| author | wenzelm | 
| Wed, 07 Nov 2007 22:20:11 +0100 | |
| changeset 25332 | 73491e84ead1 | 
| parent 25231 | 1aa9c8f022d0 | 
| child 25382 | 72cfe89f7b21 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Nat.thy | 
| 2 | ID: $Id$ | |
| 21243 | 3 | Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel | 
| 923 | 4 | |
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 5 | Type "nat" is a linear order, and a datatype; arithmetic operators + - | 
| 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 6 | and * (for div, mod and dvd, see theory Divides). | 
| 923 | 7 | *) | 
| 8 | ||
| 13449 | 9 | header {* Natural numbers *}
 | 
| 10 | ||
| 15131 | 11 | theory Nat | 
| 15140 | 12 | imports Wellfounded_Recursion Ring_and_Field | 
| 23263 | 13 | uses | 
| 14 | "~~/src/Tools/rat.ML" | |
| 15 | "~~/src/Provers/Arith/cancel_sums.ML" | |
| 16 |   ("arith_data.ML")
 | |
| 24091 | 17 | "~~/src/Provers/Arith/fast_lin_arith.ML" | 
| 18 |   ("Tools/lin_arith.ML")
 | |
| 24699 
c6674504103f
datatype interpretators for size and datatype_realizer
 haftmann parents: 
24523diff
changeset | 19 |   ("Tools/function_package/size.ML")
 | 
| 15131 | 20 | begin | 
| 13449 | 21 | |
| 22 | subsection {* Type @{text ind} *}
 | |
| 23 | ||
| 24 | typedecl ind | |
| 25 | ||
| 19573 | 26 | axiomatization | 
| 27 | Zero_Rep :: ind and | |
| 28 | Suc_Rep :: "ind => ind" | |
| 29 | where | |
| 13449 | 30 |   -- {* the axiom of infinity in 2 parts *}
 | 
| 19573 | 31 | inj_Suc_Rep: "inj Suc_Rep" and | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 32 | Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" | 
| 19573 | 33 | |
| 13449 | 34 | |
| 35 | subsection {* Type nat *}
 | |
| 36 | ||
| 37 | text {* Type definition *}
 | |
| 38 | ||
| 23740 | 39 | inductive_set Nat :: "ind set" | 
| 22262 | 40 | where | 
| 23740 | 41 | Zero_RepI: "Zero_Rep : Nat" | 
| 42 | | Suc_RepI: "i : Nat ==> Suc_Rep i : Nat" | |
| 13449 | 43 | |
| 44 | global | |
| 45 | ||
| 46 | typedef (open Nat) | |
| 23740 | 47 | nat = Nat | 
| 21243 | 48 | proof | 
| 23740 | 49 | show "Zero_Rep : Nat" by (rule Nat.Zero_RepI) | 
| 21243 | 50 | qed | 
| 13449 | 51 | |
| 52 | consts | |
| 53 | Suc :: "nat => nat" | |
| 54 | ||
| 55 | local | |
| 56 | ||
| 24995 | 57 | instance nat :: zero | 
| 58 | Zero_nat_def: "0 == Abs_Nat Zero_Rep" .. | |
| 59 | lemmas [code func del] = Zero_nat_def | |
| 60 | ||
| 13449 | 61 | defs | 
| 18648 | 62 | Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))" | 
| 22718 | 63 | |
| 13449 | 64 | theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n" | 
| 65 | apply (unfold Zero_nat_def Suc_def) | |
| 66 |   apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
 | |
| 23740 | 67 | apply (erule Rep_Nat [THEN Nat.induct]) | 
| 68 | apply (iprover elim: Abs_Nat_inverse [THEN subst]) | |
| 13449 | 69 | done | 
| 70 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 71 | lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0" | 
| 23740 | 72 | by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI | 
| 22718 | 73 | Suc_Rep_not_Zero_Rep) | 
| 13449 | 74 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 75 | lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m" | 
| 13449 | 76 | by (rule not_sym, rule Suc_not_Zero not_sym) | 
| 77 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16635diff
changeset | 78 | lemma inj_Suc[simp]: "inj_on Suc N" | 
| 23740 | 79 | by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI | 
| 22718 | 80 | inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) | 
| 13449 | 81 | |
| 82 | lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)" | |
| 15413 | 83 | by (rule inj_Suc [THEN inj_eq]) | 
| 13449 | 84 | |
| 5188 
633ec5f6c155
Declaration of type 'nat' as a datatype (this allows usage of
 berghofe parents: 
4640diff
changeset | 85 | rep_datatype nat | 
| 13449 | 86 | distinct Suc_not_Zero Zero_not_Suc | 
| 87 | inject Suc_Suc_eq | |
| 21411 | 88 | induction nat_induct | 
| 89 | ||
| 90 | declare nat.induct [case_names 0 Suc, induct type: nat] | |
| 91 | declare nat.exhaust [case_names 0 Suc, cases type: nat] | |
| 13449 | 92 | |
| 21672 | 93 | lemmas nat_rec_0 = nat.recs(1) | 
| 94 | and nat_rec_Suc = nat.recs(2) | |
| 95 | ||
| 96 | lemmas nat_case_0 = nat.cases(1) | |
| 97 | and nat_case_Suc = nat.cases(2) | |
| 98 | ||
| 24995 | 99 | |
| 100 | text {* Injectiveness and distinctness lemmas *}
 | |
| 101 | ||
| 102 | lemma Suc_neq_Zero: "Suc m = 0 ==> R" | |
| 25162 | 103 | by (rule notE, rule Suc_not_Zero) | 
| 24995 | 104 | |
| 105 | lemma Zero_neq_Suc: "0 = Suc m ==> R" | |
| 25162 | 106 | by (rule Suc_neq_Zero, erule sym) | 
| 24995 | 107 | |
| 108 | lemma Suc_inject: "Suc x = Suc y ==> x = y" | |
| 25162 | 109 | by (rule inj_Suc [THEN injD]) | 
| 24995 | 110 | |
| 111 | lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False" | |
| 25162 | 112 | by auto | 
| 24995 | 113 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 114 | lemma n_not_Suc_n: "n \<noteq> Suc n" | 
| 25162 | 115 | by (induct n) simp_all | 
| 13449 | 116 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 117 | lemma Suc_n_not_n: "Suc t \<noteq> t" | 
| 25162 | 118 | by (rule not_sym, rule n_not_Suc_n) | 
| 13449 | 119 | |
| 24995 | 120 | |
| 13449 | 121 | text {* A special form of induction for reasoning
 | 
| 122 |   about @{term "m < n"} and @{term "m - n"} *}
 | |
| 123 | ||
| 124 | theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> | |
| 125 | (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" | |
| 14208 | 126 | apply (rule_tac x = m in spec) | 
| 15251 | 127 | apply (induct n) | 
| 13449 | 128 | prefer 2 | 
| 129 | apply (rule allI) | |
| 17589 | 130 | apply (induct_tac x, iprover+) | 
| 13449 | 131 | done | 
| 132 | ||
| 24995 | 133 | |
| 134 | subsection {* Arithmetic operators *}
 | |
| 135 | ||
| 136 | instance nat :: "{one, plus, minus, times}"
 | |
| 137 | One_nat_def [simp]: "1 == Suc 0" .. | |
| 138 | ||
| 139 | primrec | |
| 140 | add_0: "0 + n = n" | |
| 141 | add_Suc: "Suc m + n = Suc (m + n)" | |
| 142 | ||
| 143 | primrec | |
| 144 | diff_0: "m - 0 = m" | |
| 145 | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" | |
| 146 | ||
| 147 | primrec | |
| 148 | mult_0: "0 * n = 0" | |
| 149 | mult_Suc: "Suc m * n = n + (m * n)" | |
| 150 | ||
| 151 | ||
| 152 | subsection {* Orders on @{typ nat} *}
 | |
| 153 | ||
| 154 | definition | |
| 155 | pred_nat :: "(nat * nat) set" where | |
| 156 |   "pred_nat = {(m, n). n = Suc m}"
 | |
| 157 | ||
| 158 | instance nat :: ord | |
| 159 | less_def: "m < n == (m, n) : pred_nat^+" | |
| 160 | le_def: "m \<le> (n::nat) == ~ (n < m)" .. | |
| 161 | ||
| 162 | lemmas [code func del] = less_def le_def | |
| 13449 | 163 | |
| 164 | lemma wf_pred_nat: "wf pred_nat" | |
| 14208 | 165 | apply (unfold wf_def pred_nat_def, clarify) | 
| 166 | apply (induct_tac x, blast+) | |
| 13449 | 167 | done | 
| 168 | ||
| 169 | lemma wf_less: "wf {(x, y::nat). x < y}"
 | |
| 170 | apply (unfold less_def) | |
| 14208 | 171 | apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast) | 
| 13449 | 172 | done | 
| 173 | ||
| 174 | lemma less_eq: "((m, n) : pred_nat^+) = (m < n)" | |
| 175 | apply (unfold less_def) | |
| 176 | apply (rule refl) | |
| 177 | done | |
| 178 | ||
| 179 | subsubsection {* Introduction properties *}
 | |
| 180 | ||
| 181 | lemma less_trans: "i < j ==> j < k ==> i < (k::nat)" | |
| 182 | apply (unfold less_def) | |
| 14208 | 183 | apply (rule trans_trancl [THEN transD], assumption+) | 
| 13449 | 184 | done | 
| 185 | ||
| 186 | lemma lessI [iff]: "n < Suc n" | |
| 187 | apply (unfold less_def pred_nat_def) | |
| 188 | apply (simp add: r_into_trancl) | |
| 189 | done | |
| 190 | ||
| 191 | lemma less_SucI: "i < j ==> i < Suc j" | |
| 14208 | 192 | apply (rule less_trans, assumption) | 
| 13449 | 193 | apply (rule lessI) | 
| 194 | done | |
| 195 | ||
| 196 | lemma zero_less_Suc [iff]: "0 < Suc n" | |
| 197 | apply (induct n) | |
| 198 | apply (rule lessI) | |
| 199 | apply (erule less_trans) | |
| 200 | apply (rule lessI) | |
| 201 | done | |
| 202 | ||
| 203 | subsubsection {* Elimination properties *}
 | |
| 204 | ||
| 205 | lemma less_not_sym: "n < m ==> ~ m < (n::nat)" | |
| 206 | apply (unfold less_def) | |
| 207 | apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym]) | |
| 208 | done | |
| 209 | ||
| 210 | lemma less_asym: | |
| 211 | assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P | |
| 212 | apply (rule contrapos_np) | |
| 213 | apply (rule less_not_sym) | |
| 214 | apply (rule h1) | |
| 215 | apply (erule h2) | |
| 216 | done | |
| 217 | ||
| 218 | lemma less_not_refl: "~ n < (n::nat)" | |
| 219 | apply (unfold less_def) | |
| 220 | apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl]) | |
| 221 | done | |
| 222 | ||
| 223 | lemma less_irrefl [elim!]: "(n::nat) < n ==> R" | |
| 25162 | 224 | by (rule notE, rule less_not_refl) | 
| 13449 | 225 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 226 | lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast | 
| 13449 | 227 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 228 | lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" | 
| 25162 | 229 | by (rule not_sym, rule less_not_refl2) | 
| 13449 | 230 | |
| 231 | lemma lessE: | |
| 232 | assumes major: "i < k" | |
| 233 | and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" | |
| 234 | shows P | |
| 14208 | 235 | apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all) | 
| 13449 | 236 | apply (erule p1) | 
| 237 | apply (rule p2) | |
| 14208 | 238 | apply (simp add: less_def pred_nat_def, assumption) | 
| 13449 | 239 | done | 
| 240 | ||
| 241 | lemma not_less0 [iff]: "~ n < (0::nat)" | |
| 25162 | 242 | by (blast elim: lessE) | 
| 13449 | 243 | |
| 244 | lemma less_zeroE: "(n::nat) < 0 ==> R" | |
