author | nipkow |
Fri, 10 Apr 2015 12:16:45 +0200 | |
changeset 59998 | c54d36be22ef |
parent 59949 | fc4c896c8e74 |
child 60397 | f8a513fedb31 |
permissions | -rw-r--r-- |
51599 | 1 |
(* Title: HOL/Library/DAList_Multiset.thy |
2 |
Author: Lukas Bulwahn, TU Muenchen |
|
3 |
*) |
|
4 |
||
58881 | 5 |
section \<open>Multisets partially implemented by association lists\<close> |
51599 | 6 |
|
7 |
theory DAList_Multiset |
|
8 |
imports Multiset DAList |
|
9 |
begin |
|
10 |
||
58806 | 11 |
text \<open>Delete prexisting code equations\<close> |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
12 |
|
58806 | 13 |
lemma [code, code del]: "{#} = {#}" .. |
51623 | 14 |
|
58806 | 15 |
lemma [code, code del]: "single = single" .. |
51623 | 16 |
|
58806 | 17 |
lemma [code, code del]: "plus = (plus :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
18 |
|
58806 | 19 |
lemma [code, code del]: "minus = (minus :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
20 |
|
58806 | 21 |
lemma [code, code del]: "inf = (inf :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
22 |
|
58806 | 23 |
lemma [code, code del]: "sup = (sup :: 'a multiset \<Rightarrow> _)" .. |
51623 | 24 |
|
58806 | 25 |
lemma [code, code del]: "image_mset = image_mset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
26 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
27 |
lemma [code, code del]: "filter_mset = filter_mset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
28 |
|
58806 | 29 |
lemma [code, code del]: "count = count" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
30 |
|
59949 | 31 |
lemma [code, code del]: "size = (size :: _ multiset \<Rightarrow> nat)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
32 |
|
58806 | 33 |
lemma [code, code del]: "msetsum = msetsum" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
34 |
|
58806 | 35 |
lemma [code, code del]: "msetprod = msetprod" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
36 |
|
58806 | 37 |
lemma [code, code del]: "set_of = set_of" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
38 |
|
58806 | 39 |
lemma [code, code del]: "sorted_list_of_multiset = sorted_list_of_multiset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
40 |
|
58806 | 41 |
lemma [code, code del]: "ord_multiset_inst.less_eq_multiset = ord_multiset_inst.less_eq_multiset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
42 |
|
58806 | 43 |
lemma [code, code del]: "ord_multiset_inst.less_multiset = ord_multiset_inst.less_multiset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
44 |
|
58806 | 45 |
lemma [code, code del]: "equal_multiset_inst.equal_multiset = equal_multiset_inst.equal_multiset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
46 |
|
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
47 |
|
58806 | 48 |
text \<open>Raw operations on lists\<close> |
51599 | 49 |
|
58806 | 50 |
definition join_raw :: |
51 |
"('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow> |
|
52 |
('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
|
53 |
where "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (\<lambda>v'. f k (v', v))) ys xs" |
|
51599 | 54 |
|
58806 | 55 |
lemma join_raw_Nil [simp]: "join_raw f xs [] = xs" |
56 |
by (simp add: join_raw_def) |
|
51599 | 57 |
|
58 |
lemma join_raw_Cons [simp]: |
|
58806 | 59 |
"join_raw f xs ((k, v) # ys) = map_default k v (\<lambda>v'. f k (v', v)) (join_raw f xs ys)" |
60 |
by (simp add: join_raw_def) |
|
51599 | 61 |
|
62 |
lemma map_of_join_raw: |
|
63 |
assumes "distinct (map fst ys)" |
|
58806 | 64 |
shows "map_of (join_raw f xs ys) x = |
65 |
(case map_of xs x of |
|
66 |
None \<Rightarrow> map_of ys x |
|
67 |
| Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f x (v, v'))))" |
|
68 |
using assms |
|
69 |
apply (induct ys) |
|
70 |
apply (auto simp add: map_of_map_default split: option.split) |
|
71 |
apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI) |
|
72 |
apply (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2)) |
|
73 |
done |
|
