |
apply (blast intro: unique_quotient)
|
|
142 |
done
|
|
143 |
|
|
144 |
|
|
145 |
subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*}
|
|
146 |
|
|
147 |
text{*And positive divisors*}
|
|
148 |
|
|
149 |
lemma adjust_eq [simp]:
|
|
150 |
"adjust b (q,r) =
|
|
151 |
(let diff = r-b in
|
|
152 |
if 0 \<le> diff then (2*q + 1, diff)
|
|
153 |
else (2*q, r))"
|
|
154 |
by (simp add: Let_def adjust_def)
|
|
155 |
|
|
156 |
declare posDivAlg.simps [simp del]
|
|
157 |
|
|
158 |
text{*use with a simproc to avoid repeatedly proving the premise*}
|
|
159 |
lemma posDivAlg_eqn:
|
|
160 |
"0 < b ==>
|
|
161 |
posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
|
|
162 |
by (rule posDivAlg.simps [THEN trans], simp)
|
|
163 |
|
|
164 |
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
|
|
165 |
theorem posDivAlg_correct:
|
|
166 |
assumes "0 \<le> a" and "0 < b"
|
|
167 |
shows "quorem ((a, b), posDivAlg a b)"
|
|
168 |
using prems apply (induct a b rule: posDivAlg.induct)
|
|
169 |
apply auto
|
|
170 |
apply (simp add: quorem_def)
|
|
171 |
apply (subst posDivAlg_eqn, simp add: right_distrib)
|
|
172 |
apply (case_tac "a < b")
|
|
173 |
apply simp_all
|
|
174 |
apply (erule splitE)
|
|
175 |
apply (auto simp add: right_distrib Let_def)
|
|
176 |
done
|
|
177 |
|
|
178 |
|
|
179 |
subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*}
|
|
180 |
|
|
181 |
text{*And positive divisors*}
|
|
182 |
|
|
183 |
declare negDivAlg.simps [simp del]
|
|
184 |
|
|
185 |
text{*use with a simproc to avoid repeatedly proving the premise*}
|
|
186 |
lemma negDivAlg_eqn:
|
|
187 |
"0 < b ==>
|
|
188 |
negDivAlg a b =
|
|
189 |
(if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
|
|
190 |
by (rule negDivAlg.simps [THEN trans], simp)
|
|
191 |
|
|
192 |
(*Correctness of negDivAlg: it computes quotients correctly
|
|
193 |
It doesn't work if a=0 because the 0/b equals 0, not -1*)
|
|
194 |
lemma negDivAlg_correct:
|
|
195 |
assumes "a < 0" and "b > 0"
|
|
196 |
shows "quorem ((a, b), negDivAlg a b)"
|
|
197 |
using prems apply (induct a b rule: negDivAlg.induct)
|
|
198 |
apply (auto simp add: linorder_not_le)
|
|
199 |
apply (simp add: quorem_def)
|
|
200 |
apply (subst negDivAlg_eqn, assumption)
|
|
201 |
apply (case_tac "a + b < (0\<Colon>int)")
|
|
202 |
apply simp_all
|
|
203 |
apply (erule splitE)
|
|
204 |
apply (auto simp add: right_distrib Let_def)
|
|
205 |
done
|
|
206 |
|
|
207 |
|
|
208 |
subsection{*Existence Shown by Proving the Division Algorithm to be Correct*}
|
|
209 |
|
|
210 |
(*the case a=0*)
|
|
211 |
lemma quorem_0: "b \<noteq> 0 ==> quorem ((0,b), (0,0))"
|
|
212 |
by (auto simp add: quorem_def linorder_neq_iff)
|
|
213 |
|
|
214 |
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
|
|
215 |
by (subst posDivAlg.simps, auto)
|
|
216 |
|
|
217 |
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
|
|
218 |
by (subst negDivAlg.simps, auto)
|
|
219 |
|
|
220 |
lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)"
|
|
221 |
by (simp add: negateSnd_def)
|
|
222 |
|
|
223 |
lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)"
|
|
224 |
by (auto simp add: split_ifs quorem_def)
|
|
225 |
|
|
226 |
lemma divAlg_correct: "b \<noteq> 0 ==> quorem ((a,b), divAlg (a, b))"
|
|
227 |
by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg
|
|
228 |
posDivAlg_correct negDivAlg_correct)
|
|
229 |
|
|
230 |
text{*Arbitrary definitions for division by zero. Useful to simplify
|
|
231 |
certain equations.*}
|
|
232 |
|
|
233 |
lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a"
|
|
234 |
by (simp add: div_def mod_def divAlg_def posDivAlg.simps)
|
|
235 |
|
|
236 |
|
|
237 |
text{*Basic laws about division and remainder*}
|
|
238 |
|
|
239 |
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
|
|
240 |
apply (case_tac "b = 0", simp)
|
|
241 |
apply (cut_tac a = a and b = b in divAlg_correct)
|
|
242 |
apply (auto simp add: quorem_def div_def mod_def)
|
|
243 |
done
|
|
244 |
|
|
245 |
lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k"
|
|
246 |
by(simp add: zmod_zdiv_equality[symmetric])
|
|
247 |
|
|
248 |
lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k"
|
|
249 |
by(simp add: mult_commute zmod_zdiv_equality[symmetric])
|
|
250 |
|
|
251 |
text {* Tool setup *}
|
|
252 |
|
|
253 |
ML_setup {*
|
|
254 |
local
|
|
255 |
|
|
256 |
structure CancelDivMod = CancelDivModFun(
|
|
257 |
struct
|
|
258 |
val div_name = @{const_name Divides.div};
|
|
259 |
val mod_name = @{const_name Divides.mod};
|
|
260 |
val mk_binop = HOLogic.mk_binop;
|
|
261 |
val mk_sum = Int_Numeral_Simprocs.mk_sum HOLogic.intT;
|
|
262 |
val dest_sum = Int_Numeral_Simprocs.dest_sum;
|
|
263 |
val div_mod_eqs =
|
|
264 |
map mk_meta_eq [@{thm zdiv_zmod_equality},
|
|
265 |
@{thm zdiv_zmod_equality2}];
|
|
266 |
val trans = trans;
|
|
267 |
val prove_eq_sums =
|
|
268 |
let
|
|
269 |
val simps = diff_int_def :: Int_Numeral_Simprocs.add_0s @ zadd_ac
|
|
270 |
in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
|
|
271 |
end)
|
|
272 |
|
|
273 |
in
|
|
274 |
|
|
275 |
val cancel_zdiv_zmod_proc = NatArithUtils.prep_simproc
|
|
276 |
("cancel_zdiv_zmod", ["(m::int) + n"], K CancelDivMod.proc)
|
|
277 |
|
|
278 |
end;
|
|
279 |
|
|
280 |
Addsimprocs [cancel_zdiv_zmod_proc]
|
|
281 |
*}
|
|
282 |
|
|
283 |
lemma pos_mod_conj : "(0::int) < b ==> 0 \<le> a mod b & a mod b < b"
|
|
284 |
apply (cut_tac a = a and b = b in divAlg_correct)
|
|
285 |
apply (auto simp add: quorem_def mod_def)
|
|
286 |
done
|
|
287 |
|
|
288 |
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1, standard]
|
|
289 |
and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2, standard]
|
|
290 |
|
|
291 |
lemma neg_mod_conj : "b < (0::int) ==> a mod b \<le> 0 & b < a mod b"
|
|
292 |
apply (cut_tac a = a and b = b in divAlg_correct)
|
|
293 |
apply (auto simp add: quorem_def div_def mod_def)
|
|
294 |
done
|
|
295 |
|
|
296 |
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1, standard]
|
|
297 |
and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2, standard]
|
|
298 |
|
|
299 |
|
|
300 |
|
|
301 |
subsection{*General Properties of div and mod*}
|
|
302 |
|
|
303 |
lemma quorem_div_mod: "b \<noteq> 0 ==> quorem ((a, b), (a div b, a mod b))"
|
|
304 |
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
