| author | hoelzl | 
| Tue, 05 Jan 2016 13:35:06 +0100 | |
| changeset 62055 | 755fda743c49 | 
| parent 61585 | a9599d3d7610 | 
| child 63040 | eb4ddd18d635 | 
| permissions | -rw-r--r-- | 
| 51599 | 1 | (* Title: HOL/Library/DAList_Multiset.thy | 
| 2 | Author: Lukas Bulwahn, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 58881 | 5 | section \<open>Multisets partially implemented by association lists\<close> | 
| 51599 | 6 | |
| 7 | theory DAList_Multiset | |
| 8 | imports Multiset DAList | |
| 9 | begin | |
| 10 | ||
| 58806 | 11 | text \<open>Delete prexisting code equations\<close> | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 12 | |
| 58806 | 13 | lemma [code, code del]: "{#} = {#}" ..
 | 
| 51623 | 14 | |
| 58806 | 15 | lemma [code, code del]: "single = single" .. | 
| 51623 | 16 | |
| 58806 | 17 | lemma [code, code del]: "plus = (plus :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 18 | |
| 58806 | 19 | lemma [code, code del]: "minus = (minus :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 20 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 21 | lemma [code, code del]: "inf_subset_mset = (inf_subset_mset :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 22 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 23 | lemma [code, code del]: "sup_subset_mset = (sup_subset_mset :: 'a multiset \<Rightarrow> _)" .. | 
| 51623 | 24 | |
| 58806 | 25 | lemma [code, code del]: "image_mset = image_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 26 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 27 | lemma [code, code del]: "filter_mset = filter_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 28 | |
| 58806 | 29 | lemma [code, code del]: "count = count" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 30 | |
| 59949 | 31 | lemma [code, code del]: "size = (size :: _ multiset \<Rightarrow> nat)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 32 | |
| 58806 | 33 | lemma [code, code del]: "msetsum = msetsum" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 34 | |
| 58806 | 35 | lemma [code, code del]: "msetprod = msetprod" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 36 | |
| 60495 | 37 | lemma [code, code del]: "set_mset = set_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 38 | |
| 58806 | 39 | lemma [code, code del]: "sorted_list_of_multiset = sorted_list_of_multiset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 40 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 41 | lemma [code, code del]: "subset_mset = subset_mset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 42 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 43 | lemma [code, code del]: "subseteq_mset = subseteq_mset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 44 | |
| 58806 | 45 | lemma [code, code del]: "equal_multiset_inst.equal_multiset = equal_multiset_inst.equal_multiset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 46 | |
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 47 | |
| 58806 | 48 | text \<open>Raw operations on lists\<close> | 
| 51599 | 49 | |
| 58806 | 50 | definition join_raw :: | 
| 51 |     "('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow>
 | |
| 52 |       ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
 | |
| 53 | where "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (\<lambda>v'. f k (v', v))) ys xs" | |
| 51599 | 54 | |
| 58806 | 55 | lemma join_raw_Nil [simp]: "join_raw f xs [] = xs" | 
| 56 | by (simp add: join_raw_def) | |
| 51599 | 57 | |
| 58 | lemma join_raw_Cons [simp]: | |
| 58806 | 59 | "join_raw f xs ((k, v) # ys) = map_default k v (\<lambda>v'. f k (v', v)) (join_raw f xs ys)" | 