| 25162 | 245 | by (rule notE, rule not_less0) | 
| 13449 | 246 | |
| 247 | lemma less_SucE: assumes major: "m < Suc n" | |
| 248 | and less: "m < n ==> P" and eq: "m = n ==> P" shows P | |
| 249 | apply (rule major [THEN lessE]) | |
| 14208 | 250 | apply (rule eq, blast) | 
| 251 | apply (rule less, blast) | |
| 13449 | 252 | done | 
| 253 | ||
| 254 | lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" | |
| 25162 | 255 | by (blast elim!: less_SucE intro: less_trans) | 
| 13449 | 256 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24196diff
changeset | 257 | lemma less_one [iff,noatp]: "(n < (1::nat)) = (n = 0)" | 
| 25162 | 258 | by (simp add: less_Suc_eq) | 
| 13449 | 259 | |
| 260 | lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" | |
| 25162 | 261 | by (simp add: less_Suc_eq) | 
| 13449 | 262 | |
| 263 | lemma Suc_mono: "m < n ==> Suc m < Suc n" | |
| 25162 | 264 | by (induct n) (fast elim: less_trans lessE)+ | 
| 13449 | 265 | |
| 266 | text {* "Less than" is a linear ordering *}
 | |
| 267 | lemma less_linear: "m < n | m = n | n < (m::nat)" | |
| 15251 | 268 | apply (induct m) | 
| 269 | apply (induct n) | |
| 13449 | 270 | apply (rule refl [THEN disjI1, THEN disjI2]) | 
| 271 | apply (rule zero_less_Suc [THEN disjI1]) | |
| 272 | apply (blast intro: Suc_mono less_SucI elim: lessE) | |
| 273 | done | |
| 274 | ||
| 14302 | 275 | text {* "Less than" is antisymmetric, sort of *}
 | 
| 276 | lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" | |
| 22718 | 277 | apply(simp only:less_Suc_eq) | 
| 278 | apply blast | |
| 279 | done | |
| 14302 | 280 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 281 | lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" | 
| 13449 | 282 | using less_linear by blast | 
| 283 | ||
| 284 | lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" | |
| 285 | and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" | |
| 286 | shows "P n m" | |
| 287 | apply (rule less_linear [THEN disjE]) | |
| 288 | apply (erule_tac [2] disjE) | |
| 289 | apply (erule lessCase) | |
| 290 | apply (erule sym [THEN eqCase]) | |
| 291 | apply (erule major) | |
| 292 | done | |
| 293 | ||
| 294 | ||
| 295 | subsubsection {* Inductive (?) properties *}
 | |
| 296 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 297 | lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" | 
| 13449 | 298 | apply (simp add: nat_neq_iff) | 
| 299 | apply (blast elim!: less_irrefl less_SucE elim: less_asym) | |
| 300 | done | |
| 301 | ||
| 302 | lemma Suc_lessD: "Suc m < n ==> m < n" | |
| 303 | apply (induct n) | |
| 304 | apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+ | |
| 305 | done | |
| 306 | ||
| 307 | lemma Suc_lessE: assumes major: "Suc i < k" | |
| 308 | and minor: "!!j. i < j ==> k = Suc j ==> P" shows P | |
| 309 | apply (rule major [THEN lessE]) | |
| 310 | apply (erule lessI [THEN minor]) | |
| 14208 | 311 | apply (erule Suc_lessD [THEN minor], assumption) | 
| 13449 | 312 | done | 
| 313 | ||
| 314 | lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" | |
| 25162 | 315 | by (blast elim: lessE dest: Suc_lessD) | 
| 4104 | 316 | |
| 16635 | 317 | lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)" | 
| 13449 | 318 | apply (rule iffI) | 
| 319 | apply (erule Suc_less_SucD) | |
| 320 | apply (erule Suc_mono) | |
| 321 | done | |
| 322 | ||
| 323 | lemma less_trans_Suc: | |
| 324 | assumes le: "i < j" shows "j < k ==> Suc i < k" | |
| 14208 | 325 | apply (induct k, simp_all) | 
| 13449 | 326 | apply (insert le) | 
| 327 | apply (simp add: less_Suc_eq) | |
| 328 | apply (blast dest: Suc_lessD) | |
| 329 | done | |
| 330 | ||
| 16635 | 331 | lemma [code]: "((n::nat) < 0) = False" by simp | 
| 332 | lemma [code]: "(0 < Suc n) = True" by simp | |
| 333 | ||
| 13449 | 334 | text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
 | 
| 335 | lemma not_less_eq: "(~ m < n) = (n < Suc m)" | |
| 25162 | 336 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 337 | |
| 338 | text {* Complete induction, aka course-of-values induction *}
 | |
| 339 | lemma nat_less_induct: | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 340 | assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" | 
| 22718 | 341 | apply (induct n rule: wf_induct [OF wf_pred_nat [THEN wf_trancl]]) | 
| 13449 | 342 | apply (rule prem) | 
| 14208 | 343 | apply (unfold less_def, assumption) | 
| 13449 | 344 | done | 
| 345 | ||
| 14131 | 346 | lemmas less_induct = nat_less_induct [rule_format, case_names less] | 
| 347 | ||
| 21243 | 348 | |
| 24995 | 349 | text {* Properties of "less than or equal" *}
 | 
| 13449 | 350 | |
| 351 | text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 352 | lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)" | 
| 22718 | 353 | unfolding le_def by (rule not_less_eq [symmetric]) | 
| 13449 | 354 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 355 | lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" | 
| 25162 | 356 | by (rule less_Suc_eq_le [THEN iffD2]) | 
| 13449 | 357 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 358 | lemma le0 [iff]: "(0::nat) \<le> n" | 
| 22718 | 359 | unfolding le_def by (rule not_less0) | 
| 13449 | 360 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 361 | lemma Suc_n_not_le_n: "~ Suc n \<le> n" | 
| 25162 | 362 | by (simp add: le_def) | 
| 13449 | 363 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 364 | lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)" | 
| 25162 | 365 | by (induct i) (simp_all add: le_def) | 
| 13449 | 366 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 367 | lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" | 
| 25162 | 368 | by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq) | 
| 13449 | 369 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 370 | lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" | 
| 25162 | 371 | by (drule le_Suc_eq [THEN iffD1], iprover+) | 
| 13449 | 372 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 373 | lemma Suc_leI: "m < n ==> Suc(m) \<le> n" | 
| 13449 | 374 | apply (simp add: le_def less_Suc_eq) | 
| 375 | apply (blast elim!: less_irrefl less_asym) | |
| 376 |   done -- {* formerly called lessD *}
 | |
| 377 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 378 | lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n" | 
| 25162 | 379 | by (simp add: le_def less_Suc_eq) | 
| 13449 | 380 | |
| 381 | text {* Stronger version of @{text Suc_leD} *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 382 | lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" | 
| 13449 | 383 | apply (simp add: le_def less_Suc_eq) | 
| 384 | using less_linear | |
| 385 | apply blast | |
| 386 | done | |
| 387 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 388 | lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)" | 
| 25162 | 389 | by (blast intro: Suc_leI Suc_le_lessD) | 
| 13449 | 390 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 391 | lemma le_SucI: "m \<le> n ==> m \<le> Suc n" | 
| 25162 | 392 | by (unfold le_def) (blast dest: Suc_lessD) | 
| 13449 | 393 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 394 | lemma less_imp_le: "m < n ==> m \<le> (n::nat)" | 
| 25162 | 395 | by (unfold le_def) (blast elim: less_asym) | 
| 13449 | 396 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 397 | text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
 | 
| 13449 | 398 | lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq | 
| 399 | ||
| 400 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 401 | text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
 | 
| 13449 | 402 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 403 | lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)" | 
| 22718 | 404 | unfolding le_def | 
| 13449 | 405 | using less_linear | 
| 22718 | 406 | by (blast elim: less_irrefl less_asym) | 
| 13449 | 407 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 408 | lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" | 
| 22718 | 409 | unfolding le_def | 
| 13449 | 410 | using less_linear | 
| 22718 | 411 | by (blast elim!: less_irrefl elim: less_asym) | 
| 13449 | 412 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 413 | lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" | 
| 25162 | 414 | by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq) | 
| 13449 | 415 | |
| 22718 | 416 | text {* Useful with @{text blast}. *}
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 417 | lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" | 
| 25162 | 418 | by (rule less_or_eq_imp_le) (rule disjI2) | 
| 13449 | 419 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 420 | lemma le_refl: "n \<le> (n::nat)" | 
| 25162 | 421 | by (simp add: le_eq_less_or_eq) | 
| 13449 | 422 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 423 | lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)" | 
| 25162 | 424 | by (blast dest!: le_imp_less_or_eq intro: less_trans) | 
| 13449 | 425 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 426 | lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)" | 
| 25162 | 427 | by (blast dest!: le_imp_less_or_eq intro: less_trans) | 
| 13449 | 428 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 429 | lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" | 
| 25162 | 430 | by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans) | 
| 13449 | 431 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 432 | lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" | 
| 25162 | 433 | by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym) | 
| 13449 | 434 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 435 | lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)" | 
| 25162 | 436 | by (simp add: le_simps) | 
| 13449 | 437 | |