51599 | 74 |
|
75 |
lemma distinct_join_raw: |
|
76 |
assumes "distinct (map fst xs)" |
|
77 |
shows "distinct (map fst (join_raw f xs ys))" |
|
58806 | 78 |
using assms |
51599 | 79 |
proof (induct ys) |
58806 | 80 |
case Nil |
81 |
then show ?case by simp |
|
82 |
next |
|
51599 | 83 |
case (Cons y ys) |
58806 | 84 |
then show ?case by (cases y) (simp add: distinct_map_default) |
85 |
qed |
|
51599 | 86 |
|
58806 | 87 |
definition "subtract_entries_raw xs ys = foldr (\<lambda>(k, v). AList.map_entry k (\<lambda>v'. v' - v)) ys xs" |
51599 | 88 |
|
89 |
lemma map_of_subtract_entries_raw: |
|
90 |
assumes "distinct (map fst ys)" |
|
58806 | 91 |
shows "map_of (subtract_entries_raw xs ys) x = |
92 |
(case map_of xs x of |
|
93 |
None \<Rightarrow> None |
|
94 |
| Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (v - v')))" |
|
95 |
using assms |
|
96 |
unfolding subtract_entries_raw_def |
|
97 |
apply (induct ys) |
|
98 |
apply auto |
|
99 |
apply (simp split: option.split) |
|
100 |
apply (simp add: map_of_map_entry) |
|
101 |
apply (auto split: option.split) |
|
102 |
apply (metis map_of_eq_None_iff option.simps(3) option.simps(4)) |
|
103 |
apply (metis map_of_eq_None_iff option.simps(4) option.simps(5)) |
|
104 |
done |
|
51599 | 105 |
|
106 |
lemma distinct_subtract_entries_raw: |
|
107 |
assumes "distinct (map fst xs)" |
|
108 |
shows "distinct (map fst (subtract_entries_raw xs ys))" |
|
58806 | 109 |
using assms |
110 |
unfolding subtract_entries_raw_def |
|
111 |
by (induct ys) (auto simp add: distinct_map_entry) |
|
51599 | 112 |
|
113 |
||
58806 | 114 |
text \<open>Operations on alists with distinct keys\<close> |
51599 | 115 |
|
58806 | 116 |
lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist" |
117 |
is join_raw |
|
118 |
by (simp add: distinct_join_raw) |
|
51599 | 119 |
|
120 |
lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist" |
|
58806 | 121 |
is subtract_entries_raw |
122 |
by (simp add: distinct_subtract_entries_raw) |
|
51599 | 123 |
|
124 |
||
58806 | 125 |
text \<open>Implementing multisets by means of association lists\<close> |
51599 | 126 |
|
58806 | 127 |
definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat" |
128 |
where "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" |
|
129 |
||
130 |
lemma count_of_multiset: "count_of xs \<in> multiset" |
|
51599 | 131 |
proof - |
58806 | 132 |
let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)}" |
51599 | 133 |
have "?A \<subseteq> dom (map_of xs)" |
134 |
proof |
|
135 |
fix x |
|
136 |
assume "x \<in> ?A" |
|
58806 | 137 |
then have "0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)" |
138 |
by simp |
|
139 |
then have "map_of xs x \<noteq> None" |
|
140 |
by (cases "map_of xs x") auto |
|
141 |
then show "x \<in> dom (map_of xs)" |
|
142 |
by auto |
|
51599 | 143 |
qed |
144 |
with finite_dom_map_of [of xs] have "finite ?A" |
|
145 |
by (auto intro: finite_subset) |
|
146 |
then show ?thesis |
|
147 |
by (simp add: count_of_def fun_eq_iff multiset_def) |
|
148 |
qed |
|
149 |
||
150 |
lemma count_simps [simp]: |
|
151 |
"count_of [] = (\<lambda>_. 0)" |
|
152 |
"count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" |
|
153 |
by (simp_all add: count_of_def fun_eq_iff) |
|
154 |
||
58806 | 155 |
lemma count_of_empty: "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" |
51599 | 156 |
by (induct xs) (simp_all add: count_of_def) |
157 |
||
58806 | 158 |
lemma count_of_filter: "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" |
51599 | 159 |
by (induct xs) auto |
160 |
||
161 |
lemma count_of_map_default [simp]: |
|
58806 | 162 |
"count_of (map_default x b (\<lambda>x. x + b) xs) y = |
163 |
(if x = y then count_of xs x + b else count_of xs y)" |
|
164 |
unfolding count_of_def by (simp add: map_of_map_default split: option.split) |
|
51599 | 165 |
|
166 |
lemma count_of_join_raw: |
|
58806 | 167 |
"distinct (map fst ys) \<Longrightarrow> |
168 |
count_of xs x + count_of ys x = count_of (join_raw (\<lambda>x (x, y). x + y) xs ys) x" |
|
169 |