| 60 | by (simp add: join_raw_def) | |
| 51599 | 61 | |
| 62 | lemma map_of_join_raw: | |
| 63 | assumes "distinct (map fst ys)" | |
| 58806 | 64 | shows "map_of (join_raw f xs ys) x = | 
| 65 | (case map_of xs x of | |
| 66 | None \<Rightarrow> map_of ys x | |
| 67 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f x (v, v'))))" | |
| 68 | using assms | |
| 69 | apply (induct ys) | |
| 70 | apply (auto simp add: map_of_map_default split: option.split) | |
| 71 | apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI) | |
| 72 | apply (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2)) | |
| 73 | done | |
| 51599 | 74 | |
| 75 | lemma distinct_join_raw: | |
| 76 | assumes "distinct (map fst xs)" | |
| 77 | shows "distinct (map fst (join_raw f xs ys))" | |
| 58806 | 78 | using assms | 
| 51599 | 79 | proof (induct ys) | 
| 58806 | 80 | case Nil | 
| 81 | then show ?case by simp | |
| 82 | next | |
| 51599 | 83 | case (Cons y ys) | 
| 58806 | 84 | then show ?case by (cases y) (simp add: distinct_map_default) | 
| 85 | qed | |
| 51599 | 86 | |
| 58806 | 87 | definition "subtract_entries_raw xs ys = foldr (\<lambda>(k, v). AList.map_entry k (\<lambda>v'. v' - v)) ys xs" | 
| 51599 | 88 | |
| 89 | lemma map_of_subtract_entries_raw: | |
| 90 | assumes "distinct (map fst ys)" | |
| 58806 | 91 | shows "map_of (subtract_entries_raw xs ys) x = | 
| 92 | (case map_of xs x of | |
| 93 | None \<Rightarrow> None | |
| 94 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (v - v')))" | |
| 95 | using assms | |
| 96 | unfolding subtract_entries_raw_def | |
| 97 | apply (induct ys) | |
| 98 | apply auto | |
| 99 | apply (simp split: option.split) | |
| 100 | apply (simp add: map_of_map_entry) | |
| 101 | apply (auto split: option.split) | |
| 102 | apply (metis map_of_eq_None_iff option.simps(3) option.simps(4)) | |
| 103 | apply (metis map_of_eq_None_iff option.simps(4) option.simps(5)) | |
| 104 | done | |
| 51599 | 105 | |
| 106 | lemma distinct_subtract_entries_raw: | |
| 107 | assumes "distinct (map fst xs)" | |
| 108 | shows "distinct (map fst (subtract_entries_raw xs ys))" | |
| 58806 | 109 | using assms | 
| 110 | unfolding subtract_entries_raw_def | |
| 111 | by (induct ys) (auto simp add: distinct_map_entry) | |
| 51599 | 112 | |
| 113 | ||
| 58806 | 114 | text \<open>Operations on alists with distinct keys\<close> | 
| 51599 | 115 | |
| 58806 | 116 | lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | 
| 117 | is join_raw | |
| 118 | by (simp add: distinct_join_raw) | |
| 51599 | 119 | |
| 120 | lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | |
| 58806 | 121 | is subtract_entries_raw | 
| 122 | by (simp add: distinct_subtract_entries_raw) | |
| 51599 | 123 | |
| 124 | ||
| 58806 | 125 | text \<open>Implementing multisets by means of association lists\<close> | 
| 51599 | 126 | |
| 58806 | 127 | definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat"
 | 
| 128 | where "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" | |
| 129 | ||
| 130 | lemma count_of_multiset: "count_of xs \<in> multiset" | |
| 51599 | 131 | proof - | 
| 58806 | 132 |   let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)}"
 | 
| 51599 | 133 | have "?A \<subseteq> dom (map_of xs)" | 
| 134 | proof | |
| 135 | fix x | |
| 136 | assume "x \<in> ?A" | |
| 58806 | 137 | then have "0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)" | 
| 138 | by simp | |
| 139 | then have "map_of xs x \<noteq> None" | |
| 140 | by (cases "map_of xs x") auto | |
| 141 | then show "x \<in> dom (map_of xs)" | |
| 142 | by auto | |
| 51599 | 143 | qed | 
| 144 | with finite_dom_map_of [of xs] have "finite ?A" | |