|
|
305 |
apply (force simp add: quorem_def linorder_neq_iff)
|
|
306 |
done
|
|
307 |
|
|
308 |
lemma quorem_div: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a div b = q"
|
|
309 |
by (simp add: quorem_div_mod [THEN unique_quotient])
|
|
310 |
|
|
311 |
lemma quorem_mod: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a mod b = r"
|
|
312 |
by (simp add: quorem_div_mod [THEN unique_remainder])
|
|
313 |
|
|
314 |
lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0"
|
|
315 |
apply (rule quorem_div)
|
|
316 |
apply (auto simp add: quorem_def)
|
|
317 |
done
|
|
318 |
|
|
319 |
lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0"
|
|
320 |
apply (rule quorem_div)
|
|
321 |
apply (auto simp add: quorem_def)
|
|
322 |
done
|
|
323 |
|
|
324 |
lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1"
|
|
325 |
apply (rule quorem_div)
|
|
326 |
apply (auto simp add: quorem_def)
|
|
327 |
done
|
|
328 |
|
|
329 |
(*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*)
|
|
330 |
|
|
331 |
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a"
|
|
332 |
apply (rule_tac q = 0 in quorem_mod)
|
|
333 |
apply (auto simp add: quorem_def)
|
|
334 |
done
|
|
335 |
|
|
336 |
lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a"
|
|
337 |
apply (rule_tac q = 0 in quorem_mod)
|
|
338 |
apply (auto simp add: quorem_def)
|
|
339 |
done
|
|
340 |
|
|
341 |
lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b"
|
|
342 |
apply (rule_tac q = "-1" in quorem_mod)
|
|
343 |
apply (auto simp add: quorem_def)
|
|
344 |
done
|
|
345 |
|
|
346 |
text{*There is no @{text mod_neg_pos_trivial}.*}
|
|
347 |
|
|
348 |
|
|
349 |
(*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*)
|
|
350 |
lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)"
|
|
351 |
apply (case_tac "b = 0", simp)
|
|
352 |
apply (simp add: quorem_div_mod [THEN quorem_neg, simplified,
|
|
353 |
THEN quorem_div, THEN sym])
|
|
354 |
|
|
355 |
done
|
|
356 |
|
|
357 |
(*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*)
|
|
358 |
lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))"
|
|
359 |
apply (case_tac "b = 0", simp)
|
|
360 |
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod],
|
|
361 |
auto)
|
|
362 |
done
|
|
363 |
|
|
364 |
|
|
365 |
subsection{*Laws for div and mod with Unary Minus*}
|
|
366 |
|
|
367 |
lemma zminus1_lemma:
|
|
368 |
"quorem((a,b),(q,r))
|
|
369 |
==> quorem ((-a,b), (if r=0 then -q else -q - 1),
|
|
370 |
(if r=0 then 0 else b-r))"
|
|
371 |
by (force simp add: split_ifs quorem_def linorder_neq_iff right_diff_distrib)
|
|
372 |
|
|
373 |
|
|
374 |
lemma zdiv_zminus1_eq_if:
|
|
375 |
"b \<noteq> (0::int)
|
|
376 |
==> (-a) div b =
|
|
377 |
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
|
|
378 |
by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div])
|
|
379 |
|
|
380 |
lemma zmod_zminus1_eq_if:
|
|
381 |
"(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))"
|
|
382 |
apply (case_tac "b = 0", simp)
|
|
383 |
apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod])
|
|
384 |
done
|
|
385 |
|
|
386 |
lemma zdiv_zminus2: "a div (-b) = (-a::int) div b"
|
|
387 |
by (cut_tac a = "-a" in zdiv_zminus_zminus, auto)
|
|
388 |
|
|
389 |
lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)"
|
|
390 |
by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto)
|
|
391 |
|
|
392 |
lemma zdiv_zminus2_eq_if:
|
|
393 |
"b \<noteq> (0::int)
|
|
394 |
==> a div (-b) =
|
|
395 |
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
|
|
396 |
by (simp add: zdiv_zminus1_eq_if zdiv_zminus2)
|
|
397 |
|
|
398 |
lemma zmod_zminus2_eq_if:
|
|
399 |
"a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)"
|
|
400 |
by (simp add: zmod_zminus1_eq_if zmod_zminus2)
|
|
401 |
|
|
402 |
|
|
403 |
subsection{*Division of a Number by Itself*}
|
|
404 |
|
|
405 |
lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \<le> q"
|
|
406 |
apply (subgoal_tac "0 < a*q")
|
|
407 |
apply (simp add: zero_less_mult_iff, arith)
|
|
408 |
done
|
|
409 |
|
|
410 |
lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \<le> r |] ==> q \<le> 1"
|
|
411 |
apply (subgoal_tac "0 \<le> a* (1-q) ")
|
|
412 |
apply (simp add: zero_le_mult_iff)
|
|
413 |
apply (simp add: right_diff_distrib)
|
|
414 |
done
|
|
415 |
|
|
416 |
lemma self_quotient: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> q = 1"
|
|
417 |
apply (simp add: split_ifs quorem_def linorder_neq_iff)
|
|
418 |
apply (rule order_antisym, safe, simp_all)
|
|
419 |
apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1)
|
|
420 |
apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2)
|
|
421 |
apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+
|
|
422 |
done
|
|
423 |
|
|
424 |
lemma self_remainder: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> r = 0"
|
|
425 |
apply (frule self_quotient, assumption)
|
|
426 |
apply (simp add: quorem_def)
|
|
427 |
done
|
|
428 |
|
|
429 |
lemma zdiv_self [simp]: "a \<noteq> 0 ==> a div a = (1::int)"
|
|
430 |
by (simp add: quorem_div_mod [THEN self_quotient])
|
|
431 |
|
|
432 |
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
|
|
433 |
lemma zmod_self [simp]: "a mod a = (0::int)"
|
|
434 |
apply (case_tac "a = 0", simp)
|
|
435 |
apply (simp add: quorem_div_mod [THEN self_remainder])
|
|
436 |
done
|
|
437 |
|
|
438 |
|
|
439 |
subsection{*Computation of Division and Remainder*}
|
|
440 |
|
|
441 |
lemma zdiv_zero [simp]: "(0::int) div b = 0"
|
|
442 |
by (simp add: div_def divAlg_def)
|
|
443 |
|
|
444 |
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
|
|
445 |
by (simp add: div_def divAlg_def)
|
|
446 |
|
|
447 |
lemma zmod_zero [simp]: "(0::int) mod b = 0"
|
|
448 |
by (simp add: mod_def divAlg_def)
|
|
449 |
|
|
450 |
lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1"
|
|
451 |
by (simp add: div_def divAlg_def)
|
|
452 |
|
|
453 |
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
|
|
454 |
by (simp add: mod_def divAlg_def)
|
|
455 |
|
|
456 |
text{*a positive, b positive *}
|
|
457 |
|
|
458 |
lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
|
|
459 |
by (simp add: div_def divAlg_def)
|
|
460 |
|
|
461 |
lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
|
|
462 |
by (simp add: mod_def divAlg_def)
|
|
463 |
|
|
464 |
text{*a negative, b positive *}
