| author | wenzelm | 
| Sun, 20 Jul 2014 17:54:01 +0200 | |
| changeset 57581 | 74bbe9317aa4 | 
| parent 57448 | 159e45728ceb | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 56166 | 1 | (* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *) | 
| 11979 | 2 | |
| 44104 | 3 | header {* Complete lattices *}
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 4 | |
| 44860 
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
 haftmann parents: 
44845diff
changeset | 5 | theory Complete_Lattices | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 6 | imports Fun | 
| 32139 | 7 | begin | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 8 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 9 | notation | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32879diff
changeset | 10 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 46691 | 11 | less (infix "\<sqsubset>" 50) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 12 | |
| 32139 | 13 | |
| 32879 | 14 | subsection {* Syntactic infimum and supremum operations *}
 | 
| 15 | ||
| 16 | class Inf = | |
| 17 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 18 | begin | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 19 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 20 | definition INFIMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 21 | INF_def: "INFIMUM A f = \<Sqinter>(f ` A)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 22 | |
| 56166 | 23 | lemma Inf_image_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 24 | "\<Sqinter>(f ` A) = INFIMUM A f" | 
| 56166 | 25 | by (simp add: INF_def) | 
| 26 | ||
| 27 | lemma INF_image [simp]: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 28 | "INFIMUM (f ` A) g = INFIMUM A (g \<circ> f)" | 
| 56166 | 29 | by (simp only: INF_def image_comp) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 30 | |
| 56166 | 31 | lemma INF_identity_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 32 | "INFIMUM A (\<lambda>x. x) = \<Sqinter>A" | 
| 56166 | 33 | by (simp add: INF_def) | 
| 34 | ||
| 35 | lemma INF_id_eq [simp]: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 36 | "INFIMUM A id = \<Sqinter>A" | 
| 56166 | 37 | by (simp add: id_def) | 
| 38 | ||
| 39 | lemma INF_cong: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 40 | "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> INFIMUM A C = INFIMUM B D" | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 41 | by (simp add: INF_def image_def) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 42 | |
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 43 | lemma strong_INF_cong [cong]: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 44 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> INFIMUM A C = INFIMUM B D" | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 45 | unfolding simp_implies_def by (fact INF_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 46 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 47 | end | 
| 32879 | 48 | |
| 49 | class Sup = | |
| 50 |   fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 51 | begin | 
| 32879 | 52 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 53 | definition SUPREMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 54 | SUP_def: "SUPREMUM A f = \<Squnion>(f ` A)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 55 | |
| 56166 | 56 | lemma Sup_image_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 57 | "\<Squnion>(f ` A) = SUPREMUM A f" | 
| 56166 | 58 | by (simp add: SUP_def) | 
| 59 | ||
| 60 | lemma SUP_image [simp]: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 61 | "SUPREMUM (f ` A) g = SUPREMUM A (g \<circ> f)" | 
| 56166 | 62 | by (simp only: SUP_def image_comp) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 63 | |
| 56166 | 64 | lemma SUP_identity_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 65 | "SUPREMUM A (\<lambda>x. x) = \<Squnion>A" | 
| 56166 | 66 | by (simp add: SUP_def) | 
| 67 | ||
| 68 | lemma SUP_id_eq [simp]: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 69 | "SUPREMUM A id = \<Squnion>A" | 
| 56166 | 70 | by (simp add: id_def) | 
| 71 | ||
| 72 | lemma SUP_cong: | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 73 | "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> SUPREMUM A C = SUPREMUM B D" | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 74 | by (simp add: SUP_def image_def) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 75 | |
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 76 | lemma strong_SUP_cong [cong]: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 77 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> SUPREMUM A C = SUPREMUM B D" | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 78 | unfolding simp_implies_def by (fact SUP_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 79 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 80 | end | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 81 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 82 | text {*
 | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 83 |   Note: must use names @{const INFIMUM} and @{const SUPREMUM} here instead of
 | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 84 |   @{text INF} and @{text SUP} to allow the following syntax coexist
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 85 | with the plain constant names. | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 86 | *} | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 87 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 88 | syntax | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 89 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 90 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 91 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 92 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 93 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 94 | syntax (xsymbols) | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 95 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 96 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 97 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 98 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 99 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 100 | translations | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 101 | "INF x y. B" == "INF x. INF y. B" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 102 | "INF x. B" == "CONST INFIMUM CONST UNIV (%x. B)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 103 | "INF x. B" == "INF x:CONST UNIV. B" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 104 | "INF x:A. B" == "CONST INFIMUM A (%x. B)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 105 | "SUP x y. B" == "SUP x. SUP y. B" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 106 | "SUP x. B" == "CONST SUPREMUM CONST UNIV (%x. B)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 107 | "SUP x. B" == "SUP x:CONST UNIV. B" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 108 | "SUP x:A. B" == "CONST SUPREMUM A (%x. B)" | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 109 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 110 | print_translation {*
 | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 111 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFIMUM} @{syntax_const "_INF"},
 | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 112 |     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPREMUM} @{syntax_const "_SUP"}]
 | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 113 | *} -- {* to avoid eta-contraction of body *}
 | 
| 46691 | 114 | |
| 32139 | 115 | subsection {* Abstract complete lattices *}
 | 
| 116 | ||
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 117 | text {* A complete lattice always has a bottom and a top,
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 118 | so we include them into the following type class, | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 119 | along with assumptions that define bottom and top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 120 | in terms of infimum and supremum. *} | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 121 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 122 | class complete_lattice = lattice + Inf + Sup + bot + top + | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 123 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 124 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 125 | assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 126 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z" | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 127 |   assumes Inf_empty [simp]: "\<Sqinter>{} = \<top>"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 128 |   assumes Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 129 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 130 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 131 | subclass bounded_lattice | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 132 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 133 | fix a | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 134 | show "\<bottom> \<le> a" by (auto intro: Sup_least simp only: Sup_empty [symmetric]) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 135 | show "a \<le> \<top>" by (auto intro: Inf_greatest simp only: Inf_empty [symmetric]) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 136 | qed | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 137 | |
| 32678 | 138 | lemma dual_complete_lattice: | 
| 44845 | 139 | "class.complete_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 140 | by (auto intro!: class.complete_lattice.intro dual_lattice) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 141 | (unfold_locales, (fact Inf_empty Sup_empty | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32879diff
changeset | 142 | Sup_upper Sup_least Inf_lower Inf_greatest)+) | 
| 32678 | 143 | |
| 44040 | 144 | end | 
| 145 | ||
| 146 | context complete_lattice | |
| 147 | begin | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 148 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 149 | lemma INF_foundation_dual: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 150 | "Sup.SUPREMUM Inf = INFIMUM" | 
| 56166 | 151 | by (simp add: fun_eq_iff Sup.SUP_def) | 
| 44040 | 152 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 153 | lemma SUP_foundation_dual: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 154 | "Inf.INFIMUM Sup = SUPREMUM" | 
| 56166 | 155 | by (simp add: fun_eq_iff Inf.INF_def) | 
| 44040 | 156 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 157 | lemma Sup_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 158 | "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 159 | by (blast intro: antisym Sup_least Sup_upper) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 160 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 161 | lemma Inf_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 162 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 163 | by (blast intro: antisym Inf_greatest Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 164 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 165 | lemma SUP_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 166 | "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x" | 