| 438 | text {* Axiom @{text order_less_le} of class @{text order}: *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 439 | lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" | 
| 25162 | 440 | by (simp add: le_def nat_neq_iff) (blast elim!: less_asym) | 
| 13449 | 441 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 442 | lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" | 
| 25162 | 443 | by (rule iffD2, rule nat_less_le, rule conjI) | 
| 13449 | 444 | |
| 445 | text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 446 | lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" | 
| 13449 | 447 | apply (simp add: le_eq_less_or_eq) | 
| 22718 | 448 | using less_linear by blast | 
| 13449 | 449 | |
| 24995 | 450 | text {* Type @{typ nat} is a wellfounded linear order *}
 | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 451 | |
| 22318 | 452 | instance nat :: wellorder | 
| 14691 | 453 | by intro_classes | 
| 454 | (assumption | | |
| 455 | rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+ | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 456 | |
| 22718 | 457 | lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] | 
| 15921 | 458 | |
| 13449 | 459 | lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" | 
| 25162 | 460 | by (blast elim!: less_SucE) | 
| 13449 | 461 | |
| 462 | text {*
 | |
| 463 |   Rewrite @{term "n < Suc m"} to @{term "n = m"}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 464 |   if @{term "~ n < m"} or @{term "m \<le> n"} hold.
 | 
| 13449 | 465 | Not suitable as default simprules because they often lead to looping | 
| 466 | *} | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 467 | lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" | 
| 25162 | 468 | by (rule not_less_less_Suc_eq, rule leD) | 
| 13449 | 469 | |
| 470 | lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq | |
| 471 | ||
| 472 | ||
| 473 | text {*
 | |
| 22718 | 474 |   Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}.
 | 
| 475 | No longer added as simprules (they loop) | |
| 13449 | 476 |   but via @{text reorient_simproc} in Bin
 | 
| 477 | *} | |
| 478 | ||
| 479 | text {* Polymorphic, not just for @{typ nat} *}
 | |
| 480 | lemma zero_reorient: "(0 = x) = (x = 0)" | |
| 25162 | 481 | by auto | 
| 13449 | 482 | |
| 483 | lemma one_reorient: "(1 = x) = (x = 1)" | |
| 25162 | 484 | by auto | 
| 13449 | 485 | |
| 22718 | 486 | text {* These two rules ease the use of primitive recursion.
 | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 487 | NOTE USE OF @{text "=="} *}
 | 
| 13449 | 488 | lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" | 
| 25162 | 489 | by simp | 
| 13449 | 490 | |
| 491 | lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" | |
| 25162 | 492 | by simp | 
| 13449 | 493 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 494 | lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" | 
| 25162 | 495 | by (cases n) simp_all | 
| 496 | ||
| 497 | lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m" | |
| 498 | by (cases n) simp_all | |
| 13449 | 499 | |
| 22718 | 500 | lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0" | 
| 25162 | 501 | by (cases n) simp_all | 
| 13449 | 502 | |
| 25162 | 503 | lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)" | 
| 504 | by (cases n) simp_all | |
| 25140 | 505 | |
| 13449 | 506 | text {* This theorem is useful with @{text blast} *}
 | 
| 507 | lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" | |
| 25162 | 508 | by (rule neq0_conv[THEN iffD1], iprover) | 
| 13449 | 509 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 510 | lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" | 
| 25162 | 511 | by (fast intro: not0_implies_Suc) | 
| 13449 | 512 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24196diff
changeset | 513 | lemma not_gr0 [iff,noatp]: "!!n::nat. (~ (0 < n)) = (n = 0)" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 514 | using neq0_conv by blast | 
| 13449 | 515 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 516 | lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" | 
| 25162 | 517 | by (induct m') simp_all | 
| 13449 | 518 | |
| 519 | text {* Useful in certain inductive arguments *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 520 | lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" | 
| 25162 | 521 | by (cases m) simp_all | 
| 13449 | 522 | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 523 | lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n" | 
| 13449 | 524 | apply (rule nat_less_induct) | 
| 525 | apply (case_tac n) | |
| 526 | apply (case_tac [2] nat) | |
| 527 | apply (blast intro: less_trans)+ | |
| 528 | done | |
| 529 | ||
| 21243 | 530 | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
15281diff
changeset | 531 | subsection {* @{text LEAST} theorems for type @{typ nat}*}
 | 
| 13449 | 532 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 533 | lemma Least_Suc: | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 534 | "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" | 
| 14208 | 535 | apply (case_tac "n", auto) | 
| 13449 | 536 | apply (frule LeastI) | 
| 537 | apply (drule_tac P = "%x. P (Suc x) " in LeastI) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 538 | apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") | 
| 13449 | 539 | apply (erule_tac [2] Least_le) | 
| 14208 | 540 | apply (case_tac "LEAST x. P x", auto) | 
| 13449 | 541 | apply (drule_tac P = "%x. P (Suc x) " in Least_le) | 
| 542 | apply (blast intro: order_antisym) | |
| 543 | done | |
| 544 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 545 | lemma Least_Suc2: | 
| 25162 | 546 | "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" | 
| 547 | by (erule (1) Least_Suc [THEN ssubst], simp) | |
| 13449 | 548 | |
| 549 | ||
| 550 | subsection {* @{term min} and @{term max} *}
 | |
| 551 | ||
| 25076 | 552 | lemma mono_Suc: "mono Suc" | 
| 25162 | 553 | by (rule monoI) simp | 
| 25076 | 554 | |
| 13449 | 555 | lemma min_0L [simp]: "min 0 n = (0::nat)" | 
| 25162 | 556 | by (rule min_leastL) simp | 
| 13449 | 557 | |
| 558 | lemma min_0R [simp]: "min n 0 = (0::nat)" | |
| 25162 | 559 | by (rule min_leastR) simp | 
| 13449 | 560 | |
| 561 | lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" | |
| 25162 | 562 | by (simp add: mono_Suc min_of_mono) | 
| 13449 | 563 | |
| 22191 | 564 | lemma min_Suc1: | 
| 565 | "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))" | |
| 25162 | 566 | by (simp split: nat.split) | 
| 22191 | 567 | |
| 568 | lemma min_Suc2: | |
| 569 | "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))" | |
| 25162 | 570 | by (simp split: nat.split) | 
| 22191 | 571 | |
| 13449 | 572 | lemma max_0L [simp]: "max 0 n = (n::nat)" | 
| 25162 | 573 | by (rule max_leastL) simp | 
| 13449 | 574 | |
| 575 | lemma max_0R [simp]: "max n 0 = (n::nat)" | |
| 25162 | 576 | by (rule max_leastR) simp | 
| 13449 | 577 | |
| 578 | lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" | |
| 25162 | 579 | by (simp add: mono_Suc max_of_mono) | 
| 13449 | 580 | |
| 22191 | 581 | lemma max_Suc1: | 
| 582 | "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))" | |
| 25162 | 583 | by (simp split: nat.split) | 
| 22191 | 584 | |
| 585 | lemma max_Suc2: | |
| 586 | "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))" | |
| 25162 | 587 | by (simp split: nat.split) | 
| 22191 | 588 | |
| 13449 | 589 | |
| 590 | subsection {* Basic rewrite rules for the arithmetic operators *}
 | |
| 591 | ||
| 592 | text {* Difference *}
 | |
| 593 | ||
| 14193 
30e41f63712e
Improved efficiency of code generated for + and -
 berghofe parents: 
14131diff
changeset | 594 | lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" | 
| 25162 | 595 | by (induct n) simp_all | 
| 13449 | 596 | |
| 14193 
30e41f63712e
Improved efficiency of code generated for + and -
 berghofe parents: 
14131diff
changeset | 597 | lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n" | 
| 25162 | 598 | by (induct n) simp_all | 
| 13449 | 599 | |
| 600 | ||
| 601 | text {*
 | |
| 602 | Could be (and is, below) generalized in various ways | |
| 603 | However, none of the generalizations are currently in the simpset, | |
| 604 | and I dread to think what happens if I put them in | |
| 605 | *} | |
| 25162 | 606 | lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 607 | by (simp split add: nat.split) | 
| 13449 | 608 | |
| 14193 
30e41f63712e
Improved efficiency of code generated for + and -
 berghofe parents: 
14131diff
changeset | 609 | declare diff_Suc [simp del, code del] | 
| 13449 | 610 | |
| 611 | ||
| 612 | subsection {* Addition *}
 | |
| 613 | ||
| 614 | lemma add_0_right [simp]: "m + 0 = (m::nat)" | |
| 25162 | 615 | by (induct m) simp_all | 
| 13449 | 616 | |
| 617 | lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" | |
| 25162 | 618 | by (induct m) simp_all | 
| 13449 | 619 | |
| 19890 | 620 | lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" | 
| 25162 | 621 | by simp | 
| 14193 
30e41f63712e
Improved efficiency of code generated for + and -
 berghofe parents: 
14131diff
changeset | 622 | |
| 13449 | 623 | |
| 624 | text {* Associative law for addition *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 625 | lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" | 
| 25162 | 626 | by (induct m) simp_all | 
| 13449 | 627 | |
| 628 | text {* Commutative law for addition *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 629 | lemma nat_add_commute: "m + n = n + (m::nat)" | 
| 25162 | 630 | by (induct m) simp_all | 
| 13449 | 631 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 632 | lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" | 
| 13449 | 633 | apply (rule mk_left_commute [of "op +"]) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 634 | apply (rule nat_add_assoc) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 635 | apply (rule nat_add_commute) | 