| 145 | by (auto intro: finite_subset) | |
| 146 | then show ?thesis | |
| 147 | by (simp add: count_of_def fun_eq_iff multiset_def) | |
| 148 | qed | |
| 149 | ||
| 150 | lemma count_simps [simp]: | |
| 151 | "count_of [] = (\<lambda>_. 0)" | |
| 152 | "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" | |
| 153 | by (simp_all add: count_of_def fun_eq_iff) | |
| 154 | ||
| 58806 | 155 | lemma count_of_empty: "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" | 
| 51599 | 156 | by (induct xs) (simp_all add: count_of_def) | 
| 157 | ||
| 58806 | 158 | lemma count_of_filter: "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" | 
| 51599 | 159 | by (induct xs) auto | 
| 160 | ||
| 161 | lemma count_of_map_default [simp]: | |
| 58806 | 162 | "count_of (map_default x b (\<lambda>x. x + b) xs) y = | 
| 163 | (if x = y then count_of xs x + b else count_of xs y)" | |
| 164 | unfolding count_of_def by (simp add: map_of_map_default split: option.split) | |
| 51599 | 165 | |
| 166 | lemma count_of_join_raw: | |
| 58806 | 167 | "distinct (map fst ys) \<Longrightarrow> | 
| 168 | count_of xs x + count_of ys x = count_of (join_raw (\<lambda>x (x, y). x + y) xs ys) x" | |
| 169 | unfolding count_of_def by (simp add: map_of_join_raw split: option.split) | |
| 51599 | 170 | |
| 171 | lemma count_of_subtract_entries_raw: | |
| 58806 | 172 | "distinct (map fst ys) \<Longrightarrow> | 
| 173 | count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x" | |
| 174 | unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split) | |
| 51599 | 175 | |
| 176 | ||
| 58806 | 177 | text \<open>Code equations for multiset operations\<close> | 
| 51599 | 178 | |
| 58806 | 179 | definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset"
 | 
| 180 | where "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))" | |
| 51599 | 181 | |
| 182 | code_datatype Bag | |
| 183 | ||
| 58806 | 184 | lemma count_Bag [simp, code]: "count (Bag xs) = count_of (DAList.impl_of xs)" | 
| 185 | by (simp add: Bag_def count_of_multiset) | |
| 51599 | 186 | |
| 58806 | 187 | lemma Mempty_Bag [code]: "{#} = Bag (DAList.empty)"
 | 
| 51599 | 188 | by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def) | 
| 189 | ||
| 58806 | 190 | lemma single_Bag [code]: "{#x#} = Bag (DAList.update x 1 DAList.empty)"
 | 
| 51599 | 191 | by (simp add: multiset_eq_iff alist.Alist_inverse update.rep_eq empty.rep_eq) | 
| 192 | ||
| 58806 | 193 | lemma union_Bag [code]: "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)" | 
| 194 | by (rule multiset_eqI) | |
| 195 | (simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def) | |
| 51599 | 196 | |
| 58806 | 197 | lemma minus_Bag [code]: "Bag xs - Bag ys = Bag (subtract_entries xs ys)" | 
| 198 | by (rule multiset_eqI) | |
| 199 | (simp add: count_of_subtract_entries_raw alist.Alist_inverse | |
| 200 | distinct_subtract_entries_raw subtract_entries_def) | |
| 51599 | 201 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 202 | lemma filter_Bag [code]: "filter_mset P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)" | 
| 58806 | 203 | by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq) | 
| 51599 | 204 | |
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 205 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 206 | lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<le># m2 \<and> m2 \<le># m1" | 
| 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 207 | by (metis equal_multiset_def subset_mset.eq_iff) | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 208 | |
| 61585 | 209 | text \<open>By default the code for \<open><\<close> is @{prop"xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys"}.