unfolding count_of_def by (simp add: map_of_join_raw split: option.split) |
|
51599 | 170 |
|
171 |
lemma count_of_subtract_entries_raw: |
|
58806 | 172 |
"distinct (map fst ys) \<Longrightarrow> |
173 |
count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x" |
|
174 |
unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split) |
|
51599 | 175 |
|
176 |
||
58806 | 177 |
text \<open>Code equations for multiset operations\<close> |
51599 | 178 |
|
58806 | 179 |
definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset" |
180 |
where "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))" |
|
51599 | 181 |
|
182 |
code_datatype Bag |
|
183 |
||
58806 | 184 |
lemma count_Bag [simp, code]: "count (Bag xs) = count_of (DAList.impl_of xs)" |
185 |
by (simp add: Bag_def count_of_multiset) |
|
51599 | 186 |
|
58806 | 187 |
lemma Mempty_Bag [code]: "{#} = Bag (DAList.empty)" |
51599 | 188 |
by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def) |
189 |
||
58806 | 190 |
lemma single_Bag [code]: "{#x#} = Bag (DAList.update x 1 DAList.empty)" |
51599 | 191 |
by (simp add: multiset_eq_iff alist.Alist_inverse update.rep_eq empty.rep_eq) |
192 |
||
58806 | 193 |
lemma union_Bag [code]: "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)" |
194 |
by (rule multiset_eqI) |
|
195 |
(simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def) |
|
51599 | 196 |
|
58806 | 197 |
lemma minus_Bag [code]: "Bag xs - Bag ys = Bag (subtract_entries xs ys)" |
198 |
by (rule multiset_eqI) |
|
199 |
(simp add: count_of_subtract_entries_raw alist.Alist_inverse |
|
200 |
distinct_subtract_entries_raw subtract_entries_def) |
|
51599 | 201 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
202 |
lemma filter_Bag [code]: "filter_mset P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)" |
58806 | 203 |
by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq) |
51599 | 204 |
|
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
205 |
|
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
206 |
lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<le> m2 \<and> m2 \<le> m1" |
58806 | 207 |
by (metis equal_multiset_def eq_iff) |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
208 |
|
58806 | 209 |
text \<open>By default the code for @{text "<"} is @{prop"xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys"}. |
55887 | 210 |
With equality implemented by @{text"\<le>"}, this leads to three calls of @{text"\<le>"}. |
58806 | 211 |
Here is a more efficient version:\<close> |
212 |
lemma mset_less[code]: "xs < (ys :: 'a multiset) \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" |
|
213 |
by (rule less_le_not_le) |
|
55887 | 214 |
|
215 |
lemma mset_less_eq_Bag0: |
|
51599 | 216 |
"Bag xs \<le> A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)" |
217 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
218 |
proof |
|
58806 | 219 |
assume ?lhs |
220 |
then show ?rhs by (auto simp add: mset_le_def) |
|
51599 | 221 |
next |
222 |
assume ?rhs |
|
223 |
show ?lhs |
|
224 |
proof (rule mset_less_eqI) |
|
225 |
fix x |
|
58806 | 226 |
from \<open>?rhs\<close> have "count_of (DAList.impl_of xs) x \<le> count A x" |
51599 | 227 |
by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty) |
58806 | 228 |
then show "count (Bag xs) x \<le> count A x" by (simp add: mset_le_def) |
51599 | 229 |
qed |
230 |
qed |
|
231 |
||
55887 | 232 |
lemma mset_less_eq_Bag [code]: |
233 |
"Bag xs \<le> (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)" |
|
234 |
proof - |
|
235 |
{ |
|
236 |
fix x n |
|
237 |
assume "(x,n) \<in> set (DAList.impl_of xs)" |
|
58806 | 238 |
then have "count_of (DAList.impl_of xs) x = n" |
239 |
proof transfer |
|
240 |
fix x n |
|
241 |
fix xs :: "('a \<times> nat) list" |
|
55887 | 242 |
show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n" |
58806 | 243 |
proof (induct xs) |
244 |
case Nil |
|
245 |
then show ?case by simp |
|
246 |
next |
|
247 |
case (Cons ym ys) |
|
55887 | 248 |
obtain y m where ym: "ym = (y,m)" by force |