| 13449 | 636 | done | 
| 637 | ||
| 14331 | 638 | lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" | 
| 25162 | 639 | by (induct k) simp_all | 
| 13449 | 640 | |
| 14331 | 641 | lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" | 
| 25162 | 642 | by (induct k) simp_all | 
| 13449 | 643 | |
| 14331 | 644 | lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" | 
| 25162 | 645 | by (induct k) simp_all | 
| 13449 | 646 | |
| 14331 | 647 | lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" | 
| 25162 | 648 | by (induct k) simp_all | 
| 13449 | 649 | |
| 650 | text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
 | |
| 651 | ||
| 22718 | 652 | lemma add_is_0 [iff]: fixes m :: nat shows "(m + n = 0) = (m = 0 & n = 0)" | 
| 25162 | 653 | by (cases m) simp_all | 
| 13449 | 654 | |
| 655 | lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" | |
| 25162 | 656 | by (cases m) simp_all | 
| 13449 | 657 | |
| 658 | lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" | |
| 25162 | 659 | by (rule trans, rule eq_commute, rule add_is_1) | 
| 13449 | 660 | |
| 25162 | 661 | lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)" | 
| 662 | by(auto dest:gr0_implies_Suc) | |
| 13449 | 663 | |
| 664 | lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0" | |
| 665 | apply (drule add_0_right [THEN ssubst]) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 666 | apply (simp add: nat_add_assoc del: add_0_right) | 
| 13449 | 667 | done | 
| 668 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16635diff
changeset | 669 | lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" | 
| 22718 | 670 | apply (induct k) | 
| 671 | apply simp | |
| 672 | apply(drule comp_inj_on[OF _ inj_Suc]) | |
| 673 | apply (simp add:o_def) | |
| 674 | done | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16635diff
changeset | 675 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16635diff
changeset | 676 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 677 | subsection {* Multiplication *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 678 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 679 | text {* right annihilation in product *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 680 | lemma mult_0_right [simp]: "(m::nat) * 0 = 0" | 
| 25162 | 681 | by (induct m) simp_all | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 682 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 683 | text {* right successor law for multiplication *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 684 | lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" | 
| 25162 | 685 | by (induct m) (simp_all add: nat_add_left_commute) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 686 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 687 | text {* Commutative law for multiplication *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 688 | lemma nat_mult_commute: "m * n = n * (m::nat)" | 
| 25162 | 689 | by (induct m) simp_all | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 690 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 691 | text {* addition distributes over multiplication *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 692 | lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" | 
| 25162 | 693 | by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 694 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 695 | lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" | 
| 25162 | 696 | by (induct m) (simp_all add: nat_add_assoc) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 697 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 698 | text {* Associative law for multiplication *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 699 | lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" | 
| 25162 | 700 | by (induct m) (simp_all add: add_mult_distrib) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 701 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 702 | |
| 14740 | 703 | text{*The naturals form a @{text comm_semiring_1_cancel}*}
 | 
| 14738 | 704 | instance nat :: comm_semiring_1_cancel | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 705 | proof | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 706 | fix i j k :: nat | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 707 | show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 708 | show "i + j = j + i" by (rule nat_add_commute) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 709 | show "0 + i = i" by simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 710 | show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 711 | show "i * j = j * i" by (rule nat_mult_commute) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 712 | show "1 * i = i" by simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 713 | show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 714 | show "0 \<noteq> (1::nat)" by simp | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 715 | assume "k+i = k+j" thus "i=j" by simp | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 716 | qed | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 717 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 718 | lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" | 
| 15251 | 719 | apply (induct m) | 
| 22718 | 720 | apply (induct_tac [2] n) | 
| 721 | apply simp_all | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 722 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 723 | |
| 21243 | 724 | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 725 | subsection {* Monotonicity of Addition *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 726 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 727 | text {* strict, in 1st argument *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 728 | lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" | 
| 25162 | 729 | by (induct k) simp_all | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 730 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 731 | text {* strict, in both arguments *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 732 | lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 733 | apply (rule add_less_mono1 [THEN less_trans], assumption+) | 
| 15251 | 734 | apply (induct j, simp_all) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 735 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 736 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 737 | text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 738 | lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 739 | apply (induct n) | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 740 | apply (simp_all add: order_le_less) | 
| 22718 | 741 | apply (blast elim!: less_SucE | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 742 | intro!: add_0_right [symmetric] add_Suc_right [symmetric]) | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 743 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 744 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 745 | text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
 | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 746 | lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 747 | apply(auto simp: gr0_conv_Suc) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 748 | apply (induct_tac m) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 749 | apply (simp_all add: add_less_mono) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 750 | done | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 751 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 752 | |
| 14740 | 753 | text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
 | 
| 14738 | 754 | instance nat :: ordered_semidom | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 755 | proof | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 756 | fix i j k :: nat | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 757 | show "0 < (1::nat)" by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 758 | show "i \<le> j ==> k + i \<le> k + j" by simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 759 | show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 760 | qed | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 761 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 762 | lemma nat_mult_1: "(1::nat) * n = n" | 
| 25162 | 763 | by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 764 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 765 | lemma nat_mult_1_right: "n * (1::nat) = n" | 
| 25162 | 766 | by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 767 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 768 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 769 | subsection {* Additional theorems about "less than" *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 770 | |
| 19870 | 771 | text{*An induction rule for estabilishing binary relations*}
 | 
| 22718 | 772 | lemma less_Suc_induct: | 
| 19870 | 773 | assumes less: "i < j" | 
| 774 | and step: "!!i. P i (Suc i)" | |
| 775 | and trans: "!!i j k. P i j ==> P j k ==> P i k" | |
| 776 | shows "P i j" | |
| 777 | proof - | |
| 22718 | 778 | from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add) | 
| 779 | have "P i (Suc (i + k))" | |
| 19870 | 780 | proof (induct k) | 
| 22718 | 781 | case 0 | 
| 782 | show ?case by (simp add: step) | |
| 19870 | 783 | next | 
| 784 | case (Suc k) | |
| 22718 | 785 | thus ?case by (auto intro: assms) | 
| 19870 | 786 | qed | 
| 22718 | 787 | thus "P i j" by (simp add: j) | 
| 19870 | 788 | qed | 
| 789 | ||
| 24438 | 790 | text {* The method of infinite descent, frequently used in number theory.