 | 
| 210 | With equality implemented by \<open>\<le>\<close>, this leads to three calls of \<open>\<le>\<close>. | |
| 58806 | 211 | Here is a more efficient version:\<close> | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 212 | lemma mset_less[code]: "xs <# (ys :: 'a multiset) \<longleftrightarrow> xs \<le># ys \<and> \<not> ys \<le># xs" | 
| 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 213 | by (rule subset_mset.less_le_not_le) | 
| 55887 | 214 | |
| 215 | lemma mset_less_eq_Bag0: | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 216 | "Bag xs \<le># A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)" | 
| 51599 | 217 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 218 | proof | |
| 58806 | 219 | assume ?lhs | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 220 | then show ?rhs by (auto simp add: subseteq_mset_def) | 
| 51599 | 221 | next | 
| 222 | assume ?rhs | |
| 223 | show ?lhs | |
| 224 | proof (rule mset_less_eqI) | |
| 225 | fix x | |
| 58806 | 226 | from \<open>?rhs\<close> have "count_of (DAList.impl_of xs) x \<le> count A x" | 
| 51599 | 227 | by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty) | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 228 | then show "count (Bag xs) x \<le> count A x" by (simp add: subset_mset_def) | 
| 51599 | 229 | qed | 
| 230 | qed | |
| 231 | ||
| 55887 | 232 | lemma mset_less_eq_Bag [code]: | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 233 | "Bag xs \<le># (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)" | 
| 55887 | 234 | proof - | 
| 235 |   {
 | |
| 236 | fix x n | |
| 237 | assume "(x,n) \<in> set (DAList.impl_of xs)" | |
| 58806 | 238 | then have "count_of (DAList.impl_of xs) x = n" | 
| 239 | proof transfer | |
| 240 | fix x n | |
| 241 |       fix xs :: "('a \<times> nat) list"
 | |
| 55887 | 242 | show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n" | 
| 58806 | 243 | proof (induct xs) | 
| 244 | case Nil | |
| 245 | then show ?case by simp | |
| 246 | next | |
| 247 | case (Cons ym ys) | |
| 55887 | 248 | obtain y m where ym: "ym = (y,m)" by force | 
| 249 | note Cons = Cons[unfolded ym] | |
| 250 | show ?case | |
| 251 | proof (cases "x = y") | |
| 252 | case False | |
| 58806 | 253 | with Cons show ?thesis | 
| 254 | unfolding ym by auto | |
| 55887 | 255 | next | 
| 256 | case True | |
| 257 | with Cons(2-3) have "m = n" by force | |
| 58806 | 258 | with True show ?thesis | 
| 259 | unfolding ym by auto | |
| 55887 | 260 | qed | 
| 58806 | 261 | qed | 
| 55887 | 262 | qed | 
| 263 | } | |
| 58806 | 264 | then show ?thesis | 
| 265 | unfolding mset_less_eq_Bag0 by auto | |
| 55887 | 266 | qed | 
| 267 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 268 | declare multiset_inter_def [code] | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 269 | declare sup_subset_mset_def [code] | 
| 60515 | 270 | declare mset.simps [code] | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 271 | |
| 55887 | 272 | |
| 58806 | 273 | fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat) list \<Rightarrow> 'b"
 | 
| 274 | where | |
| 55887 | 275 | "fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)" | 
| 276 | | "fold_impl fn e [] = e" | |
| 277 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 278 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 279 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 280 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 281 | qualified definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat) alist \<Rightarrow> 'b"
 | 
| 58806 | 282 | where "fold f e al = fold_impl f e (DAList.impl_of al)" | 
| 55887 | 283 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 284 | end | 