| 56166 | 167 | using Sup_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 168 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 169 | lemma INF_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 170 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x" | 
| 56166 | 171 | using Inf_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 172 | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 173 | lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i" | 
| 56166 | 174 | using Inf_lower [of _ "f ` A"] by simp | 
| 44040 | 175 | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 176 | lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)" | 
| 56166 | 177 | using Inf_greatest [of "f ` A"] by auto | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 178 | |
| 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 179 | lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)" | 
| 56166 | 180 | using Sup_upper [of _ "f ` A"] by simp | 
| 44040 | 181 | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 182 | lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u" | 
| 56166 | 183 | using Sup_least [of "f ` A"] by auto | 
| 44040 | 184 | |
| 185 | lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v" | |
| 186 | using Inf_lower [of u A] by auto | |
| 187 | ||
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 188 | lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u" | 
| 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 189 | using INF_lower [of i A f] by auto | 
| 44040 | 190 | |
| 191 | lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A" | |
| 192 | using Sup_upper [of u A] by auto | |
| 193 | ||
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 194 | lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)" | 
| 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 195 | using SUP_upper [of i A f] by auto | 
| 44040 | 196 | |
| 44918 | 197 | lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)" | 
| 44040 | 198 | by (auto intro: Inf_greatest dest: Inf_lower) | 
| 199 | ||
| 44918 | 200 | lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<sqsubseteq> f i)" | 
| 56166 | 201 | using le_Inf_iff [of _ "f ` A"] by simp | 
| 44040 | 202 | |
| 44918 | 203 | lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)" | 
| 44040 | 204 | by (auto intro: Sup_least dest: Sup_upper) | 
| 205 | ||
| 44918 | 206 | lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<sqsubseteq> u)" | 
| 56166 | 207 | using Sup_le_iff [of "f ` A"] by simp | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 208 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 209 | lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 210 | by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 211 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 212 | lemma INF_insert [simp]: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFIMUM A f" | 
| 56166 | 213 | unfolding INF_def Inf_insert by simp | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 214 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 215 | lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 216 | by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 217 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 218 | lemma SUP_insert [simp]: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPREMUM A f" | 
| 56166 | 219 | unfolding SUP_def Sup_insert by simp | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 220 | |
| 44067 | 221 | lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
 | 
| 44040 | 222 | by (simp add: INF_def) | 
| 223 | ||
| 44067 | 224 | lemma SUP_empty [simp]: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
 | 
| 44040 | 225 | by (simp add: SUP_def) | 
| 226 | ||
| 41080 | 227 | lemma Inf_UNIV [simp]: | 
| 228 | "\<Sqinter>UNIV = \<bottom>" | |
| 44040 | 229 | by (auto intro!: antisym Inf_lower) | 
| 41080 | 230 | |
| 231 | lemma Sup_UNIV [simp]: | |
| 232 | "\<Squnion>UNIV = \<top>" | |
| 44040 | 233 | by (auto intro!: antisym Sup_upper) | 
| 41080 | 234 | |
| 44040 | 235 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
 | 
| 236 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | |
| 237 | ||
| 238 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
 | |
| 239 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | |
| 240 | ||
| 43899 | 241 | lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B" | 
| 242 | by (auto intro: Inf_greatest Inf_lower) | |
| 243 | ||
| 244 | lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B" | |
| 245 | by (auto intro: Sup_least Sup_upper) | |
| 246 | ||
| 38705 | 247 | lemma Inf_mono: | 
| 41971 | 248 | assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b" | 
| 43741 | 249 | shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B" | 
| 38705 | 250 | proof (rule Inf_greatest) | 
| 251 | fix b assume "b \<in> B" | |
| 41971 | 252 | with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast | 
| 43741 | 253 | from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower) | 
| 254 | with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto | |
| 38705 | 255 | qed | 
| 256 | ||
| 44041 | 257 | lemma INF_mono: | 
| 258 | "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)" | |
| 56166 | 259 | using Inf_mono [of "g ` B" "f ` A"] by auto | 
| 44041 | 260 | |
| 41082 | 261 | lemma Sup_mono: | 
| 41971 | 262 | assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b" | 
| 43741 | 263 | shows "\<Squnion>A \<sqsubseteq> \<Squnion>B" | 
| 41082 | 264 | proof (rule Sup_least) | 
| 265 | fix a assume "a \<in> A" | |
| 41971 | 266 | with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast | 
| 43741 | 267 | from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper) | 
| 268 | with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto | |
| 41082 | 269 | qed | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 270 | |
| 44041 | 271 | lemma SUP_mono: | 
| 272 | "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)" | |
| 56166 | 273 | using Sup_mono [of "f ` A" "g ` B"] by auto | 
| 44041 | 274 | |
| 275 | lemma INF_superset_mono: | |
| 276 | "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)" | |
| 277 |   -- {* The last inclusion is POSITIVE! *}
 | |
| 278 | by (blast intro: INF_mono dest: subsetD) | |
| 279 | ||
| 280 | lemma SUP_subset_mono: | |
| 281 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)" | |
| 282 | by (blast intro: SUP_mono dest: subsetD) | |
| 283 | ||
| 43868 | 284 | lemma Inf_less_eq: | 
| 285 | assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u" | |
| 286 |     and "A \<noteq> {}"
 | |
| 287 | shows "\<Sqinter>A \<sqsubseteq> u" | |
| 288 | proof - | |
| 289 |   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
 | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 290 | moreover from `v \<in> A` assms(1) have "v \<sqsubseteq> u" by blast | 
| 43868 | 291 | ultimately show ?thesis by (rule Inf_lower2) | 
| 292 | qed | |
| 293 | ||
| 294 | lemma less_eq_Sup: | |
| 295 | assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v" | |
| 296 |     and "A \<noteq> {}"
 | |
| 297 | shows "u \<sqsubseteq> \<Squnion>A" | |
| 298 | proof - | |
| 299 |   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
 | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 300 | moreover from `v \<in> A` assms(1) have "u \<sqsubseteq> v" by blast | 
| 43868 | 301 | ultimately show ?thesis by (rule Sup_upper2) | 
| 302 | qed | |
| 303 | ||
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 304 | lemma SUP_eq: | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 305 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 306 | assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i" | 
| 56166 | 307 | shows "(\<Squnion>i\<in>A. f i) = (\<Squnion>j\<in>B. g j)" | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 308 | by (intro antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+ | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 309 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 310 | lemma INF_eq: | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 311 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 312 | assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i" | 
| 56166 | 313 | shows "(\<Sqinter>i\<in>A. f i) = (\<Sqinter>j\<in>B. g j)" | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 314 | by (intro antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+ | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 315 | |
| 43899 | 316 | lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)" | 
| 43868 | 317 | by (auto intro: Inf_greatest Inf_lower) | 
| 318 | ||
| 43899 | 319 | lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B " | 
| 43868 | 320 | by (auto intro: Sup_least Sup_upper) | 
| 321 | ||
| 322 | lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B" | |
| 323 | by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2) | |
| 324 | ||
| 44041 | 325 | lemma INF_union: | 
| 326 | "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)" | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 327 | by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower) | 
| 44041 | 328 | |
| 43868 | 329 | lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B" | 
| 330 | by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2) | |
| 331 | ||
| 44041 | 332 | lemma SUP_union: | 
| 333 | "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)" | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 334 | by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper) | 
| 44041 | 335 | |
| 336 | lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)" | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 337 | by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono) | 
| 44041 | 338 | |
| 44918 | 339 | lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" (is "?L = ?R") | 
| 340 | proof (rule antisym) | |
| 341 | show "?L \<le> ?R" by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono) | |
| 342 | next | |
| 343 | show "?R \<le> ?L" by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper) | |
| 344 | qed | |
| 44041 | 345 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 346 | lemma Inf_top_conv [simp]: | 
| 43868 | 347 | "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | 
| 348 | "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 349 | proof - | |
| 350 | show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 351 | proof | |
| 352 | assume "\<forall>x\<in>A. x = \<top>" | |
| 353 |     then have "A = {} \<or> A = {\<top>}" by auto
 | |
| 44919 | 354 | then show "\<Sqinter>A = \<top>" by auto | 
| 43868 | 355 | next | 
| 356 | assume "\<Sqinter>A = \<top>" | |
| 357 | show "\<forall>x\<in>A. x = \<top>" | |
| 358 | proof (rule ccontr) | |
| 359 | assume "\<not> (\<forall>x\<in>A. x = \<top>)" | |
| 360 | then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast | |
| 361 | then obtain B where "A = insert x B" by blast | |
| 44919 | 362 | with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by simp | 
| 43868 | 363 | qed | 
| 364 | qed | |
| 365 | then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto | |
| 366 | qed | |
| 367 | ||
| 44918 | 368 | lemma INF_top_conv [simp]: | 