 | 
| 791 | Provided by Roelof Oosterhuis. | |
| 792 | $P(n)$ is true for all $n\in\mathbb{N}$ if
 | |
| 793 | \begin{itemize}
 | |
| 794 | \item case ``0'': given $n=0$ prove $P(n)$, | |
| 795 | \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists | |
| 796 | a smaller integer $m$ such that $\neg P(m)$. | |
| 797 | \end{itemize} *}
 | |
| 798 | ||
| 24523 | 799 | lemma infinite_descent0[case_names 0 smaller]: | 
| 24438 | 800 | "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n" | 
| 801 | by (induct n rule: less_induct, case_tac "n>0", auto) | |
| 802 | ||
| 24523 | 803 | text{* A compact version without explicit base case: *}
 | 
| 804 | lemma infinite_descent: | |
| 805 | "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m \<rbrakk> \<Longrightarrow> P n" | |
| 806 | by (induct n rule: less_induct, auto) | |
| 807 | ||
| 24438 | 808 | |
| 809 | text {* Infinite descent using a mapping to $\mathbb{N}$:
 | |
| 810 | $P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
 | |
| 811 | \begin{itemize}
 | |
| 812 | \item case ``0'': given $V(x)=0$ prove $P(x)$, | |
| 813 | \item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$. | |
| 814 | \end{itemize}
 | |
| 815 | NB: the proof also shows how to use the previous lemma. *} | |
| 24523 | 816 | corollary infinite_descent0_measure[case_names 0 smaller]: | 
| 817 | assumes 0: "!!x. V x = (0::nat) \<Longrightarrow> P x" | |
| 818 | and 1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)" | |
| 24438 | 819 | shows "P x" | 
| 820 | proof - | |
| 821 | obtain n where "n = V x" by auto | |
| 24523 | 822 | moreover have "!!x. V x = n \<Longrightarrow> P x" | 
| 823 | proof (induct n rule: infinite_descent0) | |
| 24438 | 824 | case 0 -- "i.e. $V(x) = 0$" | 
| 825 | with 0 show "P x" by auto | |
| 826 | next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$" | |
| 827 | case (smaller n) | |
| 828 | then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto | |
| 829 | with 1 obtain y where "V y < V x \<and> \<not> P y" by auto | |
| 830 | with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto | |
| 831 | thus ?case by auto | |
| 832 | qed | |
| 833 | ultimately show "P x" by auto | |
| 834 | qed | |
| 19870 | 835 | |
| 24523 | 836 | text{* Again, without explicit base case: *}
 | 
| 837 | lemma infinite_descent_measure: | |
| 838 | assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x" | |
| 839 | proof - | |
| 840 | from assms obtain n where "n = V x" by auto | |
| 841 | moreover have "!!x. V x = n \<Longrightarrow> P x" | |
| 842 | proof (induct n rule: infinite_descent, auto) | |
| 843 | fix x assume "\<not> P x" | |
| 844 | with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto | |
| 845 | qed | |
| 846 | ultimately show "P x" by auto | |
| 847 | qed | |
| 848 | ||
| 849 | ||
| 850 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 851 | text {* A [clumsy] way of lifting @{text "<"}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 852 |   monotonicity to @{text "\<le>"} monotonicity *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 853 | lemma less_mono_imp_le_mono: | 
| 24438 | 854 | "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)" | 
| 855 | by (simp add: order_le_less) (blast) | |
| 856 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 857 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 858 | text {* non-strict, in 1st argument *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 859 | lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" | 
| 24438 | 860 | by (rule add_right_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 861 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 862 | text {* non-strict, in both arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 863 | lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" | 
| 24438 | 864 | by (rule add_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 865 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 866 | lemma le_add2: "n \<le> ((m + n)::nat)" | 
| 24438 | 867 | by (insert add_right_mono [of 0 m n], simp) | 
| 13449 | 868 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 869 | lemma le_add1: "n \<le> ((n + m)::nat)" | 
| 24438 | 870 | by (simp add: add_commute, rule le_add2) | 
| 13449 | 871 | |
| 872 | lemma less_add_Suc1: "i < Suc (i + m)" | |
| 24438 | 873 | by (rule le_less_trans, rule le_add1, rule lessI) | 
| 13449 | 874 | |
| 875 | lemma less_add_Suc2: "i < Suc (m + i)" | |
| 24438 | 876 | by (rule le_less_trans, rule le_add2, rule lessI) | 
| 13449 | 877 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 878 | lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" | 
| 24438 | 879 | by (iprover intro!: less_add_Suc1 less_imp_Suc_add) | 
| 13449 | 880 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 881 | lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" | 
| 24438 | 882 | by (rule le_trans, assumption, rule le_add1) | 
| 13449 | 883 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 884 | lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" | 
| 24438 | 885 | by (rule le_trans, assumption, rule le_add2) | 
| 13449 | 886 | |
| 887 | lemma trans_less_add1: "(i::nat) < j ==> i < j + m" | |
| 24438 | 888 | by (rule less_le_trans, assumption, rule le_add1) | 
| 13449 | 889 | |
| 890 | lemma trans_less_add2: "(i::nat) < j ==> i < m + j" | |
| 24438 | 891 | by (rule less_le_trans, assumption, rule le_add2) | 
| 13449 | 892 | |
| 893 | lemma add_lessD1: "i + j < (k::nat) ==> i < k" | |
| 24438 | 894 | apply (rule le_less_trans [of _ "i+j"]) | 
| 895 | apply (simp_all add: le_add1) | |
| 896 | done | |
| 13449 | 897 | |
| 898 | lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" | |
| 24438 | 899 | apply (rule notI) | 
| 900 | apply (erule add_lessD1 [THEN less_irrefl]) | |
| 901 | done | |
| 13449 | 902 | |
| 903 | lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" | |
| 24438 | 904 | by (simp add: add_commute not_add_less1) | 
| 13449 | 905 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 906 | lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" | 
| 24438 | 907 | apply (rule order_trans [of _ "m+k"]) | 
| 908 | apply (simp_all add: le_add1) | |
| 909 | done | |
| 13449 | 910 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 911 | lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" | 
| 24438 | 912 | apply (simp add: add_commute) | 
| 913 | apply (erule add_leD1) | |
| 914 | done | |
| 13449 | 915 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 916 | lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" | 
| 24438 | 917 | by (blast dest: add_leD1 add_leD2) | 
| 13449 | 918 | |
| 919 | text {* needs @{text "!!k"} for @{text add_ac} to work *}
 | |
| 920 | lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" | |
| 24438 | 921 | by (force simp del: add_Suc_right | 
| 13449 | 922 | simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) | 
| 923 | ||
| 924 | ||
| 925 | subsection {* Difference *}
 | |
| 926 | ||
| 927 | lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0" | |
| 24438 | 928 | by (induct m) simp_all | 
| 13449 | 929 | |
| 930 | text {* Addition is the inverse of subtraction:
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 931 |   if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
 | 
| 13449 | 932 | lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" | 
| 24438 | 933 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 934 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 935 | lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)" | 
| 24438 | 936 | by (simp add: add_diff_inverse linorder_not_less) | 
| 13449 | 937 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 938 | lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)" | 
| 24438 | 939 | by (simp add: le_add_diff_inverse add_commute) | 
| 13449 | 940 | |
| 941 | ||
| 942 | subsection {* More results about difference *}
 | |
| 943 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 944 | lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" | 
| 24438 | 945 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 946 | |
| 947 | lemma diff_less_Suc: "m - n < Suc m" | |
| 24438 | 948 | apply (induct m n rule: diff_induct) | 
| 949 | apply (erule_tac [3] less_SucE) | |
| 950 | apply (simp_all add: less_Suc_eq) | |
| 951 | done | |
| 13449 | 952 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 953 | lemma diff_le_self [simp]: "m - n \<le> (m::nat)" | 
| 24438 | 954 | by (induct m n rule: diff_induct) (simp_all add: le_SucI) | 
| 13449 | 955 | |
| 956 | lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" | |
| 24438 | 957 | by (rule le_less_trans, rule diff_le_self) | 
