| author | paulson | 
| Wed, 15 Aug 2007 12:52:56 +0200 | |
| changeset 24286 | 7619080e49f0 | 
| parent 23948 | 261bd4678076 | 
| child 24422 | c0b5ff9e9e4d | 
| permissions | -rw-r--r-- | 
| 15524 | 1  | 
(* Title: HOL/Orderings.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson  | 
|
4  | 
*)  | 
|
5  | 
||
| 21329 | 6  | 
header {* Syntactic and abstract orders *}
 | 
| 15524 | 7  | 
|
8  | 
theory Orderings  | 
|
| 23881 | 9  | 
imports Set Fun  | 
| 23263 | 10  | 
uses  | 
11  | 
(*"~~/src/Provers/quasi.ML"*)  | 
|
12  | 
"~~/src/Provers/order.ML"  | 
|
| 15524 | 13  | 
begin  | 
14  | 
||
| 22841 | 15  | 
subsection {* Partial orders *}
 | 
| 15524 | 16  | 
|
| 22841 | 17  | 
class order = ord +  | 
| 22316 | 18  | 
assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y"  | 
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
19  | 
and order_refl [iff]: "x \<sqsubseteq> x"  | 
| 
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
20  | 
and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"  | 
| 22841 | 21  | 
assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"  | 
22  | 
||
| 21248 | 23  | 
begin  | 
24  | 
||
| 15524 | 25  | 
text {* Reflexivity. *}
 | 
26  | 
||
| 22841 | 27  | 
lemma eq_refl: "x = y \<Longrightarrow> x \<^loc>\<le> y"  | 
| 15524 | 28  | 
    -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 29  | 
by (erule ssubst) (rule order_refl)  | 
| 15524 | 30  | 
|
| 22841 | 31  | 
lemma less_irrefl [iff]: "\<not> x \<^loc>< x"  | 
| 23212 | 32  | 
by (simp add: less_le)  | 
| 15524 | 33  | 
|
| 22841 | 34  | 
lemma le_less: "x \<^loc>\<le> y \<longleftrightarrow> x \<^loc>< y \<or> x = y"  | 
| 15524 | 35  | 
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 36  | 
by (simp add: less_le) blast  | 
| 15524 | 37  | 
|
| 22841 | 38  | 
lemma le_imp_less_or_eq: "x \<^loc>\<le> y \<Longrightarrow> x \<^loc>< y \<or> x = y"  | 
| 23212 | 39  | 
unfolding less_le by blast  | 
| 15524 | 40  | 
|
| 22841 | 41  | 
lemma less_imp_le: "x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y"  | 
| 23212 | 42  | 
unfolding less_le by blast  | 
| 21248 | 43  | 
|
| 22841 | 44  | 
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y"  | 
| 23212 | 45  | 
by (erule contrapos_pn, erule subst, rule less_irrefl)  | 
| 21329 | 46  | 
|
47  | 
||
48  | 
text {* Useful for simplification, but too risky to include by default. *}
 | 
|
49  | 
||
| 22841 | 50  | 
lemma less_imp_not_eq: "x \<^loc>< y \<Longrightarrow> (x = y) \<longleftrightarrow> False"  | 
| 23212 | 51  | 
by auto  | 
| 21329 | 52  | 
|
| 22841 | 53  | 
lemma less_imp_not_eq2: "x \<^loc>< y \<Longrightarrow> (y = x) \<longleftrightarrow> False"  | 
| 23212 | 54  | 
by auto  | 
| 21329 | 55  | 
|
56  | 
||
57  | 
text {* Transitivity rules for calculational reasoning *}
 | 
|
58  | 
||
| 22841 | 59  | 
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<^loc>\<le> b \<Longrightarrow> a \<^loc>< b"  | 
| 23212 | 60  | 
by (simp add: less_le)  | 
| 21329 | 61  | 
|
| 22841 | 62  | 
lemma le_neq_trans: "a \<^loc>\<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<^loc>< b"  | 
| 23212 | 63  | 
by (simp add: less_le)  | 
| 21329 | 64  | 
|
| 15524 | 65  | 
|
66  | 
text {* Asymmetry. *}
 | 
|
67  | 
||
| 22841 | 68  | 
lemma less_not_sym: "x \<^loc>< y \<Longrightarrow> \<not> (y \<^loc>< x)"  | 
| 23212 | 69  | 
by (simp add: less_le antisym)  | 
| 15524 | 70  | 
|
| 22841 | 71  | 
lemma less_asym: "x \<^loc>< y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<^loc>< x) \<Longrightarrow> P"  | 
| 23212 | 72  | 
by (drule less_not_sym, erule contrapos_np) simp  | 
| 15524 | 73  | 
|
| 22841 | 74  | 
lemma eq_iff: "x = y \<longleftrightarrow> x \<^loc>\<le> y \<and> y \<^loc>\<le> x"  | 
| 23212 | 75  | 
by (blast intro: antisym)  | 
| 15524 | 76  | 
|
| 22841 | 77  | 
lemma antisym_conv: "y \<^loc>\<le> x \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y"  | 