|
|
465 |
|
|
466 |
lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)"
|
|
467 |
by (simp add: div_def divAlg_def)
|
|
468 |
|
|
469 |
lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)"
|
|
470 |
by (simp add: mod_def divAlg_def)
|
|
471 |
|
|
472 |
text{*a positive, b negative *}
|
|
473 |
|
|
474 |
lemma div_pos_neg:
|
|
475 |
"[| 0 < a; b < 0 |] ==> a div b = fst (negateSnd (negDivAlg (-a) (-b)))"
|
|
476 |
by (simp add: div_def divAlg_def)
|
|
477 |
|
|
478 |
lemma mod_pos_neg:
|
|
479 |
"[| 0 < a; b < 0 |] ==> a mod b = snd (negateSnd (negDivAlg (-a) (-b)))"
|
|
480 |
by (simp add: mod_def divAlg_def)
|
|
481 |
|
|
482 |
text{*a negative, b negative *}
|
|
483 |
|
|
484 |
lemma div_neg_neg:
|
|
485 |
"[| a < 0; b \<le> 0 |] ==> a div b = fst (negateSnd (posDivAlg (-a) (-b)))"
|
|
486 |
by (simp add: div_def divAlg_def)
|
|
487 |
|
|
488 |
lemma mod_neg_neg:
|
|
489 |
"[| a < 0; b \<le> 0 |] ==> a mod b = snd (negateSnd (posDivAlg (-a) (-b)))"
|
|
490 |
by (simp add: mod_def divAlg_def)
|
|
491 |
|
|
492 |
text {*Simplify expresions in which div and mod combine numerical constants*}
|
|
493 |
|
|
494 |
lemmas div_pos_pos_number_of [simp] =
|
|
495 |
div_pos_pos [of "number_of v" "number_of w", standard]
|
|
496 |
|
|
497 |
lemmas div_neg_pos_number_of [simp] =
|
|
498 |
div_neg_pos [of "number_of v" "number_of w", standard]
|
|
499 |
|
|
500 |
lemmas div_pos_neg_number_of [simp] =
|
|
501 |
div_pos_neg [of "number_of v" "number_of w", standard]
|
|
502 |
|
|
503 |
lemmas div_neg_neg_number_of [simp] =
|
|
504 |
div_neg_neg [of "number_of v" "number_of w", standard]
|
|
505 |
|
|
506 |
|
|
507 |
lemmas mod_pos_pos_number_of [simp] =
|
|
508 |
mod_pos_pos [of "number_of v" "number_of w", standard]
|
|
509 |
|
|
510 |
lemmas mod_neg_pos_number_of [simp] =
|
|
511 |
mod_neg_pos [of "number_of v" "number_of w", standard]
|
|
512 |
|
|
513 |
lemmas mod_pos_neg_number_of [simp] =
|
|
514 |
mod_pos_neg [of "number_of v" "number_of w", standard]
|
|
515 |
|
|
516 |
lemmas mod_neg_neg_number_of [simp] =
|
|
517 |
mod_neg_neg [of "number_of v" "number_of w", standard]
|
|
518 |
|
|
519 |
|
|
520 |
lemmas posDivAlg_eqn_number_of [simp] =
|
|
521 |
posDivAlg_eqn [of "number_of v" "number_of w", standard]
|
|
522 |
|
|
523 |
lemmas negDivAlg_eqn_number_of [simp] =
|
|
524 |
negDivAlg_eqn [of "number_of v" "number_of w", standard]
|
|
525 |
|
|
526 |
|
|
527 |
text{*Special-case simplification *}
|
|
528 |
|
|
529 |
lemma zmod_1 [simp]: "a mod (1::int) = 0"
|
|
530 |
apply (cut_tac a = a and b = 1 in pos_mod_sign)
|
|
531 |
apply (cut_tac [2] a = a and b = 1 in pos_mod_bound)
|
|
532 |
apply (auto simp del:pos_mod_bound pos_mod_sign)
|
|
533 |
done
|
|
534 |
|
|
535 |
lemma zdiv_1 [simp]: "a div (1::int) = a"
|
|
536 |
by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto)
|
|
537 |
|
|
538 |
lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0"
|
|
539 |
apply (cut_tac a = a and b = "-1" in neg_mod_sign)
|
|
540 |
apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound)
|
|
541 |
apply (auto simp del: neg_mod_sign neg_mod_bound)
|
|
542 |
done
|
|
543 |
|
|
544 |
lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a"
|
|
545 |
by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto)
|
|
546 |
|
|
547 |
(** The last remaining special cases for constant arithmetic:
|
|
548 |
1 div z and 1 mod z **)
|
|
549 |
|
|
550 |
lemmas div_pos_pos_1_number_of [simp] =
|
|
551 |
div_pos_pos [OF int_0_less_1, of "number_of w", standard]
|
|
552 |
|
|
553 |
lemmas div_pos_neg_1_number_of [simp] =
|
|
554 |
div_pos_neg [OF int_0_less_1, of "number_of w", standard]
|
|
555 |
|
|
556 |
lemmas mod_pos_pos_1_number_of [simp] =
|
|
557 |
mod_pos_pos [OF int_0_less_1, of "number_of w", standard]
|
|
558 |
|
|
559 |
lemmas mod_pos_neg_1_number_of [simp] =
|
|
560 |
mod_pos_neg [OF int_0_less_1, of "number_of w", standard]
|
|
561 |
|
|
562 |
|
|
563 |
lemmas posDivAlg_eqn_1_number_of [simp] =
|
|
564 |
posDivAlg_eqn [of concl: 1 "number_of w", standard]
|
|
565 |
|
|
566 |
lemmas negDivAlg_eqn_1_number_of [simp] =
|
|
567 |
negDivAlg_eqn [of concl: 1 "number_of w", standard]
|
|
568 |
|
|
569 |
|
|
570 |
|
|
571 |
subsection{*Monotonicity in the First Argument (Dividend)*}
|
|
572 |
|
|
573 |
lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b"
|
|
574 |
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
|
|
575 |
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
|
|
576 |
apply (rule unique_quotient_lemma)
|
|
577 |
apply (erule subst)
|
|
578 |
apply (erule subst, simp_all)
|
|
579 |
done
|
|
580 |
|
|
581 |
lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b"
|
|
582 |
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
|
|
583 |
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
|
|
584 |
apply (rule unique_quotient_lemma_neg)
|
|
585 |
apply (erule subst)
|
|
586 |
apply (erule subst, simp_all)
|
|
587 |
done
|
|
588 |
|
|
589 |
|
|
590 |
subsection{*Monotonicity in the Second Argument (Divisor)*}
|
|
591 |
|
|
592 |
lemma q_pos_lemma:
|
|
593 |
"[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)"
|
|
594 |
apply (subgoal_tac "0 < b'* (q' + 1) ")
|
|
595 |
apply (simp add: zero_less_mult_iff)
|
|
596 |
apply (simp add: right_distrib)
|
|
597 |
done
|
|
598 |
|
|
599 |
lemma zdiv_mono2_lemma:
|
|
600 |
"[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r';
|
|
601 |
r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |]
|
|
602 |
==> q \<le> (q'::int)"
|
|
603 |
apply (frule q_pos_lemma, assumption+)
|
|
604 |
apply (subgoal_tac "b*q < b* (q' + 1) ")
|
|
605 |
apply (simp add: mult_less_cancel_left)
|
|
606 |
apply (subgoal_tac "b*q = r' - r + b'*q'")
|
|
607 |
prefer 2 apply simp
|
|
608 |
apply (simp (no_asm_simp) add: right_distrib)
|
|
609 |
apply (subst add_commute, rule zadd_zless_mono, arith)
|
|
610 |
apply (rule mult_right_mono, auto)
|
|
611 |
done
|
|
612 |
|
|
613 |
lemma zdiv_mono2:
|
|
614 |
"[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'"
|
|
615 |
apply (subgoal_tac "b \<noteq> 0")
|
|
616 |
prefer 2 apply arith
|
|
617 |
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
|
|
618 |
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
|
|
619 |
apply (rule zdiv_mono2_lemma)
|
|
620 |
apply (erule subst)
|