| 55887 | 285 | |
| 286 | context comp_fun_commute | |
| 287 | begin | |
| 288 | ||
| 58806 | 289 | lemma DAList_Multiset_fold: | 
| 290 | assumes fn: "\<And>a n x. fn a n x = (f a ^^ n) x" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 291 | shows "fold_mset f e (Bag al) = DAList_Multiset.fold fn e al" | 
| 58806 | 292 | unfolding DAList_Multiset.fold_def | 
| 55887 | 293 | proof (induct al) | 
| 294 | fix ys | |
| 58806 | 295 |   let ?inv = "{xs :: ('a \<times> nat) list. (distinct \<circ> map fst) xs}"
 | 
| 55887 | 296 | note cs[simp del] = count_simps | 
| 58806 | 297 | have count[simp]: "\<And>x. count (Abs_multiset (count_of x)) = count_of x" | 
| 55887 | 298 | by (rule Abs_multiset_inverse[OF count_of_multiset]) | 
| 299 | assume ys: "ys \<in> ?inv" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 300 | then show "fold_mset f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))" | 
| 55887 | 301 | unfolding Bag_def unfolding Alist_inverse[OF ys] | 
| 302 | proof (induct ys arbitrary: e rule: list.induct) | |
| 303 | case Nil | |
| 304 | show ?case | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 305 |       by (rule trans[OF arg_cong[of _ "{#}" "fold_mset f e", OF multiset_eqI]])
 | 
| 55887 | 306 | (auto, simp add: cs) | 
| 307 | next | |
| 308 | case (Cons pair ys e) | |
| 58806 | 309 | obtain a n where pair: "pair = (a,n)" | 
| 310 | by force | |
| 311 | from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" | |
| 312 | by auto | |
| 313 | have inv: "ys \<in> ?inv" | |
| 314 | using Cons(2) by auto | |
| 55887 | 315 | note IH = Cons(1)[OF inv] | 
| 316 | def Ys \<equiv> "Abs_multiset (count_of ys)" | |
| 317 |     have id: "Abs_multiset (count_of ((a, n) # ys)) = ((op + {# a #}) ^^ n) Ys"
 | |
| 318 | unfolding Ys_def | |
| 319 | proof (rule multiset_eqI, unfold count) | |
| 58806 | 320 | fix c | 
| 321 | show "count_of ((a, n) # ys) c = | |
| 322 |         count ((op + {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r")
 | |
| 55887 | 323 | proof (cases "c = a") | 
| 58806 | 324 | case False | 
| 325 | then show ?thesis | |
| 326 | unfolding cs by (induct n) auto | |
| 55887 | 327 | next | 
| 328 | case True | |
| 58806 | 329 | then have "?l = n" by (simp add: cs) | 
| 55887 | 330 | also have "n = ?r" unfolding True | 
| 331 | proof (induct n) | |
| 332 | case 0 | |
| 333 | from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto | |
| 58806 | 334 | then show ?case by (induct ys) (simp, auto simp: cs) | 
| 335 | next | |
| 336 | case Suc | |
| 337 | then show ?case by simp | |
| 338 | qed | |
| 55887 | 339 | finally show ?thesis . | 
| 340 | qed | |
| 341 | qed | |
| 58806 | 342 | show ?case | 
| 343 | unfolding pair | |
| 344 | apply (simp add: IH[symmetric]) | |
| 345 | unfolding id Ys_def[symmetric] | |
| 346 | apply (induct n) | |
| 347 | apply (auto simp: fold_mset_fun_left_comm[symmetric]) | |
| 348 | done | |
| 55887 | 349 | qed | 
| 350 | qed | |
| 351 | ||
| 58806 | 352 | end | 
| 55887 | 353 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 354 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 355 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 356 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 357 | private lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) alist" is "\<lambda>a b. [(a, b)]"
 | 
| 58806 | 358 | by auto | 
| 55887 | 359 | |
| 58806 | 360 | lemma image_mset_Bag [code]: | 
| 55887 | 361 | "image_mset f (Bag ms) = | 
| 58806 | 362 |     DAList_Multiset.fold (\<lambda>a n m. Bag (single_alist_entry (f a) n) + m) {#} ms"
 | 
| 363 | unfolding image_mset_def | |
| 55887 | 364 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 365 | fix a n m | |