| 23212 | 78  | 
by (blast intro: antisym)  | 
| 15524 | 79  | 
|
| 22841 | 80  | 
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y"  | 
| 23212 | 81  | 
by (erule contrapos_pn, erule subst, rule less_irrefl)  | 
| 21248 | 82  | 
|
| 21083 | 83  | 
|
| 15524 | 84  | 
text {* Transitivity. *}
 | 
85  | 
||
| 22841 | 86  | 
lemma less_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z"  | 
| 23212 | 87  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 88  | 
|
| 22841 | 89  | 
lemma le_less_trans: "x \<^loc>\<le> y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z"  | 
| 23212 | 90  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 91  | 
|
| 22841 | 92  | 
lemma less_le_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<^loc>< z"  | 
| 23212 | 93  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 94  | 
|
95  | 
||
96  | 
text {* Useful for simplification, but too risky to include by default. *}
 | 
|
97  | 
||
| 22841 | 98  | 
lemma less_imp_not_less: "x \<^loc>< y \<Longrightarrow> (\<not> y \<^loc>< x) \<longleftrightarrow> True"  | 
| 23212 | 99  | 
by (blast elim: less_asym)  | 
| 15524 | 100  | 
|
| 22841 | 101  | 
lemma less_imp_triv: "x \<^loc>< y \<Longrightarrow> (y \<^loc>< x \<longrightarrow> P) \<longleftrightarrow> True"  | 
| 23212 | 102  | 
by (blast elim: less_asym)  | 
| 15524 | 103  | 
|
| 21248 | 104  | 
|
| 21083 | 105  | 
text {* Transitivity rules for calculational reasoning *}
 | 
| 15524 | 106  | 
|
| 22841 | 107  | 
lemma less_asym': "a \<^loc>< b \<Longrightarrow> b \<^loc>< a \<Longrightarrow> P"  | 
| 23212 | 108  | 
by (rule less_asym)  | 
| 21248 | 109  | 
|
| 22916 | 110  | 
|
111  | 
text {* Reverse order *}
 | 
|
112  | 
||
113  | 
lemma order_reverse:  | 
|
| 
23018
 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 
haftmann 
parents: 
22997 
diff
changeset
 | 
114  | 
"order (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)"  | 
| 23212 | 115  | 
by unfold_locales  | 
116  | 
(simp add: less_le, auto intro: antisym order_trans)  | 
|
| 22916 | 117  | 
|
| 21248 | 118  | 
end  | 
| 15524 | 119  | 
|
| 21329 | 120  | 
|
121  | 
subsection {* Linear (total) orders *}
 | 
|
122  | 
||
| 22316 | 123  | 
class linorder = order +  | 
| 
21216
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
124  | 
assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
| 21248 | 125  | 
begin  | 
126  | 
||
| 22841 | 127  | 
lemma less_linear: "x \<^loc>< y \<or> x = y \<or> y \<^loc>< x"  | 
| 23212 | 128  | 
unfolding less_le using less_le linear by blast  | 
| 21248 | 129  | 
|
| 22841 | 130  | 
lemma le_less_linear: "x \<^loc>\<le> y \<or> y \<^loc>< x"  | 
| 23212 | 131  | 
by (simp add: le_less less_linear)  | 
| 21248 | 132  | 
|
133  | 
lemma le_cases [case_names le ge]:  | 
|
| 22841 | 134  | 
"(x \<^loc>\<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>\<le> x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 23212 | 135  | 
using linear by blast  | 
| 21248 | 136  | 
|
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
137  | 
lemma linorder_cases [case_names less equal greater]:  | 
| 23212 | 138  | 
"(x \<^loc>< y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> P) \<Longrightarrow> P"  | 
139  | 
using less_linear by blast  | 
|
| 21248 | 140  | 
|
| 22841 | 141  | 
lemma not_less: "\<not> x \<^loc>< y \<longleftrightarrow> y \<^loc>\<le> x"  | 
| 23212 | 142  | 
apply (simp add: less_le)  | 
143  | 
using linear apply (blast intro: antisym)  | 
|
144  | 
done  | 
|
145  | 
||
146  | 
lemma not_less_iff_gr_or_eq:  | 
|
147  | 
"\<not>(x \<^loc>< y) \<longleftrightarrow> (x \<^loc>> y | x = y)"  | 
|
148  | 
apply(simp add:not_less le_less)  | 
|
149  | 
apply blast  | 
|
150  | 
done  | 
|
| 15524 | 151  | 
|
| 22841 | 152  | 
lemma not_le: "\<not> x \<^loc>\<le> y \<longleftrightarrow> y \<^loc>< x"  | 