|
621 |
apply (erule subst, simp_all)
|
|
622 |
done
|
|
623 |
|
|
624 |
lemma q_neg_lemma:
|
|
625 |
"[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)"
|
|
626 |
apply (subgoal_tac "b'*q' < 0")
|
|
627 |
apply (simp add: mult_less_0_iff, arith)
|
|
628 |
done
|
|
629 |
|
|
630 |
lemma zdiv_mono2_neg_lemma:
|
|
631 |
"[| b*q + r = b'*q' + r'; b'*q' + r' < 0;
|
|
632 |
r < b; 0 \<le> r'; 0 < b'; b' \<le> b |]
|
|
633 |
==> q' \<le> (q::int)"
|
|
634 |
apply (frule q_neg_lemma, assumption+)
|
|
635 |
apply (subgoal_tac "b*q' < b* (q + 1) ")
|
|
636 |
apply (simp add: mult_less_cancel_left)
|
|
637 |
apply (simp add: right_distrib)
|
|
638 |
apply (subgoal_tac "b*q' \<le> b'*q'")
|
|
639 |
prefer 2 apply (simp add: mult_right_mono_neg, arith)
|
|
640 |
done
|
|
641 |
|
|
642 |
lemma zdiv_mono2_neg:
|
|
643 |
"[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b"
|
|
644 |
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
|
|
645 |
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
|
|
646 |
apply (rule zdiv_mono2_neg_lemma)
|
|
647 |
apply (erule subst)
|
|
648 |
apply (erule subst, simp_all)
|
|
649 |
done
|
|
650 |
|
|
651 |
subsection{*More Algebraic Laws for div and mod*}
|
|
652 |
|
|
653 |
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
|
|
654 |
|
|
655 |
lemma zmult1_lemma:
|
|
656 |
"[| quorem((b,c),(q,r)); c \<noteq> 0 |]
|
|
657 |
==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
|
|
658 |
by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib)
|
|
659 |
|
|
660 |
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
|
|
661 |
apply (case_tac "c = 0", simp)
|
|
662 |
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
|
|
663 |
done
|
|
664 |
|
|
665 |
lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)"
|
|
666 |
apply (case_tac "c = 0", simp)
|
|
667 |
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
|
|
668 |
done
|
|
669 |
|
|
670 |
lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c"
|
|
671 |
apply (rule trans)
|
|
672 |
apply (rule_tac s = "b*a mod c" in trans)
|
|
673 |
apply (rule_tac [2] zmod_zmult1_eq)
|
|
674 |
apply (simp_all add: mult_commute)
|
|
675 |
done
|
|
676 |
|
|
677 |
lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c"
|
|
678 |
apply (rule zmod_zmult1_eq' [THEN trans])
|
|
679 |
apply (rule zmod_zmult1_eq)
|
|
680 |
done
|
|
681 |
|
|
682 |
lemma zdiv_zmult_self1 [simp]: "b \<noteq> (0::int) ==> (a*b) div b = a"
|
|
683 |
by (simp add: zdiv_zmult1_eq)
|
|
684 |
|
|
685 |
lemma zdiv_zmult_self2 [simp]: "b \<noteq> (0::int) ==> (b*a) div b = a"
|
|
686 |
by (subst mult_commute, erule zdiv_zmult_self1)
|
|
687 |
|
|
688 |
lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)"
|
|
689 |
by (simp add: zmod_zmult1_eq)
|
|
690 |
|
|
691 |
lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)"
|
|
692 |
by (simp add: mult_commute zmod_zmult1_eq)
|
|
693 |
|
|
694 |
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
|
|
695 |
proof
|
|
696 |
assume "m mod d = 0"
|
|
697 |
with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto
|
|
698 |
next
|
|
699 |
assume "EX q::int. m = d*q"
|
|
700 |
thus "m mod d = 0" by auto
|
|
701 |
qed
|
|
702 |
|
|
703 |
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
|
|
704 |
|
|
705 |
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
|
|
706 |
|
|
707 |
lemma zadd1_lemma:
|
|
708 |
"[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c \<noteq> 0 |]
|
|
709 |
==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
|
|
710 |
by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib)
|
|
711 |
|
|
712 |
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
|
|
713 |
lemma zdiv_zadd1_eq:
|
|
714 |
"(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
|
|
715 |
apply (case_tac "c = 0", simp)
|
|
716 |
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div)
|
|
717 |
done
|
|
718 |
|
|
719 |
lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c"
|
|
720 |
apply (case_tac "c = 0", simp)
|
|
721 |
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod)
|
|
722 |
done
|
|
723 |
|
|
724 |
lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)"
|
|
725 |
apply (case_tac "b = 0", simp)
|
|
726 |
apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial)
|
|
727 |
done
|
|
728 |
|
|
729 |
lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)"
|
|
730 |
apply (case_tac "b = 0", simp)
|
|
731 |
apply (force simp add: linorder_neq_iff mod_pos_pos_trivial mod_neg_neg_trivial)
|
|
732 |
done
|
|
733 |
|
|
734 |
lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c"
|
|
735 |
apply (rule trans [symmetric])
|
|
736 |
apply (rule zmod_zadd1_eq, simp)
|
|
737 |
apply (rule zmod_zadd1_eq [symmetric])
|
|
738 |
done
|
|
739 |
|
|
740 |
lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c"
|
|
741 |
apply (rule trans [symmetric])
|
|
742 |
apply (rule zmod_zadd1_eq, simp)
|
|
743 |
apply (rule zmod_zadd1_eq [symmetric])
|
|
744 |
done
|
|
745 |
|
|
746 |
lemma zdiv_zadd_self1[simp]: "a \<noteq> (0::int) ==> (a+b) div a = b div a + 1"
|
|
747 |
by (simp add: zdiv_zadd1_eq)
|
|
748 |
|
|
749 |
lemma zdiv_zadd_self2[simp]: "a \<noteq> (0::int) ==> (b+a) div a = b div a + 1"
|
|
750 |
by (simp add: zdiv_zadd1_eq)
|
|
751 |
|
|
752 |
lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)"
|
|
753 |
apply (case_tac "a = 0", simp)
|
|
754 |
apply (simp add: zmod_zadd1_eq)
|
|
755 |
done
|
|
756 |
|
|
757 |
lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)"
|
|
758 |
apply (case_tac "a = 0", simp)
|
|
759 |
apply (simp add: zmod_zadd1_eq)
|
|
760 |
done
|
|
761 |
|
|
762 |
|
|
763 |
subsection{*Proving @{term "a div (b*c) = (a div b) div c"} *}
|
|
764 |
|
|
765 |
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
|
|
766 |
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
|
|
767 |
to cause particular problems.*)
|
|
768 |
|
|
769 |
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
|
|
770 |
|
|
771 |
lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r"
|
|
772 |
apply (subgoal_tac "b * (c - q mod c) < r * 1")
|
|
773 |
apply (simp add: right_diff_distrib)
|
|
774 |
apply (rule order_le_less_trans)
|
|
775 |
apply (erule_tac [2] mult_strict_right_mono)
|
|
776 |
apply (rule mult_left_mono_neg)
|
|
777 |
apply (auto simp add: compare_rls add_commute [of 1]