| 366 | show "Bag (single_alist_entry (f a) n) + m = ((op + \<circ> single \<circ> f) a ^^ n) m" (is "?l = ?r") | |
| 367 | proof (rule multiset_eqI) | |
| 368 | fix x | |
| 369 | have "count ?r x = (if x = f a then n + count m x else count m x)" | |
| 58806 | 370 | by (induct n) auto | 
| 371 | also have "\<dots> = count ?l x" | |
| 372 | by (simp add: single_alist_entry.rep_eq) | |
| 55887 | 373 | finally show "count ?l x = count ?r x" .. | 
| 374 | qed | |
| 375 | qed | |
| 376 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 377 | end | 
| 55887 | 378 | |
| 58806 | 379 | (* we cannot use (\<lambda>a n. op + (a * n)) for folding, since * is not defined | 
| 55887 | 380 | in comm_monoid_add *) | 
| 58806 | 381 | lemma msetsum_Bag[code]: "msetsum (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op + a) ^^ n)) 0 ms" | 
| 382 | unfolding msetsum.eq_fold | |
| 383 | apply (rule comp_fun_commute.DAList_Multiset_fold) | |
| 384 | apply unfold_locales | |
| 385 | apply (auto simp: ac_simps) | |
| 386 | done | |
| 55887 | 387 | |
| 58806 | 388 | (* we cannot use (\<lambda>a n. op * (a ^ n)) for folding, since ^ is not defined | 
| 55887 | 389 | in comm_monoid_mult *) | 
| 58806 | 390 | lemma msetprod_Bag[code]: "msetprod (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op * a) ^^ n)) 1 ms" | 
| 391 | unfolding msetprod.eq_fold | |
| 392 | apply (rule comp_fun_commute.DAList_Multiset_fold) | |
| 393 | apply unfold_locales | |
| 394 | apply (auto simp: ac_simps) | |
| 395 | done | |
| 55887 | 396 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 397 | lemma size_fold: "size A = fold_mset (\<lambda>_. Suc) 0 A" (is "_ = fold_mset ?f _ _") | 
| 55887 | 398 | proof - | 
| 60679 | 399 | interpret comp_fun_commute ?f by standard auto | 
| 55887 | 400 | show ?thesis by (induct A) auto | 
| 401 | qed | |
| 402 | ||
| 59949 | 403 | lemma size_Bag[code]: "size (Bag ms) = DAList_Multiset.fold (\<lambda>a n. op + n) 0 ms" | 
| 404 | unfolding size_fold | |
| 55887 | 405 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp) | 
| 406 | fix a n x | |
| 58806 | 407 | show "n + x = (Suc ^^ n) x" | 
| 408 | by (induct n) auto | |
| 55887 | 409 | qed | 
| 410 | ||
| 411 | ||
| 60495 | 412 | lemma set_mset_fold: "set_mset A = fold_mset insert {} A" (is "_ = fold_mset ?f _ _")
 | 
| 55887 | 413 | proof - | 
| 60679 | 414 | interpret comp_fun_commute ?f by standard auto | 
| 58806 | 415 | show ?thesis by (induct A) auto | 
| 55887 | 416 | qed | 
| 417 | ||
| 60495 | 418 | lemma set_mset_Bag[code]: | 
| 419 |   "set_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (if n = 0 then (\<lambda>m. m) else insert a)) {} ms"
 | |
| 420 | unfolding set_mset_fold | |
| 55887 | 421 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 422 | fix a n x | |
| 423 | show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n") | |
| 424 | proof (cases n) | |
| 58806 | 425 | case 0 | 
| 426 | then show ?thesis by simp | |
| 427 | next | |
| 55887 | 428 | case (Suc m) | 
| 58806 | 429 | then have "?l n = insert a x" by simp | 
| 55887 | 430 | moreover have "?r n = insert a x" unfolding Suc by (induct m) auto | 
| 431 | ultimately show ?thesis by auto | |
| 58806 | 432 | qed | 
| 55887 | 433 | qed | 
| 434 | ||
| 435 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 436 | instantiation multiset :: (exhaustive) exhaustive | 
| 51599 | 437 | begin | 
| 438 | ||
| 58806 | 439 | definition exhaustive_multiset :: | 
| 440 |   "('a multiset \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
 | |
| 441 | where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (\<lambda>xs. f (Bag xs)) i" | |
| 51599 | 442 | |
| 443 | instance .. | |
| 444 | ||
| 445 | end | |
| 446 | ||
| 447 | end | |
| 448 |