| 13449 | 958 | |
| 959 | lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" | |
| 24438 | 960 | by (induct i j rule: diff_induct) simp_all | 
| 13449 | 961 | |
| 962 | lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" | |
| 24438 | 963 | by (simp add: diff_diff_left) | 
| 13449 | 964 | |
| 965 | lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" | |
| 24438 | 966 | by (cases n) (auto simp add: le_simps) | 
| 13449 | 967 | |
| 968 | text {* This and the next few suggested by Florian Kammueller *}
 | |
| 969 | lemma diff_commute: "(i::nat) - j - k = i - k - j" | |
| 24438 | 970 | by (simp add: diff_diff_left add_commute) | 
| 13449 | 971 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 972 | lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" | 
| 24438 | 973 | by (induct j k rule: diff_induct) simp_all | 
| 13449 | 974 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 975 | lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" | 
| 24438 | 976 | by (simp add: add_commute diff_add_assoc) | 
| 13449 | 977 | |
| 978 | lemma diff_add_inverse: "(n + m) - n = (m::nat)" | |
| 24438 | 979 | by (induct n) simp_all | 
| 13449 | 980 | |
| 981 | lemma diff_add_inverse2: "(m + n) - n = (m::nat)" | |
| 24438 | 982 | by (simp add: diff_add_assoc) | 
| 13449 | 983 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 984 | lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" | 
| 24438 | 985 | by (auto simp add: diff_add_inverse2) | 
| 13449 | 986 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 987 | lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" | 
| 24438 | 988 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 989 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 990 | lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" | 
| 24438 | 991 | by (rule iffD2, rule diff_is_0_eq) | 
| 13449 | 992 | |
| 993 | lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" | |
| 24438 | 994 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 995 | |
| 22718 | 996 | lemma less_imp_add_positive: | 
| 997 | assumes "i < j" | |
| 998 | shows "\<exists>k::nat. 0 < k & i + k = j" | |
| 999 | proof | |
| 1000 | from assms show "0 < j - i & i + (j - i) = j" | |
| 23476 | 1001 | by (simp add: order_less_imp_le) | 
| 22718 | 1002 | qed | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1003 | |
| 13449 | 1004 | lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" | 
| 24438 | 1005 | by (induct k) simp_all | 
| 13449 | 1006 | |
| 1007 | lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" | |
| 24438 | 1008 | by (simp add: diff_cancel add_commute) | 
| 13449 | 1009 | |
| 1010 | lemma diff_add_0: "n - (n + m) = (0::nat)" | |
| 24438 | 1011 | by (induct n) simp_all | 
| 13449 | 1012 | |
| 1013 | ||
| 1014 | text {* Difference distributes over multiplication *}
 | |
| 1015 | ||
| 1016 | lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" | |
| 24438 | 1017 | by (induct m n rule: diff_induct) (simp_all add: diff_cancel) | 
| 13449 | 1018 | |
| 1019 | lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" | |
| 24438 | 1020 | by (simp add: diff_mult_distrib mult_commute [of k]) | 
| 13449 | 1021 |   -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
 | 
| 1022 | ||
| 1023 | lemmas nat_distrib = | |
| 1024 | add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 | |
| 1025 | ||
| 1026 | ||
| 1027 | subsection {* Monotonicity of Multiplication *}
 | |
| 1028 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1029 | lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" | 
| 24438 | 1030 | by (simp add: mult_right_mono) | 
| 13449 | 1031 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1032 | lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" | 
| 24438 | 1033 | by (simp add: mult_left_mono) | 
| 13449 | 1034 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1035 | text {* @{text "\<le>"} monotonicity, BOTH arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1036 | lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" | 
| 24438 | 1037 | by (simp add: mult_mono) | 
| 13449 | 1038 | |
| 1039 | lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" | |
| 24438 | 1040 | by (simp add: mult_strict_right_mono) | 
| 13449 | 1041 | |
| 14266 | 1042 | text{*Differs from the standard @{text zero_less_mult_iff} in that
 | 
| 1043 | there are no negative numbers.*} | |
| 1044 | lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" | |
| 13449 | 1045 | apply (induct m) | 
| 22718 | 1046 | apply simp | 
| 1047 | apply (case_tac n) | |
| 1048 | apply simp_all | |
| 13449 | 1049 | done | 
| 1050 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1051 | lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)" | 
| 13449 | 1052 | apply (induct m) | 
| 22718 | 1053 | apply simp | 
| 1054 | apply (case_tac n) | |
| 1055 | apply simp_all | |
| 13449 | 1056 | done | 
| 1057 | ||
| 1058 | lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)" | |
| 22718 | 1059 | apply (induct m) | 
| 1060 | apply simp | |
| 1061 | apply (induct n) | |
| 1062 | apply auto | |
| 13449 | 1063 | done | 
| 1064 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24196diff
changeset | 1065 | lemma one_eq_mult_iff [simp,noatp]: "(Suc 0 = m * n) = (m = 1 & n = 1)" | 
| 13449 | 1066 | apply (rule trans) | 
| 14208 | 1067 | apply (rule_tac [2] mult_eq_1_iff, fastsimp) | 
| 13449 | 1068 | done | 
| 1069 | ||
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 1070 | lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" | 
| 13449 | 1071 | apply (safe intro!: mult_less_mono1) | 
| 14208 | 1072 | apply (case_tac k, auto) | 
| 13449 | 1073 | apply (simp del: le_0_eq add: linorder_not_le [symmetric]) | 
| 1074 | apply (blast intro: mult_le_mono1) | |
| 1075 | done | |
| 1076 | ||
| 1077 | lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" | |
| 24438 | 1078 | by (simp add: mult_commute [of k]) | 
| 13449 | 1079 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1080 | lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" | 
| 24438 | 1081 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1082 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1083 | lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" | 
| 24438 | 1084 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1085 | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 1086 | lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" | 
| 25162 | 1087 | apply (cut_tac less_linear, safe, auto) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 1088 | apply (drule mult_less_mono1, assumption, simp)+ | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 1089 | done | 
| 13449 | 1090 | |
| 1091 | lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" | |
| 24438 | 1092 | by (simp add: mult_commute [of k]) | 
| 13449 | 1093 | |
| 1094 | lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" | |
| 24438 | 1095 | by (subst mult_less_cancel1) simp | 
| 13449 | 1096 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1097 | lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" | 
| 24438 | 1098 | by (subst mult_le_cancel1) simp | 
| 13449 | 1099 | |
| 1100 | lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" | |
| 24438 | 1101 | by (subst mult_cancel1) simp | 
| 13449 | 1102 | |
| 1103 | text {* Lemma for @{text gcd} *}
 | |
| 1104 | lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" | |
| 1105 | apply (drule sym) | |
| 1106 | apply (rule disjCI) | |
| 1107 | apply (rule nat_less_cases, erule_tac [2] _) | |
| 25157 | 1108 | apply (drule_tac [2] mult_less_mono2) | 
| 25162 | 1109 | apply (auto) | 
| 13449 | 1110 | done | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1111 | |
| 20588 | 1112 | |
| 24995 | 1113 | subsection {* size of a datatype value *}
 | 
| 1114 | ||
| 1115 | class size = type + | |
| 1116 | fixes size :: "'a \<Rightarrow> nat" | |
| 1117 | ||
| 1118 | use "Tools/function_package/size.ML" | |
| 1119 | ||
| 1120 | setup Size.setup | |
| 1121 | ||
| 1122 | lemma nat_size [simp, code func]: "size (n\<Colon>nat) = n" | |
| 25162 | 1123 | by (induct n) simp_all | 
| 24995 | 1124 | |
| 1125 | lemma size_bool [code func]: | |
| 1126 | "size (b\<Colon>bool) = 0" by (cases b) auto | |
| 1127 | ||
| 1128 | declare "*.size" [noatp] | |
| 1129 | ||
| 1130 | ||
| 18702 | 1131 | subsection {* Code generator setup *}
 | 
| 1132 | ||
| 20588 | 1133 | instance nat :: eq .. | 
| 1134 | ||
| 1135 | lemma [code func]: | |
| 25145 | 1136 | "(0\<Colon>nat) = 0 \<longleftrightarrow> True" | 
| 1137 | "Suc n = Suc m \<longleftrightarrow> n = m" | |
| 1138 | "Suc n = 0 \<longleftrightarrow> False" | |