|
|
778 |
add1_zle_eq pos_mod_bound)
|
|
779 |
done
|
|
780 |
|
|
781 |
lemma zmult2_lemma_aux2:
|
|
782 |
"[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
|
|
783 |
apply (subgoal_tac "b * (q mod c) \<le> 0")
|
|
784 |
apply arith
|
|
785 |
apply (simp add: mult_le_0_iff)
|
|
786 |
done
|
|
787 |
|
|
788 |
lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r"
|
|
789 |
apply (subgoal_tac "0 \<le> b * (q mod c) ")
|
|
790 |
apply arith
|
|
791 |
apply (simp add: zero_le_mult_iff)
|
|
792 |
done
|
|
793 |
|
|
794 |
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
|
|
795 |
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
|
|
796 |
apply (simp add: right_diff_distrib)
|
|
797 |
apply (rule order_less_le_trans)
|
|
798 |
apply (erule mult_strict_right_mono)
|
|
799 |
apply (rule_tac [2] mult_left_mono)
|
|
800 |
apply (auto simp add: compare_rls add_commute [of 1]
|
|
801 |
add1_zle_eq pos_mod_bound)
|
|
802 |
done
|
|
803 |
|
|
804 |
lemma zmult2_lemma: "[| quorem ((a,b), (q,r)); b \<noteq> 0; 0 < c |]
|
|
805 |
==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
|
|
806 |
by (auto simp add: mult_ac quorem_def linorder_neq_iff
|
|
807 |
zero_less_mult_iff right_distrib [symmetric]
|
|
808 |
zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4)
|
|
809 |
|
|
810 |
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
|
|
811 |
apply (case_tac "b = 0", simp)
|
|
812 |
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div])
|
|
813 |
done
|
|
814 |
|
|
815 |
lemma zmod_zmult2_eq:
|
|
816 |
"(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
|
|
817 |
apply (case_tac "b = 0", simp)
|
|
818 |
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod])
|
|
819 |
done
|
|
820 |
|
|
821 |
|
|
822 |
subsection{*Cancellation of Common Factors in div*}
|
|
823 |
|
|
824 |
lemma zdiv_zmult_zmult1_aux1:
|
|
825 |
"[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
|
|
826 |
by (subst zdiv_zmult2_eq, auto)
|
|
827 |
|
|
828 |
lemma zdiv_zmult_zmult1_aux2:
|
|
829 |
"[| b < (0::int); c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
|
|
830 |
apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ")
|
|
831 |
apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto)
|
|
832 |
done
|
|
833 |
|
|
834 |
lemma zdiv_zmult_zmult1: "c \<noteq> (0::int) ==> (c*a) div (c*b) = a div b"
|
|
835 |
apply (case_tac "b = 0", simp)
|
|
836 |
apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
|
|
837 |
done
|
|
838 |
|
|
839 |
lemma zdiv_zmult_zmult2: "c \<noteq> (0::int) ==> (a*c) div (b*c) = a div b"
|
|
840 |
apply (drule zdiv_zmult_zmult1)
|
|
841 |
apply (auto simp add: mult_commute)
|
|
842 |
done
|
|
843 |
|
|
844 |
|
|
845 |
|
|
846 |
subsection{*Distribution of Factors over mod*}
|
|
847 |
|
|
848 |
lemma zmod_zmult_zmult1_aux1:
|
|
849 |
"[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
|
|
850 |
by (subst zmod_zmult2_eq, auto)
|
|
851 |
|
|
852 |
lemma zmod_zmult_zmult1_aux2:
|
|
853 |
"[| b < (0::int); c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
|
|
854 |
apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))")
|
|
855 |
apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto)
|
|
856 |
done
|
|
857 |
|
|
858 |
lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)"
|
|
859 |
apply (case_tac "b = 0", simp)
|
|
860 |
apply (case_tac "c = 0", simp)
|
|
861 |
apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
|
|
862 |
done
|
|
863 |
|
|
864 |
lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)"
|
|
865 |
apply (cut_tac c = c in zmod_zmult_zmult1)
|
|
866 |
apply (auto simp add: mult_commute)
|
|
867 |
done
|
|
868 |
|
|
869 |
|
|
870 |
subsection {*Splitting Rules for div and mod*}
|
|
871 |
|
|
872 |
text{*The proofs of the two lemmas below are essentially identical*}
|
|
873 |
|
|
874 |
lemma split_pos_lemma:
|
|
875 |
"0<k ==>
|
|
876 |
P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
|
|
877 |
apply (rule iffI, clarify)
|
|
878 |
apply (erule_tac P="P ?x ?y" in rev_mp)
|
|
879 |
apply (subst zmod_zadd1_eq)
|
|
880 |
apply (subst zdiv_zadd1_eq)
|
|
881 |
apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
|
|
882 |
txt{*converse direction*}
|
|
883 |
apply (drule_tac x = "n div k" in spec)
|
|
884 |
apply (drule_tac x = "n mod k" in spec, simp)
|
|
885 |
done
|
|
886 |
|
|
887 |
lemma split_neg_lemma:
|
|
888 |
"k<0 ==>
|
|
889 |
P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
|
|
890 |
apply (rule iffI, clarify)
|
|
891 |
apply (erule_tac P="P ?x ?y" in rev_mp)
|
|
892 |
apply (subst zmod_zadd1_eq)
|
|
893 |
apply (subst zdiv_zadd1_eq)
|
|
894 |
apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
|
|
895 |
txt{*converse direction*}
|
|
896 |
apply (drule_tac x = "n div k" in spec)
|
|
897 |
apply (drule_tac x = "n mod k" in spec, simp)
|
|
898 |
done
|
|
899 |
|
|
900 |
lemma split_zdiv:
|
|
901 |
"P(n div k :: int) =
|
|
902 |
((k = 0 --> P 0) &
|
|
903 |
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
|
|
904 |
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
|
|
905 |
apply (case_tac "k=0", simp)
|
|
906 |
apply (simp only: linorder_neq_iff)
|
|
907 |
apply (erule disjE)
|
|
908 |
apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
|
|
909 |
split_neg_lemma [of concl: "%x y. P x"])
|
|
910 |
done
|
|
911 |
|
|
912 |
lemma split_zmod:
|
|
913 |
"P(n mod k :: int) =
|
|
914 |
((k = 0 --> P n) &
|
|
915 |
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
|
|
916 |
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
|
|
917 |
apply (case_tac "k=0", simp)
|
|
918 |
apply (simp only: linorder_neq_iff)
|
|
919 |
apply (erule disjE)
|
|
920 |
apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
|
|
921 |
split_neg_lemma [of concl: "%x y. P y"])
|
|
922 |
done
|
|
923 |
|
|
924 |
(* Enable arith to deal with div 2 and mod 2: *)
|
|
925 |
declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split]
|
|
926 |
declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split]
|
|
927 |
|
|
928 |
|
|
929 |
subsection{*Speeding up the Division Algorithm with Shifting*}
|
|
930 |
|
|
931 |
text{*computing div by shifting *}
|
|
932 |
|
|
933 |
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
|
|
934 |
proof cases
|
|
935 |
assume "a=0"
|
|
936 |
thus ?thesis by simp