| 56166 | 369 | "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | 
| 370 | "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | |
| 371 | using Inf_top_conv [of "B ` A"] by simp_all | |
| 44041 | 372 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 373 | lemma Sup_bot_conv [simp]: | 
| 43868 | 374 | "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P) | 
| 375 | "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q) | |
| 44920 | 376 | using dual_complete_lattice | 
| 377 | by (rule complete_lattice.Inf_top_conv)+ | |
| 43868 | 378 | |
| 44918 | 379 | lemma SUP_bot_conv [simp]: | 
| 44041 | 380 | "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | 
| 381 | "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | |
| 56166 | 382 | using Sup_bot_conv [of "B ` A"] by simp_all | 
| 44041 | 383 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 384 | lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
 | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 385 | by (auto intro: antisym INF_lower INF_greatest) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 386 | |
| 43870 | 387 | lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
 | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 388 | by (auto intro: antisym SUP_upper SUP_least) | 
| 43870 | 389 | |
| 44918 | 390 | lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>" | 
| 44921 | 391 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 392 | |
| 44918 | 393 | lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>" | 
| 44921 | 394 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 395 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 396 | lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 397 | by (iprover intro: INF_lower INF_greatest order_trans antisym) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 398 | |
| 43870 | 399 | lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 400 | by (iprover intro: SUP_upper SUP_least order_trans antisym) | 
| 43870 | 401 | |
| 43871 | 402 | lemma INF_absorb: | 
| 43868 | 403 | assumes "k \<in> I" | 
| 404 | shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)" | |
| 405 | proof - | |
| 406 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 407 | then show ?thesis by simp | 
| 43868 | 408 | qed | 
| 409 | ||
| 43871 | 410 | lemma SUP_absorb: | 
| 411 | assumes "k \<in> I" | |
| 412 | shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)" | |
| 413 | proof - | |
| 414 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 415 | then show ?thesis by simp | 
| 43871 | 416 | qed | 
| 417 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 418 | lemma INF_inf_const1: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 419 |   "I \<noteq> {} \<Longrightarrow> (INF i:I. inf x (f i)) = inf x (INF i:I. f i)"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 420 | by (intro antisym INF_greatest inf_mono order_refl INF_lower) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 421 | (auto intro: INF_lower2 le_infI2 intro!: INF_mono) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 422 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 423 | lemma INF_inf_const2: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 424 |   "I \<noteq> {} \<Longrightarrow> (INF i:I. inf (f i) x) = inf (INF i:I. f i) x"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 425 | using INF_inf_const1[of I x f] by (simp add: inf_commute) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 426 | |
| 43871 | 427 | lemma INF_constant: | 
| 43868 | 428 |   "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
 | 
| 44921 | 429 | by simp | 
| 43868 | 430 | |
| 43871 | 431 | lemma SUP_constant: | 
| 432 |   "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
 | |
| 44921 | 433 | by simp | 
| 43871 | 434 | |
| 43943 | 435 | lemma less_INF_D: | 
| 436 | assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i" | |
| 437 | proof - | |
| 438 | note `y < (\<Sqinter>i\<in>A. f i)` | |
| 439 | also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A` | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 440 | by (rule INF_lower) | 
| 43943 | 441 | finally show "y < f i" . | 
| 442 | qed | |
| 443 | ||
| 444 | lemma SUP_lessD: | |
| 445 | assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y" | |
| 446 | proof - | |
| 447 | have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A` | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 448 | by (rule SUP_upper) | 
| 43943 | 449 | also note `(\<Squnion>i\<in>A. f i) < y` | 
| 450 | finally show "f i < y" . | |
| 451 | qed | |
| 452 | ||
| 43873 | 453 | lemma INF_UNIV_bool_expand: | 
| 43868 | 454 | "(\<Sqinter>b. A b) = A True \<sqinter> A False" | 
| 56166 | 455 | by (simp add: UNIV_bool inf_commute) | 
| 43868 | 456 | |
| 43873 | 457 | lemma SUP_UNIV_bool_expand: | 
| 43871 | 458 | "(\<Squnion>b. A b) = A True \<squnion> A False" | 
| 56166 | 459 | by (simp add: UNIV_bool sup_commute) | 
| 43871 | 460 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 461 | lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 462 | by (blast intro: Sup_upper2 Inf_lower ex_in_conv) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 463 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 464 | lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFIMUM A f \<le> SUPREMUM A f"
 | 
| 56166 | 465 | using Inf_le_Sup [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 466 | |
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 467 | lemma INF_eq_const: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 468 |   "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> INFIMUM I f = x"
 | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 469 | by (auto intro: INF_eqI) | 
| 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 470 | |
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 471 | lemma SUP_eq_const: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 472 |   "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> SUPREMUM I f = x"
 | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 473 | by (auto intro: SUP_eqI) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 474 | |
| 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 475 | lemma INF_eq_iff: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 476 |   "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> (INFIMUM I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 477 | using INF_eq_const [of I f c] INF_lower [of _ I f] | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 478 | by (auto intro: antisym cong del: strong_INF_cong) | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 479 | |
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 480 | lemma SUP_eq_iff: | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 481 |   "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> (SUPREMUM I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 482 | using SUP_eq_const [of I f c] SUP_upper [of _ I f] | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 483 | by (auto intro: antisym cong del: strong_SUP_cong) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 484 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 485 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 486 | |
| 44024 | 487 | class complete_distrib_lattice = complete_lattice + | 
| 44039 | 488 | assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" | 
| 44024 | 489 | assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)" | 
| 490 | begin | |
| 491 | ||
| 44039 | 492 | lemma sup_INF: | 
| 493 | "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)" | |
| 56166 | 494 | by (simp only: INF_def sup_Inf image_image) | 
| 44039 | 495 | |
| 496 | lemma inf_SUP: | |
| 497 | "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)" | |
| 56166 | 498 | by (simp only: SUP_def inf_Sup image_image) | 
| 44039 | 499 | |
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 500 | lemma dual_complete_distrib_lattice: | 
| 44845 | 501 | "class.complete_distrib_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 44024 | 502 | apply (rule class.complete_distrib_lattice.intro) | 
| 503 | apply (fact dual_complete_lattice) | |
| 504 | apply (rule class.complete_distrib_lattice_axioms.intro) | |
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 505 | apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf) | 
| 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 506 | done | 
| 44024 | 507 | |
| 44322 | 508 | subclass distrib_lattice proof | 
| 44024 | 509 | fix a b c | 
| 510 |   from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
 | |
| 44919 | 511 | then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def) | 
| 44024 | 512 | qed | 
| 513 | ||
| 44039 | 514 | lemma Inf_sup: | 
| 515 | "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)" | |
| 516 | by (simp add: sup_Inf sup_commute) | |
| 517 | ||
| 518 | lemma Sup_inf: | |
| 519 | "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)" | |
| 520 | by (simp add: inf_Sup inf_commute) | |
| 521 | ||
| 522 | lemma INF_sup: | |
| 523 | "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)" | |
| 524 | by (simp add: sup_INF sup_commute) | |
| 525 | ||
| 526 | lemma SUP_inf: | |
| 527 | "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)" | |
| 528 | by (simp add: inf_SUP inf_commute) | |
| 529 | ||
| 530 | lemma Inf_sup_eq_top_iff: | |
| 531 | "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)" | |
| 532 | by (simp only: Inf_sup INF_top_conv) | |
| 533 | ||
| 534 | lemma Sup_inf_eq_bot_iff: | |
| 535 | "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)" | |
| 536 | by (simp only: Sup_inf SUP_bot_conv) | |
| 537 | ||
| 538 | lemma INF_sup_distrib2: | |
| 539 | "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)" | |
| 540 | by (subst INF_commute) (simp add: sup_INF INF_sup) | |
| 541 | ||
| 542 | lemma SUP_inf_distrib2: | |
| 543 | "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)" | |
| 544 | by (subst SUP_commute) (simp add: inf_SUP SUP_inf) | |
| 545 | ||
| 56074 | 546 | context | 
| 547 | fixes f :: "'a \<Rightarrow> 'b::complete_lattice" | |
| 548 | assumes "mono f" | |
| 549 | begin | |
| 550 | ||
| 551 | lemma mono_Inf: | |
| 552 | shows "f (\<Sqinter>A) \<le> (\<Sqinter>x\<in>A. f x)" | |
| 553 | using `mono f` by (auto intro: complete_lattice_class.INF_greatest Inf_lower dest: monoD) | |
| 554 | ||
| 555 | lemma mono_Sup: | |
| 556 | shows "(\<Squnion>x\<in>A. f x) \<le> f (\<Squnion>A)" | |
| 557 | using `mono f` by (auto intro: complete_lattice_class.SUP_least Sup_upper dest: monoD) | |
| 558 | ||
| 559 | end | |
| 560 | ||
| 44024 | 561 | end | 
| 562 | ||
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 563 | class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice | 
| 43873 | 564 | begin | 
| 565 | ||
| 43943 | 566 | lemma dual_complete_boolean_algebra: | 
| 44845 | 567 | "class.complete_boolean_algebra Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus" | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 568 | by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra) | 
| 43943 | 569 | |
| 43873 | 570 | lemma uminus_Inf: | 
| 571 | "- (\<Sqinter>A) = \<Squnion>(uminus ` A)" | |
| 572 | proof (rule antisym) | |
| 573 | show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)" | |