| 1139 | "0 = Suc m \<longleftrightarrow> False" | |
| 25162 | 1140 | by auto | 
| 20588 | 1141 | |
| 1142 | lemma [code func]: | |
| 25145 | 1143 | "(0\<Colon>nat) \<le> m \<longleftrightarrow> True" | 
| 1144 | "Suc (n\<Colon>nat) \<le> m \<longleftrightarrow> n < m" | |
| 1145 | "(n\<Colon>nat) < 0 \<longleftrightarrow> False" | |
| 1146 | "(n\<Colon>nat) < Suc m \<longleftrightarrow> n \<le> m" | |
| 22348 | 1147 | using Suc_le_eq less_Suc_eq_le by simp_all | 
| 20588 | 1148 | |
| 21243 | 1149 | |
| 25193 | 1150 | subsection {* Embedding of the Naturals into any
 | 
| 1151 |   @{text semiring_1}: @{term of_nat} *}
 | |
| 24196 | 1152 | |
| 1153 | context semiring_1 | |
| 1154 | begin | |
| 1155 | ||
| 1156 | definition | |
| 25062 | 1157 | of_nat_def: "of_nat = nat_rec 0 (\<lambda>_. (op +) 1)" | 
| 24196 | 1158 | |
| 25193 | 1159 | lemma of_nat_simps [simp, code]: | 
| 1160 | shows of_nat_0: "of_nat 0 = 0" | |
| 1161 | and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" | |
| 1162 | unfolding of_nat_def by simp_all | |
| 1163 | ||
| 1164 | lemma of_nat_1 [simp]: "of_nat 1 = 1" | |
| 1165 | by simp | |
| 1166 | ||
| 1167 | lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" | |
| 1168 | by (induct m) (simp_all add: add_ac) | |
| 1169 | ||
| 1170 | lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n" | |
| 1171 | by (induct m) (simp_all add: add_ac left_distrib) | |
| 1172 | ||
| 24196 | 1173 | end | 
| 1174 | ||
| 25193 | 1175 | context ordered_semidom | 
| 1176 | begin | |
| 1177 | ||
| 1178 | lemma zero_le_imp_of_nat: "0 \<le> of_nat m" | |
| 1179 | apply (induct m, simp_all) | |
| 1180 | apply (erule order_trans) | |
| 1181 | apply (rule ord_le_eq_trans [OF _ add_commute]) | |
| 1182 | apply (rule less_add_one [THEN less_imp_le]) | |
| 1183 | done | |
| 1184 | ||
| 1185 | lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" | |
| 1186 | apply (induct m n rule: diff_induct, simp_all) | |
| 1187 | apply (insert add_less_le_mono [OF zero_less_one zero_le_imp_of_nat], force) | |
| 1188 | done | |
| 1189 | ||
| 1190 | lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" | |
| 1191 | apply (induct m n rule: diff_induct, simp_all) | |
| 1192 | apply (insert zero_le_imp_of_nat) | |
| 1193 | apply (force simp add: not_less [symmetric]) | |
| 1194 | done | |
| 1195 | ||
| 1196 | lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n" | |
| 1197 | by (blast intro: of_nat_less_imp_less less_imp_of_nat_less) | |
| 1198 | ||
| 1199 | text{*Special cases where either operand is zero*}
 | |
| 1200 | ||
| 1201 | lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" | |
| 1202 | by (rule of_nat_less_iff [of 0, simplified]) | |
| 1203 | ||
| 1204 | lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" | |
| 1205 | by (rule of_nat_less_iff [of _ 0, simplified]) | |
| 1206 | ||
| 1207 | lemma of_nat_le_iff [simp]: | |
| 1208 | "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" | |
| 1209 | by (simp add: not_less [symmetric] linorder_not_less [symmetric]) | |
| 1210 | ||
| 1211 | text{*Special cases where either operand is zero*}
 | |
| 1212 | ||
| 1213 | lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" | |
| 1214 | by (rule of_nat_le_iff [of 0, simplified]) | |
| 1215 | ||
| 1216 | lemma of_nat_le_0_iff [simp, noatp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" | |
| 1217 | by (rule of_nat_le_iff [of _ 0, simplified]) | |
| 1218 | ||
| 1219 | end | |
| 1220 | ||
| 1221 | lemma of_nat_id [simp]: "of_nat n = n" | |
| 1222 | by (induct n) auto | |
| 1223 | ||
| 1224 | lemma of_nat_eq_id [simp]: "of_nat = id" | |
| 1225 | by (auto simp add: expand_fun_eq) | |
| 1226 | ||
| 1227 | text{*Class for unital semirings with characteristic zero.
 | |
| 1228 | Includes non-ordered rings like the complex numbers.*} | |
| 1229 | ||
| 1230 | class semiring_char_0 = semiring_1 + | |
| 1231 | assumes of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" | |
| 1232 | ||
| 1233 | text{*Every @{text ordered_semidom} has characteristic zero.*}
 | |
| 1234 | ||
| 1235 | subclass (in ordered_semidom) semiring_char_0 | |
| 1236 | by unfold_locales (simp add: eq_iff order_eq_iff) | |
| 1237 | ||
| 1238 | context semiring_char_0 | |
| 1239 | begin | |
| 1240 | ||
| 1241 | text{*Special cases where either operand is zero*}
 | |
| 1242 | ||
| 1243 | lemma of_nat_0_eq_iff [simp, noatp]: "0 = of_nat n \<longleftrightarrow> 0 = n" | |
| 1244 | by (rule of_nat_eq_iff [of 0, simplified]) | |
| 1245 | ||
| 1246 | lemma of_nat_eq_0_iff [simp, noatp]: "of_nat m = 0 \<longleftrightarrow> m = 0" | |
| 1247 | by (rule of_nat_eq_iff [of _ 0, simplified]) | |
| 1248 | ||
| 1249 | lemma inj_of_nat: "inj of_nat" | |
| 1250 | by (simp add: inj_on_def) | |
| 1251 | ||
| 1252 | end | |
| 1253 | ||
| 1254 | ||
| 21243 | 1255 | subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
 | 
| 1256 | ||
| 22845 | 1257 | lemma subst_equals: | 
| 1258 | assumes 1: "t = s" and 2: "u = t" | |
| 1259 | shows "u = s" | |
| 1260 | using 2 1 by (rule trans) | |
| 1261 | ||
| 21243 | 1262 | use "arith_data.ML" | 
| 24091 | 1263 | declaration {* K arith_data_setup *}
 | 
| 1264 | ||
| 1265 | use "Tools/lin_arith.ML" | |
| 1266 | declaration {* K LinArith.setup *}
 | |
| 1267 | ||
| 21243 | 1268 | |
| 1269 | text{*The following proofs may rely on the arithmetic proof procedures.*}
 | |
| 1270 | ||
| 1271 | lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" | |
| 24438 | 1272 | by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add) | 
| 21243 | 1273 | |
| 1274 | lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)" | |
| 24438 | 1275 | by (simp add: less_eq reflcl_trancl [symmetric] del: reflcl_trancl, arith) | 
| 21243 | 1276 | |
| 1277 | lemma nat_diff_split: | |
| 22718 | 1278 | "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" | 
| 21243 | 1279 |     -- {* elimination of @{text -} on @{text nat} *}
 | 
| 24438 | 1280 | by (cases "a<b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2]) | 
| 21243 | 1281 | |
| 25193 | 1282 | context ring_1 | 
| 1283 | begin | |
| 1284 | ||
| 1285 | lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n" | |
| 1286 | by (simp del: of_nat_add | |
| 1287 | add: compare_rls of_nat_add [symmetric] split add: nat_diff_split) | |
| 1288 | ||
| 1289 | end | |
| 1290 | ||
| 1291 | lemma abs_of_nat [simp]: "\<bar>of_nat n::'a::ordered_idom\<bar> = of_nat n" | |
| 25231 | 1292 | unfolding abs_if by auto | 
| 25193 | 1293 | |
| 21243 | 1294 | lemma nat_diff_split_asm: | 
| 25162 | 1295 | "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" | 
| 21243 | 1296 |     -- {* elimination of @{text -} on @{text nat} in assumptions *}
 | 
| 24438 | 1297 | by (simp split: nat_diff_split) | 
| 21243 | 1298 | |
| 1299 | lemmas [arith_split] = nat_diff_split split_min split_max | |
| 1300 | ||
| 1301 | ||
| 1302 | lemma le_square: "m \<le> m * (m::nat)" | |
| 24438 | 1303 | by (induct m) auto | 
| 21243 | 1304 | |
| 1305 | lemma le_cube: "(m::nat) \<le> m * (m * m)" | |
| 24438 | 1306 | by (induct m) auto | 
| 21243 | 1307 | |
| 1308 | ||
| 1309 | text{*Subtraction laws, mostly by Clemens Ballarin*}
 | |
| 1310 | ||
| 1311 | lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" | |
| 24438 | 1312 | by arith | 
| 21243 | 1313 | |
| 1314 | lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" | |
| 24438 | 1315 | by arith | 
| 21243 | 1316 | |
| 1317 | lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" | |
| 24438 | 1318 | by arith | 
| 21243 | 1319 | |
| 1320 | lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" | |
| 24438 | 1321 | by arith | 
| 21243 | 1322 | |
| 1323 | lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" | |
| 24438 | 1324 | by arith | 
| 21243 | 1325 | |
| 1326 | lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" | |
| 24438 | 1327 | by arith | 
| 21243 | 1328 | |
| 1329 | (*Replaces the previous diff_less and le_diff_less, which had the stronger | |
| 1330 | second premise n\<le>m*) | |
| 1331 | lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" | |
| 24438 | 1332 | by arith | 
| 21243 | 1333 | |
| 1334 | ||
| 1335 | (** Simplification of relational expressions involving subtraction **) | |
| 1336 | ||
| 1337 | lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" | |
| 24438 | 1338 | by (simp split add: nat_diff_split) | 
| 21243 | 1339 | |
| 1340 | lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" | |
| 24438 | 1341 | by (auto split add: nat_diff_split) | 
| 21243 | 1342 | |
| 1343 | lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" | |
| 24438 | 1344 | by (auto split add: nat_diff_split) | 
| 21243 | 1345 | |