|
|
937 |
next
|
|
938 |
assume "a\<noteq>0" and le_a: "0\<le>a"
|
|
939 |
hence a_pos: "1 \<le> a" by arith
|
|
940 |
hence one_less_a2: "1 < 2*a" by arith
|
|
941 |
hence le_2a: "2 * (1 + b mod a) \<le> 2 * a"
|
|
942 |
by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq)
|
|
943 |
with a_pos have "0 \<le> b mod a" by simp
|
|
944 |
hence le_addm: "0 \<le> 1 mod (2*a) + 2*(b mod a)"
|
|
945 |
by (simp add: mod_pos_pos_trivial one_less_a2)
|
|
946 |
with le_2a
|
|
947 |
have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0"
|
|
948 |
by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2
|
|
949 |
right_distrib)
|
|
950 |
thus ?thesis
|
|
951 |
by (subst zdiv_zadd1_eq,
|
|
952 |
simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2
|
|
953 |
div_pos_pos_trivial)
|
|
954 |
qed
|
|
955 |
|
|
956 |
lemma neg_zdiv_mult_2: "a \<le> (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a"
|
|
957 |
apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ")
|
|
958 |
apply (rule_tac [2] pos_zdiv_mult_2)
|
|
959 |
apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib)
|
|
960 |
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
|
|
961 |
apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric],
|
|
962 |
simp)
|
|
963 |
done
|
|
964 |
|
|
965 |
|
|
966 |
(*Not clear why this must be proved separately; probably number_of causes
|
|
967 |
simplification problems*)
|
|
968 |
lemma not_0_le_lemma: "~ 0 \<le> x ==> x \<le> (0::int)"
|
|
969 |
by auto
|
|
970 |
|
|
971 |
lemma zdiv_number_of_BIT[simp]:
|
|
972 |
"number_of (v BIT b) div number_of (w BIT bit.B0) =
|
|
973 |
(if b=bit.B0 | (0::int) \<le> number_of w
|
|
974 |
then number_of v div (number_of w)
|
|
975 |
else (number_of v + (1::int)) div (number_of w))"
|
|
976 |
apply (simp only: number_of_eq numeral_simps UNIV_I split: split_if)
|
|
977 |
apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac
|
|
978 |
split: bit.split)
|
|
979 |
done
|
|
980 |
|
|
981 |
|
|
982 |
subsection{*Computing mod by Shifting (proofs resemble those for div)*}
|
|
983 |
|
|
984 |
lemma pos_zmod_mult_2:
|
|
985 |
"(0::int) \<le> a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)"
|
|
986 |
apply (case_tac "a = 0", simp)
|
|
987 |
apply (subgoal_tac "1 < a * 2")
|
|
988 |
prefer 2 apply arith
|
|
989 |
apply (subgoal_tac "2* (1 + b mod a) \<le> 2*a")
|
|
990 |
apply (rule_tac [2] mult_left_mono)
|
|
991 |
apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq
|
|
992 |
pos_mod_bound)
|
|
993 |
apply (subst zmod_zadd1_eq)
|
|
994 |
apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial)
|
|
995 |
apply (rule mod_pos_pos_trivial)
|
|
996 |
apply (auto simp add: mod_pos_pos_trivial left_distrib)
|
|
997 |
apply (subgoal_tac "0 \<le> b mod a", arith, simp)
|
|
998 |
done
|
|
999 |
|
|
1000 |
lemma neg_zmod_mult_2:
|
|
1001 |
"a \<le> (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1"
|
|
1002 |
apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) =
|
|
1003 |
1 + 2* ((-b - 1) mod (-a))")
|
|
1004 |
apply (rule_tac [2] pos_zmod_mult_2)
|
|
1005 |
apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib)
|
|
1006 |
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
|
|
1007 |
prefer 2 apply simp
|
|
1008 |
apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric])
|
|
1009 |
done
|
|
1010 |
|
|
1011 |
lemma zmod_number_of_BIT [simp]:
|
|
1012 |
"number_of (v BIT b) mod number_of (w BIT bit.B0) =
|
|
1013 |
(case b of
|
|
1014 |
bit.B0 => 2 * (number_of v mod number_of w)
|
|
1015 |
| bit.B1 => if (0::int) \<le> number_of w
|
|
1016 |
then 2 * (number_of v mod number_of w) + 1
|
|
1017 |
else 2 * ((number_of v + (1::int)) mod number_of w) - 1)"
|
|
1018 |
apply (simp only: number_of_eq numeral_simps UNIV_I split: bit.split)
|
|
1019 |
apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2
|
|
1020 |
not_0_le_lemma neg_zmod_mult_2 add_ac)
|
|
1021 |
done
|
|
1022 |
|
|
1023 |
|
|
1024 |
subsection{*Quotients of Signs*}
|
|
1025 |
|
|
1026 |
lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0"
|
|
1027 |
apply (subgoal_tac "a div b \<le> -1", force)
|
|
1028 |
apply (rule order_trans)
|
|
1029 |
apply (rule_tac a' = "-1" in zdiv_mono1)
|
|
1030 |
apply (auto simp add: zdiv_minus1)
|
|
1031 |
done
|
|
1032 |
|
|
1033 |
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
|
|
1034 |
by (drule zdiv_mono1_neg, auto)
|
|
1035 |
|
|
1036 |
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
|
|
1037 |
apply auto
|
|
1038 |
apply (drule_tac [2] zdiv_mono1)
|
|
1039 |
apply (auto simp add: linorder_neq_iff)
|
|
1040 |
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
|
|
1041 |
apply (blast intro: div_neg_pos_less0)
|
|
1042 |
done
|
|
1043 |
|
|
1044 |
lemma neg_imp_zdiv_nonneg_iff:
|
|
1045 |
"b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
|
|
1046 |
apply (subst zdiv_zminus_zminus [symmetric])
|
|
1047 |
apply (subst pos_imp_zdiv_nonneg_iff, auto)
|
|
1048 |
done
|
|
1049 |
|
|
1050 |
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
|
|
1051 |
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
|
|
1052 |
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
|
|
1053 |
|
|
1054 |
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
|
|
1055 |
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
|
|
1056 |
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
|
|
1057 |
|
|
1058 |
|
|
1059 |
subsection {* The Divides Relation *}
|
|
1060 |
|
|
1061 |
lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))"
|
|
1062 |
by(simp add:dvd_def zmod_eq_0_iff)
|
|
1063 |
|
|
1064 |
lemmas zdvd_iff_zmod_eq_0_number_of [simp] =
|
|
1065 |
zdvd_iff_zmod_eq_0 [of "number_of x" "number_of y", standard]
|
|
1066 |
|
|
1067 |
lemma zdvd_0_right [iff]: "(m::int) dvd 0"
|
|
1068 |
by (simp add: dvd_def)
|
|
1069 |
|
|
1070 |
lemma zdvd_0_left [iff]: "(0 dvd (m::int)) = (m = 0)"
|
|
1071 |
by (simp add: dvd_def)
|
|
1072 |
|
|
1073 |
lemma zdvd_1_left [iff]: "1 dvd (m::int)"
|
|
1074 |
by (simp add: dvd_def)
|
|
1075 |
|
|
1076 |
lemma zdvd_refl [simp]: "m dvd (m::int)"
|
|
1077 |
by (auto simp add: dvd_def intro: zmult_1_right [symmetric])
|
|
1078 |
|
|
1079 |
lemma zdvd_trans: "m dvd n ==> n dvd k ==> m dvd (k::int)"
|
|
1080 |
by (auto simp add: dvd_def intro: mult_assoc)
|
|
1081 |
|
|
1082 |