| 574 | by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp | |
| 575 | show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A" | |
| 576 | by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto | |
| 577 | qed | |
| 578 | ||
| 44041 | 579 | lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)" | 
| 56166 | 580 | by (simp only: INF_def SUP_def uminus_Inf image_image) | 
| 44041 | 581 | |
| 43873 | 582 | lemma uminus_Sup: | 
| 583 | "- (\<Squnion>A) = \<Sqinter>(uminus ` A)" | |
| 584 | proof - | |
| 56166 | 585 | have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_INF) | 
| 43873 | 586 | then show ?thesis by simp | 
| 587 | qed | |
| 588 | ||
| 589 | lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)" | |
| 56166 | 590 | by (simp only: INF_def SUP_def uminus_Sup image_image) | 
| 43873 | 591 | |
| 592 | end | |
| 593 | ||
| 43940 | 594 | class complete_linorder = linorder + complete_lattice | 
| 595 | begin | |
| 596 | ||
| 43943 | 597 | lemma dual_complete_linorder: | 
| 44845 | 598 | "class.complete_linorder Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>" | 
| 43943 | 599 | by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder) | 
| 600 | ||
| 51386 | 601 | lemma complete_linorder_inf_min: "inf = min" | 
| 51540 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 haftmann parents: 
51489diff
changeset | 602 | by (auto intro: antisym simp add: min_def fun_eq_iff) | 
| 51386 | 603 | |
| 604 | lemma complete_linorder_sup_max: "sup = max" | |
| 51540 
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
 haftmann parents: 
51489diff
changeset | 605 | by (auto intro: antisym simp add: max_def fun_eq_iff) | 
| 51386 | 606 | |
| 44918 | 607 | lemma Inf_less_iff: | 
| 43940 | 608 | "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)" | 
| 609 | unfolding not_le [symmetric] le_Inf_iff by auto | |
| 610 | ||
| 44918 | 611 | lemma INF_less_iff: | 
| 44041 | 612 | "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)" | 
| 56166 | 613 | using Inf_less_iff [of "f ` A"] by simp | 
| 44041 | 614 | |
| 44918 | 615 | lemma less_Sup_iff: | 
| 43940 | 616 | "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)" | 
| 617 | unfolding not_le [symmetric] Sup_le_iff by auto | |
| 618 | ||
| 44918 | 619 | lemma less_SUP_iff: | 
| 43940 | 620 | "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)" | 
| 56166 | 621 | using less_Sup_iff [of _ "f ` A"] by simp | 
| 43940 | 622 | |
| 44918 | 623 | lemma Sup_eq_top_iff [simp]: | 
| 43943 | 624 | "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 625 | proof | |
| 626 | assume *: "\<Squnion>A = \<top>" | |
| 627 | show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric] | |
| 628 | proof (intro allI impI) | |
| 629 | fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i" | |
| 630 | unfolding less_Sup_iff by auto | |
| 631 | qed | |
| 632 | next | |
| 633 | assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i" | |
| 634 | show "\<Squnion>A = \<top>" | |
| 635 | proof (rule ccontr) | |
| 636 | assume "\<Squnion>A \<noteq> \<top>" | |
| 637 | with top_greatest [of "\<Squnion>A"] | |
| 638 | have "\<Squnion>A < \<top>" unfolding le_less by auto | |
| 639 | then have "\<Squnion>A < \<Squnion>A" | |
| 640 | using * unfolding less_Sup_iff by auto | |
| 641 | then show False by auto | |
| 642 | qed | |
| 643 | qed | |
| 644 | ||
| 44918 | 645 | lemma SUP_eq_top_iff [simp]: | 
| 44041 | 646 | "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)" | 
| 56166 | 647 | using Sup_eq_top_iff [of "f ` A"] by simp | 
| 44041 | 648 | |
| 44918 | 649 | lemma Inf_eq_bot_iff [simp]: | 
| 43943 | 650 | "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)" | 
| 44920 | 651 | using dual_complete_linorder | 
| 652 | by (rule complete_linorder.Sup_eq_top_iff) | |
| 43943 | 653 | |
| 44918 | 654 | lemma INF_eq_bot_iff [simp]: | 
| 43967 | 655 | "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)" | 
| 56166 | 656 | using Inf_eq_bot_iff [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 657 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 658 | lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 659 | proof safe | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 660 | fix y assume "x \<ge> \<Sqinter>A" "y > x" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 661 | then have "y > \<Sqinter>A" by auto | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 662 | then show "\<exists>a\<in>A. y > a" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 663 | unfolding Inf_less_iff . | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 664 | qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 665 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 666 | lemma INF_le_iff: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 667 | "INFIMUM A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)" | 
| 56166 | 668 | using Inf_le_iff [of "f ` A"] by simp | 
| 669 | ||
| 670 | lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)" | |
| 671 | proof safe | |
| 672 | fix y assume "x \<le> \<Squnion>A" "y < x" | |
| 673 | then have "y < \<Squnion>A" by auto | |
| 674 | then show "\<exists>a\<in>A. y < a" | |
| 675 | unfolding less_Sup_iff . | |
| 676 | qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper) | |
| 677 | ||
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 678 | lemma le_SUP_iff: "x \<le> SUPREMUM A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)" | 
| 56166 | 679 | using le_Sup_iff [of _ "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 680 | |
| 51386 | 681 | subclass complete_distrib_lattice | 
| 682 | proof | |
| 683 | fix a and B | |
| 684 | show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" and "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)" | |
| 685 | by (safe intro!: INF_eqI [symmetric] sup_mono Inf_lower SUP_eqI [symmetric] inf_mono Sup_upper) | |
| 686 | (auto simp: not_less [symmetric] Inf_less_iff less_Sup_iff | |
| 687 | le_max_iff_disj complete_linorder_sup_max min_le_iff_disj complete_linorder_inf_min) | |
| 688 | qed | |
| 689 | ||
| 43940 | 690 | end | 
| 691 | ||
| 51341 
8c10293e7ea7
complete_linorder is also a complete_distrib_lattice
 hoelzl parents: 
51328diff
changeset | 692 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 693 | subsection {* Complete lattice on @{typ bool} *}
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 694 | |
| 44024 | 695 | instantiation bool :: complete_lattice | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 696 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 697 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 698 | definition | 
| 46154 | 699 | [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 700 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 701 | definition | 
| 46154 | 702 | [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 703 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 704 | instance proof | 
| 44322 | 705 | qed (auto intro: bool_induct) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 706 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 707 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 708 | |
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 709 | lemma not_False_in_image_Ball [simp]: | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 710 | "False \<notin> P ` A \<longleftrightarrow> Ball A P" | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 711 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 712 | |
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 713 | lemma True_in_image_Bex [simp]: | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 714 | "True \<in> P ` A \<longleftrightarrow> Bex A P" | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 715 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 716 | |
| 43873 | 717 | lemma INF_bool_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 718 | "INFIMUM = Ball" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 719 | by (simp add: fun_eq_iff INF_def) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 720 | |
| 43873 | 721 | lemma SUP_bool_eq [simp]: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 722 | "SUPREMUM = Bex" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 723 | by (simp add: fun_eq_iff SUP_def) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 724 | |
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 725 | instance bool :: complete_boolean_algebra proof | 
| 44322 | 726 | qed (auto intro: bool_induct) | 
| 44024 | 727 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 728 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 729 | subsection {* Complete lattice on @{typ "_ \<Rightarrow> _"} *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 730 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 731 | instantiation "fun" :: (type, Inf) Inf | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 732 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 733 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 734 | definition | 
| 44024 | 735 | "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)" | 
| 41080 | 736 | |
| 46882 | 737 | lemma Inf_apply [simp, code]: | 
| 44024 | 738 | "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)" | 
| 41080 | 739 | by (simp add: Inf_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 740 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 741 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 742 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 743 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 744 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 745 | instantiation "fun" :: (type, Sup) Sup | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 746 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 747 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 748 | definition | 
| 44024 | 749 | "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)" | 
| 41080 | 750 | |
| 46882 | 751 | lemma Sup_apply [simp, code]: | 
| 44024 | 752 | "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)" | 
| 41080 | 753 | by (simp add: Sup_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 754 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 755 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 756 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 757 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 758 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 759 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 760 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 761 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 762 | instance proof | 
| 46884 | 763 | qed (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 764 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 765 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 766 | |
| 46882 | 767 | lemma INF_apply [simp]: | 
| 41080 | 768 | "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)" | 
| 56166 | 769 | using Inf_apply [of "f ` A"] by (simp add: comp_def) | 
| 38705 | 770 | |
| 46882 | 771 | lemma SUP_apply [simp]: | 
| 41080 | 772 | "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)" | 
| 56166 | 773 | using Sup_apply [of "f ` A"] by (simp add: comp_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 774 | |