249 |
note Cons = Cons[unfolded ym] |
|
250 |
show ?case |
|
251 |
proof (cases "x = y") |
|
252 |
case False |
|
58806 | 253 |
with Cons show ?thesis |
254 |
unfolding ym by auto |
|
55887 | 255 |
next |
256 |
case True |
|
257 |
with Cons(2-3) have "m = n" by force |
|
58806 | 258 |
with True show ?thesis |
259 |
unfolding ym by auto |
|
55887 | 260 |
qed |
58806 | 261 |
qed |
55887 | 262 |
qed |
263 |
} |
|
58806 | 264 |
then show ?thesis |
265 |
unfolding mset_less_eq_Bag0 by auto |
|
55887 | 266 |
qed |
267 |
||
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
268 |
declare multiset_inter_def [code] |
51623 | 269 |
declare sup_multiset_def [code] |
270 |
declare multiset_of.simps [code] |
|
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
271 |
|
55887 | 272 |
|
58806 | 273 |
fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat) list \<Rightarrow> 'b" |
274 |
where |
|
55887 | 275 |
"fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)" |
276 |
| "fold_impl fn e [] = e" |
|
277 |
||
58806 | 278 |
definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat) alist \<Rightarrow> 'b" |
279 |
where "fold f e al = fold_impl f e (DAList.impl_of al)" |
|
55887 | 280 |
|
281 |
hide_const (open) fold |
|
282 |
||
283 |
context comp_fun_commute |
|
284 |
begin |
|
285 |
||
58806 | 286 |
lemma DAList_Multiset_fold: |
287 |
assumes fn: "\<And>a n x. fn a n x = (f a ^^ n) x" |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
288 |
shows "fold_mset f e (Bag al) = DAList_Multiset.fold fn e al" |
58806 | 289 |
unfolding DAList_Multiset.fold_def |
55887 | 290 |
proof (induct al) |
291 |
fix ys |
|
58806 | 292 |
let ?inv = "{xs :: ('a \<times> nat) list. (distinct \<circ> map fst) xs}" |
55887 | 293 |
note cs[simp del] = count_simps |
58806 | 294 |
have count[simp]: "\<And>x. count (Abs_multiset (count_of x)) = count_of x" |
55887 | 295 |
by (rule Abs_multiset_inverse[OF count_of_multiset]) |
296 |
assume ys: "ys \<in> ?inv" |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
297 |
then show "fold_mset f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))" |
55887 | 298 |
unfolding Bag_def unfolding Alist_inverse[OF ys] |
299 |
proof (induct ys arbitrary: e rule: list.induct) |
|
300 |
case Nil |
|
301 |
show ?case |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
302 |
by (rule trans[OF arg_cong[of _ "{#}" "fold_mset f e", OF multiset_eqI]]) |
55887 | 303 |
(auto, simp add: cs) |
304 |
next |
|
305 |
case (Cons pair ys e) |
|
58806 | 306 |
obtain a n where pair: "pair = (a,n)" |
307 |
by force |
|
308 |
from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" |
|
309 |
by auto |
|
310 |
have inv: "ys \<in> ?inv" |
|
311 |
using Cons(2) by auto |
|
55887 | 312 |
note IH = Cons(1)[OF inv] |
313 |
def Ys \<equiv> "Abs_multiset (count_of ys)" |
|
314 |
have id: "Abs_multiset (count_of ((a, n) # ys)) = ((op + {# a #}) ^^ n) Ys" |
|
315 |
unfolding Ys_def |
|
316 |
proof (rule multiset_eqI, unfold count) |
|
58806 | 317 |
fix c |
318 |
show "count_of ((a, n) # ys) c = |
|
319 |
count ((op + {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r") |
|
55887 | 320 |
proof (cases "c = a") |
58806 | 321 |
case False |
322 |
then show ?thesis |
|
323 |
unfolding cs by (induct n) auto |
|
55887 | 324 |
next |
325 |
case True |
|
58806 | 326 |
then have "?l = n" by (simp add: cs) |
55887 | 327 |
also have "n = ?r" unfolding True |
328 |
proof (induct n) |
|
329 |
case 0 |
|
330 |
from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto |
|
58806 | 331 |
then show ?case by (induct ys) (simp, auto simp: cs) |
332 |
next |
|
333 |
case Suc |
|
334 |
then show ?case by simp |
|
335 |
qed |
|
55887 | 336 |
finally show ?thesis . |
337 |
qed |
|
338 |
qed |
|
58806 | 339 |
show ?case |
340 |
unfolding pair |
|
341 |
apply (simp add: IH[symmetric]) |
|
342 |
unfolding id Ys_def[symmetric] |
|
343 |
apply (induct n) |
|
344 |
apply (auto simp: fold_mset_fun_left_comm[symmetric]) |
|
345 |
done |
|
55887 | 346 |
qed |
347 |
qed |
|
348 |
||
58806 | 349 |