lemma zdvd_zminus_iff: "(m dvd -n) = (m dvd (n::int))"
|
|
1083 |
apply (simp add: dvd_def, auto)
|
|
1084 |
apply (rule_tac [!] x = "-k" in exI, auto)
|
|
1085 |
done
|
|
1086 |
|
|
1087 |
lemma zdvd_zminus2_iff: "(-m dvd n) = (m dvd (n::int))"
|
|
1088 |
apply (simp add: dvd_def, auto)
|
|
1089 |
apply (rule_tac [!] x = "-k" in exI, auto)
|
|
1090 |
done
|
|
1091 |
lemma zdvd_abs1: "( \<bar>i::int\<bar> dvd j) = (i dvd j)"
|
|
1092 |
apply (cases "i > 0", simp)
|
|
1093 |
apply (simp add: dvd_def)
|
|
1094 |
apply (rule iffI)
|
|
1095 |
apply (erule exE)
|
|
1096 |
apply (rule_tac x="- k" in exI, simp)
|
|
1097 |
apply (erule exE)
|
|
1098 |
apply (rule_tac x="- k" in exI, simp)
|
|
1099 |
done
|
|
1100 |
lemma zdvd_abs2: "( (i::int) dvd \<bar>j\<bar>) = (i dvd j)"
|
|
1101 |
apply (cases "j > 0", simp)
|
|
1102 |
apply (simp add: dvd_def)
|
|
1103 |
apply (rule iffI)
|
|
1104 |
apply (erule exE)
|
|
1105 |
apply (rule_tac x="- k" in exI, simp)
|
|
1106 |
apply (erule exE)
|
|
1107 |
apply (rule_tac x="- k" in exI, simp)
|
|
1108 |
done
|
|
1109 |
|
|
1110 |
lemma zdvd_anti_sym:
|
|
1111 |
"0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
|
|
1112 |
apply (simp add: dvd_def, auto)
|
|
1113 |
apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
|
|
1114 |
done
|
|
1115 |
|
|
1116 |
lemma zdvd_zadd: "k dvd m ==> k dvd n ==> k dvd (m + n :: int)"
|
|
1117 |
apply (simp add: dvd_def)
|
|
1118 |
apply (blast intro: right_distrib [symmetric])
|
|
1119 |
done
|
|
1120 |
|
|
1121 |
lemma zdvd_dvd_eq: assumes anz:"a \<noteq> 0" and ab: "(a::int) dvd b" and ba:"b dvd a"
|
|
1122 |
shows "\<bar>a\<bar> = \<bar>b\<bar>"
|
|
1123 |
proof-
|
|
1124 |
from ab obtain k where k:"b = a*k" unfolding dvd_def by blast
|
|
1125 |
from ba obtain k' where k':"a = b*k'" unfolding dvd_def by blast
|
|
1126 |
from k k' have "a = a*k*k'" by simp
|
|
1127 |
with mult_cancel_left1[where c="a" and b="k*k'"]
|
|
1128 |
have kk':"k*k' = 1" using anz by (simp add: mult_assoc)
|
|
1129 |
hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
|
|
1130 |
thus ?thesis using k k' by auto
|
|
1131 |
qed
|
|
1132 |
|
|
1133 |
lemma zdvd_zdiff: "k dvd m ==> k dvd n ==> k dvd (m - n :: int)"
|
|
1134 |
apply (simp add: dvd_def)
|
|
1135 |
apply (blast intro: right_diff_distrib [symmetric])
|
|
1136 |
done
|
|
1137 |
|
|
1138 |
lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
|
|
1139 |
apply (subgoal_tac "m = n + (m - n)")
|
|
1140 |
apply (erule ssubst)
|
|
1141 |
apply (blast intro: zdvd_zadd, simp)
|
|
1142 |
done
|
|
1143 |
|
|
1144 |
lemma zdvd_zmult: "k dvd (n::int) ==> k dvd m * n"
|
|
1145 |
apply (simp add: dvd_def)
|
|
1146 |
apply (blast intro: mult_left_commute)
|
|
1147 |
done
|
|
1148 |
|
|
1149 |
lemma zdvd_zmult2: "k dvd (m::int) ==> k dvd m * n"
|
|
1150 |
apply (subst mult_commute)
|
|
1151 |
apply (erule zdvd_zmult)
|
|
1152 |
done
|
|
1153 |
|
|
1154 |
lemma zdvd_triv_right [iff]: "(k::int) dvd m * k"
|
|
1155 |
apply (rule zdvd_zmult)
|
|
1156 |
apply (rule zdvd_refl)
|
|
1157 |
done
|
|
1158 |
|
|
1159 |
lemma zdvd_triv_left [iff]: "(k::int) dvd k * m"
|
|
1160 |
apply (rule zdvd_zmult2)
|
|
1161 |
apply (rule zdvd_refl)
|
|
1162 |
done
|
|
1163 |
|
|
1164 |
lemma zdvd_zmultD2: "j * k dvd n ==> j dvd (n::int)"
|
|
1165 |
apply (simp add: dvd_def)
|
|
1166 |
apply (simp add: mult_assoc, blast)
|
|
1167 |
done
|
|
1168 |
|
|
1169 |
lemma zdvd_zmultD: "j * k dvd n ==> k dvd (n::int)"
|
|
1170 |
apply (rule zdvd_zmultD2)
|
|
1171 |
apply (subst mult_commute, assumption)
|
|
1172 |
done
|
|
1173 |
|
|
1174 |
lemma zdvd_zmult_mono: "i dvd m ==> j dvd (n::int) ==> i * j dvd m * n"
|
|
1175 |
apply (simp add: dvd_def, clarify)
|
|
1176 |
apply (rule_tac x = "k * ka" in exI)
|
|
1177 |
apply (simp add: mult_ac)
|
|
1178 |
done
|
|
1179 |
|
|
1180 |
lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
|
|
1181 |
apply (rule iffI)
|
|
1182 |
apply (erule_tac [2] zdvd_zadd)
|
|
1183 |
apply (subgoal_tac "n = (n + k * m) - k * m")
|
|
1184 |
apply (erule ssubst)
|
|
1185 |
apply (erule zdvd_zdiff, simp_all)
|
|
1186 |
done
|
|
1187 |
|
|
1188 |
lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n"
|
|
1189 |
apply (simp add: dvd_def)
|
|
1190 |
apply (auto simp add: zmod_zmult_zmult1)
|
|
1191 |
done
|
|
1192 |
|
|
1193 |
lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)"
|
|
1194 |
apply (subgoal_tac "k dvd n * (m div n) + m mod n")
|
|
1195 |
apply (simp add: zmod_zdiv_equality [symmetric])
|
|
1196 |
apply (simp only: zdvd_zadd zdvd_zmult2)
|
|
1197 |
done
|
|
1198 |
|
|
1199 |
lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)"
|
|
1200 |
apply (simp add: dvd_def, auto)
|
|
1201 |
apply (subgoal_tac "0 < n")
|
|
1202 |
prefer 2
|
|
1203 |
apply (blast intro: order_less_trans)
|
|
1204 |
apply (simp add: zero_less_mult_iff)
|
|
1205 |
apply (subgoal_tac "n * k < n * 1")
|
|
1206 |
apply (drule mult_less_cancel_left [THEN iffD1], auto)
|
|
1207 |
done
|
|
1208 |
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
|
|
1209 |
using zmod_zdiv_equality[where a="m" and b="n"]
|
|
1210 |
by (simp add: ring_eq_simps)
|
|
1211 |
|
|
1212 |
lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m"
|
|
1213 |
apply (subgoal_tac "m mod n = 0")
|
|
1214 |
apply (simp add: zmult_div_cancel)
|
|
1215 |
apply (simp only: zdvd_iff_zmod_eq_0)
|
|
1216 |
done
|
|
1217 |
|
|
1218 |
lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
|
|
1219 |
shows "m dvd n"
|
|
1220 |
proof-
|
|
1221 |
from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
|
|
1222 |
{assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
|
|
1223 |
with h have False by (simp add: mult_assoc)}
|
|
1224 |
hence "n = m * h" by blast
|
|
1225 |
thus ?thesis by blast
|
|
1226 |
qed
|
|
1227 |
|
|
1228 |
theorem ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
|
|
1229 |
apply (simp split add: split_nat)
|
|
1230 |
apply (rule iffI)
|
|
1231 |
apply (erule exE)
|
|
1232 |
apply (rule_tac x = "int x" in exI)
|
|
1233 |
apply simp
|
|
1234 |
apply (erule exE)
|
|
1235 |
apply (rule_tac x = "nat x" in exI)
|
|
1236 |
apply (erule conjE)
|
|
1237 |
apply (erule_tac x = "nat x" in allE)
|
|
1238 |
apply simp
|
|
1239 |
done
|
|
1240 |
|
|
1241 |
theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
|
|
1242 |
apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric]
|
|
1243 |
nat_0_le cong add: conj_cong)
|
|
1244 |
apply (rule iffI)
|
|
1245 |
apply iprover
|
|
1246 |
apply (erule exE)
|
|
1247 |
apply (case_tac "x=0")
|
|
1248 |
apply (rule_tac x=0 in exI)
|
|
1249 |
apply simp
|
|
1250 |
apply (case_tac "0 \<le> k")
|
|
1251 |
apply iprover
|
|
1252 |
apply (simp add: linorder_not_le)
|
|
1253 |
apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]])
|
|
1254 |
apply assumption
|
|
1255 |
apply (simp add: mult_ac)
|
|
1256 |
done
|
|
1257 |
|
|
1258 |
lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)"
|
|
1259 |
proof
|
|
1260 |
assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by (simp add: zdvd_abs1)
|
|
1261 |
hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
|
|
1262 |
hence "nat \<bar>x\<bar> = 1" by simp
|
|
1263 |
thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto)
|
|
1264 |
next
|
|
1265 |
assume "\<bar>x\<bar>=1" thus "x dvd 1"
|
|
1266 |
by(cases "x < 0",simp_all add: minus_equation_iff zdvd_iff_zmod_eq_0)
|
|
1267 |
qed
|
|
1268 |
lemma zdvd_mult_cancel1:
|
|
1269 |
assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
|
|
1270 |
proof
|
|
1271 |
assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m"
|
|
1272 |
by (cases "n >0", auto simp add: zdvd_zminus2_iff minus_equation_iff)
|
|
1273 |
next
|
|
1274 |
assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
|
|
1275 |
from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
|
|
1276 |
qed
|
|
1277 |
|
|
1278 |
lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
|
|
1279 |
apply (auto simp add: dvd_def nat_abs_mult_distrib)
|
|
1280 |
apply (auto simp add: nat_eq_iff abs_if split add: split_if_asm)
|
|
1281 |
apply (rule_tac x = "-(int k)" in exI)
|
|
1282 |
apply (auto simp add: int_mult)
|
|
1283 |
done
|
|
1284 |
|
|
1285 |
lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
|
|
1286 |
apply (auto simp add: dvd_def abs_if int_mult)
|
|
1287 |
apply (rule_tac [3] x = "nat k" in exI)
|
|
1288 |
apply (rule_tac [2] x = "-(int k)" in exI)
|
|
1289 |
apply (rule_tac x = "nat (-k)" in exI)
|
|
1290 |
apply (cut_tac [3] k = m in int_less_0_conv)
|
|
1291 |
apply (cut_tac k = m in int_less_0_conv)
|
|
1292 |
apply (auto simp add: zero_le_mult_iff mult_less_0_iff
|
|
1293 |
nat_mult_distrib [symmetric] nat_eq_iff2)
|
|
1294 |
done
|
|
1295 |
|
|
1296 |
lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
|
|
1297 |
apply (auto simp add: dvd_def int_mult)
|
|
1298 |
apply (rule_tac x = "nat k" in exI)
|
|
1299 |
apply (cut_tac k = m in int_less_0_conv)
|
|
1300 |
apply (auto simp add: zero_le_mult_iff mult_less_0_iff
|
|
1301 |
nat_mult_distrib [symmetric] nat_eq_iff2)
|
|
1302 |
done
|
|
1303 |
|
|
1304 |
lemma zminus_dvd_iff [iff]: "(-z dvd w) = (z dvd (w::int))"
|
|
1305 |
apply (auto simp add: dvd_def)
|
|
1306 |
apply (rule_tac [!] x = "-k" in exI, auto)
|
|
1307 |
done
|
|
1308 |
|
|
1309 |
lemma dvd_zminus_iff [iff]: "(z dvd -w) = (z dvd (w::int))"
|
|
1310 |
apply (auto simp add: dvd_def)
|
|
1311 |
apply (drule minus_equation_iff [THEN iffD1])
|
|
1312 |
apply (rule_tac [!] x = "-k" in exI, auto)
|
|
1313 |
done
|
|
1314 |
|
|
1315 |
lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
|
|
1316 |
apply (rule_tac z=n in int_cases)
|
|
1317 |
apply (auto simp add: dvd_int_iff)
|
|
1318 |
apply (rule_tac z=z in int_cases)
|
|
1319 |
apply (auto simp add: dvd_imp_le)
|
|
1320 |
done
|
|
1321 |
|
|
1322 |
|
|
1323 |
subsection{*Integer Powers*}
|
|
1324 |
|
|
1325 |
instance int :: power ..
|
|
1326 |
|
|
1327 |
primrec
|
|
1328 |
"p ^ 0 = 1"
|
|
1329 |
"p ^ (Suc n) = (p::int) * (p ^ n)"
|
|
1330 |
|
|
1331 |
|
|
1332 |
instance int :: recpower
|
|
1333 |
proof
|
|
1334 |
fix z :: int
|
|
1335 |
fix n :: nat
|
|
1336 |
show "z^0 = 1" by simp
|
|
1337 |
show "z^(Suc n) = z * (z^n)" by simp
|
|
1338 |
qed
|
|
1339 |
|
|
1340 |
|
|
1341 |
lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m"
|
|
1342 |
apply (induct "y", auto)
|
|
1343 |
apply (rule zmod_zmult1_eq [THEN trans])
|
|
1344 |
apply (simp (no_asm_simp))
|
|
1345 |
apply (rule zmod_zmult_distrib [symmetric])
|
|
1346 |
done
|
|
1347 |
|
|
1348 |
lemma zpower_zadd_distrib: "x^(y+z) = ((x^y)*(x^z)::int)"
|
|
1349 |
by (rule Power.power_add)
|
|
1350 |
|
|
1351 |
lemma zpower_zpower: "(x^y)^z = (x^(y*z)::int)"
|
|
1352 |
by (rule Power.power_mult [symmetric])
|
|
1353 |
|
|
1354 |
lemma zero_less_zpower_abs_iff [simp]:
|
|
1355 |
"(0 < (abs x)^n) = (x \<noteq> (0::int) | n=0)"
|
|
1356 |
apply (induct "n")
|
|
1357 |
apply (auto simp add: zero_less_mult_iff)
|
|
1358 |
done
|
|
1359 |
|
|
1360 |
lemma zero_le_zpower_abs [simp]: "(0::int) <= (abs x)^n"
|
|
1361 |
apply (induct "n")
|
|
1362 |
apply (auto simp add: zero_le_mult_iff)
|
|
1363 |
done
|
|
1364 |
|
|
1365 |
lemma int_power: "int (m^n) = (int m) ^ n"
|
|
1366 |
by (induct n, simp_all add: int_mult)
|
|
1367 |
|
|
1368 |
text{*Compatibility binding*}
|
|
1369 |
lemmas zpower_int = int_power [symmetric]
|
|
1370 |
|
|
1371 |
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
|
|
1372 |
apply (subst split_div, auto)
|
|
1373 |
apply (subst split_zdiv, auto)
|
|
1374 |
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient)
|
|
1375 |
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
|
|
1376 |
done
|
|
1377 |
|
|
1378 |
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
|
|
1379 |
apply (subst split_mod, auto)
|
|
1380 |
apply (subst split_zmod, auto)
|
|
1381 |
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia
|
|
1382 |
in unique_remainder)
|
|
1383 |
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
|
|
1384 |
done
|
|
1385 |
|
|
1386 |
text{*Suggested by Matthias Daum*}
|
|
1387 |
lemma int_power_div_base:
|
|
1388 |
"\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
|
|
1389 |
apply (subgoal_tac "k ^ m = k ^ ((m - 1) + 1)")
|
|
1390 |
apply (erule ssubst)
|
|
1391 |
apply (simp only: power_add)
|
|
1392 |
apply simp_all
|
|
1393 |
done
|
|
1394 |
|
|
1395 |
text {* code serializer setup *}
|
|
1396 |
|
|
1397 |
code_modulename SML
|
|
1398 |
IntDiv Integer
|
|
1399 |
|
|
1400 |
code_modulename OCaml
|
|
1401 |
IntDiv Integer
|
|
1402 |
|
|
1403 |
code_modulename Haskell
|
|
1404 |
IntDiv Divides
|
|
1405 |
|
|
1406 |
end
|