| 44024 | 775 | instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof | 
| 56166 | 776 | qed (auto simp add: INF_def SUP_def inf_Sup sup_Inf fun_eq_iff image_image | 
| 777 | simp del: Inf_image_eq Sup_image_eq) | |
| 44024 | 778 | |
| 43873 | 779 | instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra .. | 
| 780 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 781 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 782 | subsection {* Complete lattice on unary and binary predicates *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 783 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 784 | lemma Inf1_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 785 | "(\<And>P. P \<in> A \<Longrightarrow> P a) \<Longrightarrow> (\<Sqinter>A) a" | 
| 46884 | 786 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 787 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 788 | lemma INF1_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 789 | "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 790 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 791 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 792 | lemma INF2_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 793 | "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 794 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 795 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 796 | lemma Inf2_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 797 | "(\<And>r. r \<in> A \<Longrightarrow> r a b) \<Longrightarrow> (\<Sqinter>A) a b" | 
| 46884 | 798 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 799 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 800 | lemma Inf1_D: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 801 | "(\<Sqinter>A) a \<Longrightarrow> P \<in> A \<Longrightarrow> P a" | 
| 46884 | 802 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 803 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 804 | lemma INF1_D: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 805 | "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 806 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 807 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 808 | lemma Inf2_D: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 809 | "(\<Sqinter>A) a b \<Longrightarrow> r \<in> A \<Longrightarrow> r a b" | 
| 46884 | 810 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 811 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 812 | lemma INF2_D: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 813 | "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 814 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 815 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 816 | lemma Inf1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 817 | assumes "(\<Sqinter>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 818 | obtains "P a" | "P \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 819 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 820 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 821 | lemma INF1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 822 | assumes "(\<Sqinter>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 823 | obtains "B a b" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 824 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 825 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 826 | lemma Inf2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 827 | assumes "(\<Sqinter>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 828 | obtains "r a b" | "r \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 829 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 830 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 831 | lemma INF2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 832 | assumes "(\<Sqinter>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 833 | obtains "B a b c" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 834 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 835 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 836 | lemma Sup1_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 837 | "P \<in> A \<Longrightarrow> P a \<Longrightarrow> (\<Squnion>A) a" | 
| 46884 | 838 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 839 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 840 | lemma SUP1_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 841 | "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 842 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 843 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 844 | lemma Sup2_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 845 | "r \<in> A \<Longrightarrow> r a b \<Longrightarrow> (\<Squnion>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 846 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 847 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 848 | lemma SUP2_I: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 849 | "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c" | 
| 46884 | 850 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 851 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 852 | lemma Sup1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 853 | assumes "(\<Squnion>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 854 | obtains P where "P \<in> A" and "P a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 855 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 856 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 857 | lemma SUP1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 858 | assumes "(\<Squnion>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 859 | obtains x where "x \<in> A" and "B x b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 860 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 861 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 862 | lemma Sup2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 863 | assumes "(\<Squnion>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 864 | obtains r where "r \<in> A" "r a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 865 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 866 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 867 | lemma SUP2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 868 | assumes "(\<Squnion>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 869 | obtains x where "x \<in> A" "B x b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 870 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 871 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 872 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 873 | subsection {* Complete lattice on @{typ "_ set"} *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 874 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 875 | instantiation "set" :: (type) complete_lattice | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 876 | begin | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 877 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 878 | definition | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 879 |   "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 880 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 881 | definition | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 882 |   "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 883 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 884 | instance proof | 
| 51386 | 885 | qed (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def) | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 886 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 887 | end | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 888 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 889 | instance "set" :: (type) complete_boolean_algebra | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 890 | proof | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 891 | qed (auto simp add: INF_def SUP_def Inf_set_def Sup_set_def image_def) | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 892 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 893 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 894 | subsubsection {* Inter *}
 | 
| 41082 | 895 | |
| 896 | abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where | |
| 897 | "Inter S \<equiv> \<Sqinter>S" | |
| 898 | ||
| 899 | notation (xsymbols) | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51540diff
changeset | 900 |   Inter  ("\<Inter>_" [900] 900)
 | 
| 41082 | 901 | |
| 902 | lemma Inter_eq: | |
| 903 |   "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 904 | proof (rule set_eqI) | |
| 905 | fix x | |
| 906 |   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
 | |
| 907 | by auto | |
| 908 |   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 909 | by (simp add: Inf_set_def image_def) | 
| 41082 | 910 | qed | 
| 911 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 912 | lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)" | 
| 41082 | 913 | by (unfold Inter_eq) blast | 
| 914 | ||
| 43741 | 915 | lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C" | 
| 41082 | 916 | by (simp add: Inter_eq) | 
| 917 | ||
| 918 | text {*
 | |
| 919 |   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
 | |
| 43741 | 920 |   contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
 | 
| 921 |   @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
 | |
| 41082 | 922 | *} | 
| 923 | ||
| 43741 | 924 | lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X" | 
| 41082 | 925 | by auto | 
| 926 | ||
| 43741 | 927 | lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R" | 
| 41082 | 928 |   -- {* ``Classical'' elimination rule -- does not require proving
 | 
| 43741 | 929 |     @{prop "X \<in> C"}. *}
 | 
| 41082 | 930 | by (unfold Inter_eq) blast | 
| 931 | ||
| 43741 | 932 | lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B" | 
| 43740 | 933 | by (fact Inf_lower) | 
| 934 | ||
| 41082 | 935 | lemma Inter_subset: | 
| 43755 | 936 |   "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
 | 
| 43740 | 937 | by (fact Inf_less_eq) | 
| 41082 | 938 | |
| 43755 | 939 | lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A" | 
| 43740 | 940 | by (fact Inf_greatest) | 
| 41082 | 941 | |
| 44067 | 942 | lemma Inter_empty: "\<Inter>{} = UNIV"
 | 
| 943 | by (fact Inf_empty) (* already simp *) | |
| 41082 | 944 | |
| 44067 | 945 | lemma Inter_UNIV: "\<Inter>UNIV = {}"
 | 
| 946 | by (fact Inf_UNIV) (* already simp *) | |
| 41082 | 947 | |
| 44920 | 948 | lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 949 | by (fact Inf_insert) (* already simp *) | |
| 41082 | 950 | |
| 951 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | |
| 43899 | 952 | by (fact less_eq_Inf_inter) | 
| 41082 | 953 | |
| 954 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | |
| 43756 | 955 | by (fact Inf_union_distrib) | 
| 956 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 957 | lemma Inter_UNIV_conv [simp]: | 
| 43741 | 958 | "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | 
| 959 | "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | |
| 43801 | 960 | by (fact Inf_top_conv)+ | 
| 41082 | 961 | |
| 43741 | 962 | lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B" | 