end |
55887 | 350 |
|
58806 | 351 |
lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) alist" is "\<lambda>a b. [(a, b)]" |
352 |
by auto |
|
55887 | 353 |
|
58806 | 354 |
lemma image_mset_Bag [code]: |
55887 | 355 |
"image_mset f (Bag ms) = |
58806 | 356 |
DAList_Multiset.fold (\<lambda>a n m. Bag (single_alist_entry (f a) n) + m) {#} ms" |
357 |
unfolding image_mset_def |
|
55887 | 358 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) |
359 |
fix a n m |
|
360 |
show "Bag (single_alist_entry (f a) n) + m = ((op + \<circ> single \<circ> f) a ^^ n) m" (is "?l = ?r") |
|
361 |
proof (rule multiset_eqI) |
|
362 |
fix x |
|
363 |
have "count ?r x = (if x = f a then n + count m x else count m x)" |
|
58806 | 364 |
by (induct n) auto |
365 |
also have "\<dots> = count ?l x" |
|
366 |
by (simp add: single_alist_entry.rep_eq) |
|
55887 | 367 |
finally show "count ?l x = count ?r x" .. |
368 |
qed |
|
369 |
qed |
|
370 |
||
371 |
hide_const single_alist_entry |
|
372 |
||
58806 | 373 |
(* we cannot use (\<lambda>a n. op + (a * n)) for folding, since * is not defined |
55887 | 374 |
in comm_monoid_add *) |
58806 | 375 |
lemma msetsum_Bag[code]: "msetsum (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op + a) ^^ n)) 0 ms" |
376 |
unfolding msetsum.eq_fold |
|
377 |
apply (rule comp_fun_commute.DAList_Multiset_fold) |
|
378 |
apply unfold_locales |
|
379 |
apply (auto simp: ac_simps) |
|
380 |
done |
|
55887 | 381 |
|
58806 | 382 |
(* we cannot use (\<lambda>a n. op * (a ^ n)) for folding, since ^ is not defined |
55887 | 383 |
in comm_monoid_mult *) |
58806 | 384 |
lemma msetprod_Bag[code]: "msetprod (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op * a) ^^ n)) 1 ms" |
385 |
unfolding msetprod.eq_fold |
|
386 |
apply (rule comp_fun_commute.DAList_Multiset_fold) |
|
387 |
apply unfold_locales |
|
388 |
apply (auto simp: ac_simps) |
|
389 |
done |
|
55887 | 390 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
391 |
lemma size_fold: "size A = fold_mset (\<lambda>_. Suc) 0 A" (is "_ = fold_mset ?f _ _") |
55887 | 392 |
proof - |
58806 | 393 |
interpret comp_fun_commute ?f by default auto |
55887 | 394 |
show ?thesis by (induct A) auto |
395 |
qed |
|
396 |
||
59949 | 397 |
lemma size_Bag[code]: "size (Bag ms) = DAList_Multiset.fold (\<lambda>a n. op + n) 0 ms" |
398 |
unfolding size_fold |
|
55887 | 399 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp) |
400 |
fix a n x |
|
58806 | 401 |
show "n + x = (Suc ^^ n) x" |
402 |
by (induct n) auto |
|
55887 | 403 |
qed |
404 |
||
405 |
||
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
406 |
lemma set_of_fold: "set_of A = fold_mset insert {} A" (is "_ = fold_mset ?f _ _") |
55887 | 407 |
proof - |
58806 | 408 |
interpret comp_fun_commute ?f by default auto |
409 |
show ?thesis by (induct A) auto |
|
55887 | 410 |
qed |
411 |
||
412 |
lemma set_of_Bag[code]: |
|
58806 | 413 |
"set_of (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (if n = 0 then (\<lambda>m. m) else insert a)) {} ms" |
414 |
unfolding set_of_fold |
|
55887 | 415 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) |
416 |
fix a n x |
|
417 |
show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n") |
|
418 |
proof (cases n) |
|
58806 | 419 |
case 0 |
420 |
then show ?thesis by simp |
|
421 |
next |
|
55887 | 422 |
case (Suc m) |
58806 | 423 |
then have "?l n = insert a x" by simp |
55887 | 424 |
moreover have "?r n = insert a x" unfolding Suc by (induct m) auto |
425 |
ultimately show ?thesis by auto |
|
58806 | 426 |
qed |
55887 | 427 |
qed |
428 |
||
429 |
||
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
430 |
instantiation multiset :: (exhaustive) exhaustive |
51599 | 431 |
begin |
432 |
||
58806 | 433 |
definition exhaustive_multiset :: |
434 |
"('a multiset \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" |
|
435 |
where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (\<lambda>xs. f (Bag xs)) i" |
|
51599 | 436 |
|
437 |
instance .. |
|
438 |
||
439 |
end |
|
440 |
||
441 |
end |
|
442 |