| 1346 | lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" | |
| 24438 | 1347 | by (auto split add: nat_diff_split) | 
| 21243 | 1348 | |
| 1349 | ||
| 1350 | text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
 | |
| 1351 | ||
| 1352 | (* Monotonicity of subtraction in first argument *) | |
| 1353 | lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" | |
| 24438 | 1354 | by (simp split add: nat_diff_split) | 
| 21243 | 1355 | |
| 1356 | lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" | |
| 24438 | 1357 | by (simp split add: nat_diff_split) | 
| 21243 | 1358 | |
| 1359 | lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" | |
| 24438 | 1360 | by (simp split add: nat_diff_split) | 
| 21243 | 1361 | |
| 1362 | lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" | |
| 24438 | 1363 | by (simp split add: nat_diff_split) | 
| 21243 | 1364 | |
| 1365 | text{*Lemmas for ex/Factorization*}
 | |
| 1366 | ||
| 1367 | lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" | |
| 24438 | 1368 | by (cases m) auto | 
| 21243 | 1369 | |
| 1370 | lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" | |
| 24438 | 1371 | by (cases m) auto | 
| 21243 | 1372 | |
| 1373 | lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" | |
| 24438 | 1374 | by (cases m) auto | 
| 21243 | 1375 | |
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1376 | text {* Specialized induction principles that work "backwards": *}
 | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1377 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1378 | lemma inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1379 | assumes less: "i <= j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1380 | assumes base: "P j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1381 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1382 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1383 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1384 | proof (induct d=="j - i" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1385 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1386 | hence "i = j" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1387 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1388 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1389 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1390 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1391 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1392 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1393 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1394 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1395 | lemma strict_inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1396 | assumes less: "i < j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1397 | assumes base: "!!i. j = Suc i ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1398 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1399 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1400 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1401 | proof (induct d=="j - i - 1" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1402 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1403 | with `i < j` have "j = Suc i" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1404 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1405 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1406 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1407 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1408 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1409 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1410 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1411 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1412 | lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1413 | using inc_induct[of "k - i" k P, simplified] by blast | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1414 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1415 | lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1416 | using inc_induct[of 0 k P] by blast | 
| 21243 | 1417 | |
| 1418 | text{*Rewriting to pull differences out*}
 | |
| 1419 | ||
| 1420 | lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" | |
| 24438 | 1421 | by arith | 
| 21243 | 1422 | |
| 1423 | lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" | |
| 24438 | 1424 | by arith | 
| 21243 | 1425 | |
| 1426 | lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" | |
| 24438 | 1427 | by arith | 
| 21243 | 1428 | |
| 1429 | (*The others are | |
| 1430 | i - j - k = i - (j + k), | |
| 1431 | k \<le> j ==> j - k + i = j + i - k, | |
| 1432 | k \<le> j ==> i + (j - k) = i + j - k *) | |
| 1433 | lemmas add_diff_assoc = diff_add_assoc [symmetric] | |
| 1434 | lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] | |
| 1435 | declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] | |
| 1436 | ||
| 1437 | text{*At present we prove no analogue of @{text not_less_Least} or @{text
 | |
| 1438 | Least_Suc}, since there appears to be no need.*} | |
| 1439 | ||
| 22718 | 1440 | |
| 25193 | 1441 | subsection {*The Set of Natural Numbers*}
 | 
| 21243 | 1442 | |
| 24196 | 1443 | context semiring_1 | 
| 1444 | begin | |
| 21243 | 1445 | |
| 25193 | 1446 | definition | 
| 1447 | Nats :: "'a set" | |
| 1448 | where | |
| 1449 | "Nats = range of_nat" | |
| 24196 | 1450 | |
| 1451 | end | |
| 21243 | 1452 | |
| 23852 | 1453 | notation (xsymbols) | 
| 1454 |   Nats  ("\<nat>")
 | |
| 1455 | ||
| 25193 | 1456 | context semiring_1 | 
| 1457 | begin | |
| 23852 | 1458 | |
| 25193 | 1459 | lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" | 
| 1460 | by (simp add: Nats_def) | |
| 1461 | ||
| 1462 | lemma Nats_0 [simp]: "0 \<in> \<nat>" | |
| 23852 | 1463 | apply (simp add: Nats_def) | 
| 1464 | apply (rule range_eqI) | |
| 1465 | apply (rule of_nat_0 [symmetric]) | |
| 1466 | done | |
| 1467 | ||
| 25193 | 1468 | lemma Nats_1 [simp]: "1 \<in> \<nat>" | 
| 23852 | 1469 | apply (simp add: Nats_def) | 
| 1470 | apply (rule range_eqI) | |
| 1471 | apply (rule of_nat_1 [symmetric]) | |
| 1472 | done | |
| 1473 | ||
| 25193 | 1474 | lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" | 
| 23852 | 1475 | apply (auto simp add: Nats_def) | 
| 1476 | apply (rule range_eqI) | |
| 1477 | apply (rule of_nat_add [symmetric]) | |
| 1478 | done | |
| 1479 | ||
| 25193 | 1480 | lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" | 
| 23852 | 1481 | apply (auto simp add: Nats_def) | 
| 1482 | apply (rule range_eqI) | |
| 1483 | apply (rule of_nat_mult [symmetric]) | |
| 1484 | done | |
| 1485 | ||
| 25193 | 1486 | end | 
| 23852 | 1487 | |
| 1488 | ||
| 24995 | 1489 | text {* the lattice order on @{typ nat} *}
 | 
| 1490 | ||
| 22483 | 1491 | instance nat :: distrib_lattice | 
| 1492 | "inf \<equiv> min" | |
| 1493 | "sup \<equiv> max" | |
| 24995 | 1494 | by intro_classes | 
| 1495 | (simp_all add: inf_nat_def sup_nat_def) | |
| 24699 
c6674504103f
datatype interpretators for size and datatype_realizer
 haftmann parents: 
24523diff
changeset | 1496 | |
| 22157 | 1497 | |
| 24196 | 1498 | subsection {* legacy bindings *}
 | 
| 1499 | ||
| 1500 | ML | |
| 1501 | {*
 | |
| 1502 | val pred_nat_trancl_eq_le = thm "pred_nat_trancl_eq_le"; | |
| 1503 | val nat_diff_split = thm "nat_diff_split"; | |
| 1504 | val nat_diff_split_asm = thm "nat_diff_split_asm"; | |
| 1505 | val le_square = thm "le_square"; | |
| 1506 | val le_cube = thm "le_cube"; | |
| 1507 | val diff_less_mono = thm "diff_less_mono"; | |
| 1508 | val less_diff_conv = thm "less_diff_conv"; | |
| 1509 | val le_diff_conv = thm "le_diff_conv"; | |
| 1510 | val le_diff_conv2 = thm "le_diff_conv2"; | |
| 1511 | val diff_diff_cancel = thm "diff_diff_cancel"; | |
| 1512 | val le_add_diff = thm "le_add_diff"; | |
| 1513 | val diff_less = thm "diff_less"; | |
| 1514 | val diff_diff_eq = thm "diff_diff_eq"; | |
| 1515 | val eq_diff_iff = thm "eq_diff_iff"; | |
| 1516 | val less_diff_iff = thm "less_diff_iff"; | |
| 1517 | val le_diff_iff = thm "le_diff_iff"; | |
| 1518 | val diff_le_mono = thm "diff_le_mono"; | |
| 1519 | val diff_le_mono2 = thm "diff_le_mono2"; | |
| 1520 | val diff_less_mono2 = thm "diff_less_mono2"; | |
| 1521 | val diffs0_imp_equal = thm "diffs0_imp_equal"; | |
| 1522 | val one_less_mult = thm "one_less_mult"; | |
| 1523 | val n_less_m_mult_n = thm "n_less_m_mult_n"; | |
| 1524 | val n_less_n_mult_m = thm "n_less_n_mult_m"; | |
| 1525 | val diff_diff_right = thm "diff_diff_right"; | |
| 1526 | val diff_Suc_diff_eq1 = thm "diff_Suc_diff_eq1"; | |
| 1527 | val diff_Suc_diff_eq2 = thm "diff_Suc_diff_eq2"; | |
| 1528 | *} | |
| 1529 | ||
| 923 | 1530 | end |