| 43899 | 963 | by (fact Inf_superset_mono) | 
| 41082 | 964 | |
| 965 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 966 | subsubsection {* Intersections of families *}
 | 
| 41082 | 967 | |
| 968 | abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 969 | "INTER \<equiv> INFIMUM" | 
| 41082 | 970 | |
| 43872 | 971 | text {*
 | 
| 972 |   Note: must use name @{const INTER} here instead of @{text INT}
 | |
| 973 | to allow the following syntax coexist with the plain constant name. | |
| 974 | *} | |
| 975 | ||
| 41082 | 976 | syntax | 
| 977 |   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | |
| 978 |   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
 | |
| 979 | ||
| 980 | syntax (xsymbols) | |
| 981 |   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | |
| 982 |   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 983 | ||
| 984 | syntax (latex output) | |
| 985 |   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 986 |   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | |
| 987 | ||
| 988 | translations | |
| 989 | "INT x y. B" == "INT x. INT y. B" | |
| 990 | "INT x. B" == "CONST INTER CONST UNIV (%x. B)" | |
| 991 | "INT x. B" == "INT x:CONST UNIV. B" | |
| 992 | "INT x:A. B" == "CONST INTER A (%x. B)" | |
| 993 | ||
| 994 | print_translation {*
 | |
| 42284 | 995 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
 | 
| 41082 | 996 | *} -- {* to avoid eta-contraction of body *}
 | 
| 997 | ||
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 998 | lemma INTER_eq: | 
| 41082 | 999 |   "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
 | 
| 56166 | 1000 | by (auto intro!: INF_eqI) | 
| 41082 | 1001 | |
| 56166 | 1002 | lemma Inter_image_eq: | 
| 1003 | "\<Inter>(B ` A) = (\<Inter>x\<in>A. B x)" | |
| 1004 | by (fact Inf_image_eq) | |
| 41082 | 1005 | |
| 43817 | 1006 | lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)" | 
| 56166 | 1007 | using Inter_iff [of _ "B ` A"] by simp | 
| 41082 | 1008 | |
| 43817 | 1009 | lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)" | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1010 | by (auto simp add: INF_def image_def) | 
| 41082 | 1011 | |
| 43852 | 1012 | lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a" | 
| 41082 | 1013 | by auto | 
| 1014 | ||
| 43852 | 1015 | lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 1016 |   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
 | |
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1017 | by (auto simp add: INF_def image_def) | 
| 41082 | 1018 | |
| 1019 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | |
| 1020 | by blast | |
| 1021 | ||
| 1022 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | |
| 1023 | by blast | |
| 1024 | ||
| 43817 | 1025 | lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1026 | by (fact INF_lower) | 
| 41082 | 1027 | |
| 43817 | 1028 | lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1029 | by (fact INF_greatest) | 
| 41082 | 1030 | |
| 44067 | 1031 | lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1032 | by (fact INF_empty) | 
| 43854 | 1033 | |
| 43817 | 1034 | lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 43872 | 1035 | by (fact INF_absorb) | 
| 41082 | 1036 | |
| 43854 | 1037 | lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 41082 | 1038 | by (fact le_INF_iff) | 
| 1039 | ||
| 1040 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1041 | by (fact INF_insert) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1042 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1043 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1044 | by (fact INF_union) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1045 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1046 | lemma INT_insert_distrib: | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1047 | "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1048 | by blast | 
| 43854 | 1049 | |
| 41082 | 1050 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1051 | by (fact INF_constant) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1052 | |
| 44920 | 1053 | lemma INTER_UNIV_conv: | 
| 43817 | 1054 | "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 1055 | "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 44920 | 1056 | by (fact INF_top_conv)+ (* already simp *) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1057 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1058 | lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False" | 
| 43873 | 1059 | by (fact INF_UNIV_bool_expand) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1060 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1061 | lemma INT_anti_mono: | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1062 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 1063 |   -- {* The last inclusion is POSITIVE! *}
 | 
| 43940 | 1064 | by (fact INF_superset_mono) | 
| 41082 | 1065 | |
| 1066 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | |
| 1067 | by blast | |
| 1068 | ||
| 43817 | 1069 | lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)" | 
| 41082 | 1070 | by blast | 
| 1071 | ||
| 1072 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1073 | subsubsection {* Union *}
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1074 | |
| 32587 
caa5ada96a00
Inter and Union are mere abbreviations for Inf and Sup
 haftmann parents: 
32436diff
changeset | 1075 | abbreviation Union :: "'a set set \<Rightarrow> 'a set" where | 
| 
caa5ada96a00
Inter and Union are mere abbreviations for Inf and Sup
 haftmann parents: 
32436diff
changeset | 1076 | "Union S \<equiv> \<Squnion>S" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1077 | |
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1078 | notation (xsymbols) | 
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51540diff
changeset | 1079 |   Union  ("\<Union>_" [900] 900)
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1080 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1081 | lemma Union_eq: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1082 |   "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38705diff
changeset | 1083 | proof (rule set_eqI) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1084 | fix x | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1085 |   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1086 | by auto | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1087 |   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1088 | by (simp add: Sup_set_def image_def) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1089 | qed | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1090 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1091 | lemma Union_iff [simp]: | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1092 | "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)" | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1093 | by (unfold Union_eq) blast | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1094 | |
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1095 | lemma UnionI [intro]: | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1096 | "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C" | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1097 |   -- {* The order of the premises presupposes that @{term C} is rigid;
 | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1098 |     @{term A} may be flexible. *}
 | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1099 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1100 | |
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1101 | lemma UnionE [elim!]: | 
| 43817 | 1102 | "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1103 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1104 | |
| 43817 | 1105 | lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A" | 
| 43901 | 1106 | by (fact Sup_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1107 | |
| 43817 | 1108 | lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C" | 
| 43901 | 1109 | by (fact Sup_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1110 | |
| 44920 | 1111 | lemma Union_empty: "\<Union>{} = {}"
 | 
| 1112 | by (fact Sup_empty) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1113 | |
| 44920 | 1114 | lemma Union_UNIV: "\<Union>UNIV = UNIV" | 
| 1115 | by (fact Sup_UNIV) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1116 | |
| 44920 | 1117 | lemma Union_insert: "\<Union>insert a B = a \<union> \<Union>B" | 
| 1118 | by (fact Sup_insert) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1119 | |
| 43817 | 1120 | lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B" | 
| 43901 | 1121 | by (fact Sup_union_distrib) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1122 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1123 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 43901 | 1124 | by (fact Sup_inter_less_eq) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1125 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1126 | lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 1127 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1128 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1129 | lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 1130 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1131 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1132 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1133 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1134 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1135 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1136 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1137 | |
| 43817 | 1138 | lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 43901 | 1139 | by (fact Sup_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1140 | |
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 1141 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1142 | subsubsection {* Unions of families *}
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1143 | |
| 32606 
b5c3a8a75772
INTER and UNION are mere abbreviations for INFI and SUPR
 haftmann parents: 
32587diff
changeset | 1144 | abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
 | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1145 | "UNION \<equiv> SUPREMUM" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1146 | |
| 43872 | 1147 | text {*
 | 
| 1148 |   Note: must use name @{const UNION} here instead of @{text UN}
 | |
| 1149 | to allow the following syntax coexist with the plain constant name. | |
| 1150 | *} | |
| 1151 | ||
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1152 | syntax | 
| 35115 | 1153 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
35828diff
changeset | 1154 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1155 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1156 | syntax (xsymbols) | 
| 35115 | 1157 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
35828diff
changeset | 1158 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1159 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1160 | syntax (latex output) | 
| 35115 | 1161 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
35828diff
changeset | 1162 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1163 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1164 | translations | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1165 | "UN x y. B" == "UN x. UN y. B" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1166 | "UN x. B" == "CONST UNION CONST UNIV (%x. B)" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1167 | "UN x. B" == "UN x:CONST UNIV. B" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1168 | "UN x:A. B" == "CONST UNION A (%x. B)" | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1169 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1170 | text {*
 | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1171 | Note the difference between ordinary xsymbol syntax of indexed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 1172 |   unions and intersections (e.g.\ @{text"\<Union>a\<^sub>1\<in>A\<^sub>1. B"})
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 1173 |   and their \LaTeX\ rendition: @{term"\<Union>a\<^sub>1\<in>A\<^sub>1. B"}. The
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1174 | former does not make the index expression a subscript of the | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1175 | union/intersection symbol because this leads to problems with nested | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1176 | subscripts in Proof General. | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1177 | *} | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1178 | |
| 35115 | 1179 | print_translation {*
 | 
| 42284 | 1180 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
 | 
| 35115 | 1181 | *} -- {* to avoid eta-contraction of body *}
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1182 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1183 | lemma UNION_eq: | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1184 |   "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
 | 
| 56166 | 1185 | by (auto intro!: SUP_eqI) | 
| 44920 | 1186 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1187 | lemma bind_UNION [code]: | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1188 | "Set.bind A f = UNION A f" | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1189 | by (simp add: bind_def UNION_eq) | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1190 | |
| 46036 | 1191 | lemma member_bind [simp]: | 
| 1192 | "x \<in> Set.bind P f \<longleftrightarrow> x \<in> UNION P f " | |
| 1193 | by (simp add: bind_UNION) | |
| 1194 | ||
| 56166 | 1195 | lemma Union_image_eq: | 
| 43817 | 1196 | "\<Union>(B ` A) = (\<Union>x\<in>A. B x)" | 
| 56166 | 1197 | by (fact Sup_image_eq) | 
| 44920 | 1198 | |
| 46036 | 1199 | lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)" | 
| 56166 | 1200 | using Union_iff [of _ "B ` A"] by simp | 
| 11979 | 1201 | |
| 43852 | 1202 | lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)" | 
| 11979 | 1203 |   -- {* The order of the premises presupposes that @{term A} is rigid;
 | 
| 1204 |     @{term b} may be flexible. *}
 | |
| 1205 | by auto | |
| 1206 | ||
| 43852 | 1207 | lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1208 | by (auto simp add: SUP_def image_def) | 
| 923 | 1209 | |
| 43817 | 1210 | lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1211 | by blast | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1212 | |
| 43817 | 1213 | lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1214 | by (fact SUP_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1215 | |
| 43817 | 1216 | lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1217 | by (fact SUP_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1218 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1219 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1220 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1221 | |
| 43817 | 1222 | lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1223 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1224 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1225 | lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1226 | by (fact SUP_empty) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1227 | |
| 44920 | 1228 | lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
 | 
| 1229 | by (fact SUP_bot) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1230 | |
| 43817 | 1231 | lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1232 | by (fact SUP_absorb) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1233 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1234 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1235 | by (fact SUP_insert) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1236 | |
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1237 | lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1238 | by (fact SUP_union) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1239 | |
| 43967 | 1240 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1241 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1242 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1243 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 35629 | 1244 | by (fact SUP_le_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1245 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1246 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1247 | by (fact SUP_constant) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1248 | |
| 43944 | 1249 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1250 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1251 | |
| 44920 | 1252 | lemma UNION_empty_conv: | 
| 43817 | 1253 |   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | 
| 1254 |   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | |
| 44920 | 1255 | by (fact SUP_bot_conv)+ (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1256 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1257 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1258 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1259 | |
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1260 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1261 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1262 | |
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1263 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1264 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1265 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1266 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1267 | by (auto simp add: split_if_mem2) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1268 | |
| 43817 | 1269 | lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1270 | by (fact SUP_UNIV_bool_expand) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1271 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1272 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1273 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1274 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1275 | lemma UN_mono: | 
| 43817 | 1276 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1277 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 43940 | 1278 | by (fact SUP_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1279 | |
| 43817 | 1280 | lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1281 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1282 | |
| 43817 | 1283 | lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1284 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1285 | |
| 43817 | 1286 | lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1287 |   -- {* NOT suitable for rewriting *}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1288 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1289 | |
| 43817 | 1290 | lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)" | 
| 1291 | by blast | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1292 | |
| 45013 | 1293 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 1294 | by blast | |
| 1295 | ||
| 11979 | 1296 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1297 | subsubsection {* Distributive laws *}
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1298 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1299 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1300 | by (fact inf_Sup) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1301 | |
| 44039 | 1302 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 1303 | by (fact sup_Inf) | |
| 1304 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1305 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 44039 | 1306 | by (fact Sup_inf) | 
| 1307 | ||
| 1308 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | |
| 1309 | by (rule sym) (rule INF_inf_distrib) | |
| 1310 | ||
| 1311 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | |
| 1312 | by (rule sym) (rule SUP_sup_distrib) | |
| 1313 | ||
| 56166 | 1314 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)" -- {* FIXME drop *}
 | 
| 1315 | by (simp add: INT_Int_distrib) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1316 | |
| 56166 | 1317 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)" -- {* FIXME drop *}
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1318 |   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1319 |   -- {* Union of a family of unions *}
 | 
| 56166 | 1320 | by (simp add: UN_Un_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1321 | |
| 44039 | 1322 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 1323 | by (fact sup_INF) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1324 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1325 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1326 |   -- {* Halmos, Naive Set Theory, page 35. *}
 | 
| 44039 | 1327 | by (fact inf_SUP) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1328 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1329 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 44039 | 1330 | by (fact SUP_inf_distrib2) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1331 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1332 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 44039 | 1333 | by (fact INF_sup_distrib2) | 
| 1334 | ||
| 1335 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
 | |
| 1336 | by (fact Sup_inf_eq_bot_iff) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1337 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1338 | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1339 | subsection {* Injections and bijections *}
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1340 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1341 | lemma inj_on_Inter: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1342 |   "S \<noteq> {} \<Longrightarrow> (\<And>A. A \<in> S \<Longrightarrow> inj_on f A) \<Longrightarrow> inj_on f (\<Inter>S)"
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1343 | unfolding inj_on_def by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1344 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1345 | lemma inj_on_INTER: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1346 |   "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)) \<Longrightarrow> inj_on f (\<Inter>i \<in> I. A i)"
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1347 | unfolding inj_on_def by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1348 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1349 | lemma inj_on_UNION_chain: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1350 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1351 | INJ: "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1352 | shows "inj_on f (\<Union> i \<in> I. A i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1353 | proof - | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1354 |   {
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1355 | fix i j x y | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1356 | assume *: "i \<in> I" "j \<in> I" and **: "x \<in> A i" "y \<in> A j" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1357 | and ***: "f x = f y" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1358 | have "x = y" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1359 | proof - | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1360 |       {
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1361 | assume "A i \<le> A j" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1362 | with ** have "x \<in> A j" by auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1363 | with INJ * ** *** have ?thesis | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1364 | by(auto simp add: inj_on_def) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1365 | } | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1366 | moreover | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1367 |       {
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1368 | assume "A j \<le> A i" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1369 | with ** have "y \<in> A i" by auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1370 | with INJ * ** *** have ?thesis | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1371 | by(auto simp add: inj_on_def) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1372 | } | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1373 | ultimately show ?thesis using CH * by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1374 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1375 | } | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1376 | then show ?thesis by (unfold inj_on_def UNION_eq) auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1377 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1378 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1379 | lemma bij_betw_UNION_chain: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1380 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1381 | BIJ: "\<And> i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1382 | shows "bij_betw f (\<Union> i \<in> I. A i) (\<Union> i \<in> I. A' i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1383 | proof (unfold bij_betw_def, auto) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1384 | have "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1385 | using BIJ bij_betw_def[of f] by auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1386 | thus "inj_on f (\<Union> i \<in> I. A i)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1387 | using CH inj_on_UNION_chain[of I A f] by auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1388 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1389 | fix i x | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1390 | assume *: "i \<in> I" "x \<in> A i" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1391 | hence "f x \<in> A' i" using BIJ bij_betw_def[of f] by auto | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1392 | thus "\<exists>j \<in> I. f x \<in> A' j" using * by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1393 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1394 | fix i x' | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1395 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1396 | hence "\<exists>x \<in> A i. x' = f x" using BIJ bij_betw_def[of f] by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1397 | then have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1398 | using * by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1399 | then show "x' \<in> f ` (\<Union>x\<in>I. A x)" by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1400 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1401 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1402 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1403 | lemma image_INT: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1404 | "[| inj_on f C; ALL x:A. B x <= C; j:A |] | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1405 | ==> f ` (INTER A B) = (INT x:A. f ` B x)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1406 | apply (simp add: inj_on_def, blast) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1407 | done | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1408 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1409 | (*Compare with image_INT: no use of inj_on, and if f is surjective then | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1410 | it doesn't matter whether A is empty*) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1411 | lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1412 | apply (simp add: bij_def) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1413 | apply (simp add: inj_on_def surj_def, blast) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1414 | done | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1415 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1416 | lemma UNION_fun_upd: | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1417 |   "UNION J (A(i:=B)) = (UNION (J-{i}) A \<union> (if i\<in>J then B else {}))"
 | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1418 | by (auto split: if_splits) | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1419 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1420 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1421 | subsubsection {* Complement *}
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1422 | |
| 43873 | 1423 | lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 1424 | by (fact uminus_INF) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1425 | |
| 43873 | 1426 | lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 1427 | by (fact uminus_SUP) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1428 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1429 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1430 | subsubsection {* Miniscoping and maxiscoping *}
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1431 | |
| 13860 | 1432 | text {* \medskip Miniscoping: pushing in quantifiers and big Unions
 | 
| 1433 | and Intersections. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1434 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1435 | lemma UN_simps [simp]: | 
| 43817 | 1436 |   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1437 |   "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
 | 
| 43852 | 1438 |   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1439 | "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)" | 
| 43852 | 1440 | "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))" | 
| 1441 | "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)" | |
| 1442 | "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))" | |
| 1443 | "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)" | |
| 1444 | "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)" | |
| 43831 | 1445 | "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1446 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1447 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1448 | lemma INT_simps [simp]: | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1449 |   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
 | 
| 43831 | 1450 |   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
 | 
| 43852 | 1451 |   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
 | 
| 1452 |   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
 | |
| 43817 | 1453 | "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)" | 
| 43852 | 1454 | "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)" | 
| 1455 | "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))" | |
| 1456 | "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)" | |
| 1457 | "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)" | |
| 1458 | "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1459 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1460 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1461 | lemma UN_ball_bex_simps [simp]: | 
| 43852 | 1462 | "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)" | 
| 43967 | 1463 | "\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)" | 
| 43852 | 1464 | "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)" | 
| 1465 | "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1466 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1467 | |
| 43943 | 1468 | |
| 13860 | 1469 | text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
 | 
| 1470 | ||
| 1471 | lemma UN_extend_simps: | |
| 43817 | 1472 |   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1473 |   "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
 | 
| 43852 | 1474 |   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
 | 
| 1475 | "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)" | |
| 1476 | "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)" | |
| 43817 | 1477 | "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)" | 
| 1478 | "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)" | |
| 43852 | 1479 | "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)" | 
| 1480 | "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)" | |
| 43831 | 1481 | "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)" | 
| 13860 | 1482 | by auto | 
| 1483 | ||
| 1484 | lemma INT_extend_simps: | |
| 43852 | 1485 |   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
 | 
| 1486 |   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
 | |
| 1487 |   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
 | |
| 1488 |   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
 | |
| 43817 | 1489 | "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))" | 
| 43852 | 1490 | "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)" | 
| 1491 | "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)" | |
| 1492 | "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)" | |
| 1493 | "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)" | |
| 1494 | "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)" | |
| 13860 | 1495 | by auto | 
| 1496 | ||
| 43872 | 1497 | text {* Finally *}
 | 
| 1498 | ||
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1499 | no_notation | 
| 46691 | 1500 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 1501 | less (infix "\<sqsubset>" 50) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1502 | |
| 30596 | 1503 | lemmas mem_simps = | 
| 1504 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 1505 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 1506 |   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
 | |
| 21669 | 1507 | |
| 11979 | 1508 | end | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 1509 |