| 23212 | 153  | 
apply (simp add: less_le)  | 
154  | 
using linear apply (blast intro: antisym)  | 
|
155  | 
done  | 
|
| 15524 | 156  | 
|
| 22841 | 157  | 
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<^loc>< y \<or> y \<^loc>< x"  | 
| 23212 | 158  | 
by (cut_tac x = x and y = y in less_linear, auto)  | 
| 15524 | 159  | 
|
| 22841 | 160  | 
lemma neqE: "x \<noteq> y \<Longrightarrow> (x \<^loc>< y \<Longrightarrow> R) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 23212 | 161  | 
by (simp add: neq_iff) blast  | 
| 15524 | 162  | 
|
| 22841 | 163  | 
lemma antisym_conv1: "\<not> x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y"  | 
| 23212 | 164  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 165  | 
|
| 22841 | 166  | 
lemma antisym_conv2: "x \<^loc>\<le> y \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y"  | 
| 23212 | 167  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 168  | 
|
| 22841 | 169  | 
lemma antisym_conv3: "\<not> y \<^loc>< x \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y"  | 
| 23212 | 170  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 171  | 
|
| 16796 | 172  | 
text{*Replacing the old Nat.leI*}
 | 
| 22841 | 173  | 
lemma leI: "\<not> x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x"  | 
| 23212 | 174  | 
unfolding not_less .  | 
| 16796 | 175  | 
|
| 22841 | 176  | 
lemma leD: "y \<^loc>\<le> x \<Longrightarrow> \<not> x \<^loc>< y"  | 
| 23212 | 177  | 
unfolding not_less .  | 
| 16796 | 178  | 
|
179  | 
(*FIXME inappropriate name (or delete altogether)*)  | 
|
| 22841 | 180  | 
lemma not_leE: "\<not> y \<^loc>\<le> x \<Longrightarrow> x \<^loc>< y"  | 
| 23212 | 181  | 
unfolding not_le .  | 
| 21248 | 182  | 
|
| 22916 | 183  | 
|
184  | 
text {* Reverse order *}
 | 
|
185  | 
||
186  | 
lemma linorder_reverse:  | 
|
| 
23018
 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 
haftmann 
parents: 
22997 
diff
changeset
 | 
187  | 
"linorder (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)"  | 
| 23212 | 188  | 
by unfold_locales  | 
189  | 
(simp add: less_le, auto intro: antisym order_trans simp add: linear)  | 
|
| 22916 | 190  | 
|
191  | 
||
| 23881 | 192  | 
text {* min/max *}
 | 
193  | 
||
194  | 
text {* for historic reasons, definitions are done in context ord *}
 | 
|
195  | 
||
196  | 
definition (in ord)  | 
|
197  | 
min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
| 23948 | 198  | 
[code unfold, code inline del]: "min a b = (if a \<^loc>\<le> b then a else b)"  | 
| 23881 | 199  | 
|
200  | 
definition (in ord)  | 
|
201  | 
max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
| 23948 | 202  | 
[code unfold, code inline del]: "max a b = (if a \<^loc>\<le> b then b else a)"  | 
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
203  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
204  | 
lemma min_le_iff_disj:  | 
| 22841 | 205  | 
"min x y \<^loc>\<le> z \<longleftrightarrow> x \<^loc>\<le> z \<or> y \<^loc>\<le> z"  | 
| 23212 | 206  | 
unfolding min_def using linear by (auto intro: order_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
207  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
208  | 
lemma le_max_iff_disj:  | 
| 22841 | 209  | 
"z \<^loc>\<le> max x y \<longleftrightarrow> z \<^loc>\<le> x \<or> z \<^loc>\<le> y"  | 
| 23212 | 210  | 
unfolding max_def using linear by (auto intro: order_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
211  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
212  | 
lemma min_less_iff_disj:  | 
| 22841 | 213  | 
"min x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<or> y \<^loc>< z"  | 
| 23212 | 214  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
215  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
216  | 
lemma less_max_iff_disj:  | 
| 22841 | 217  | 
"z \<^loc>< max x y \<longleftrightarrow> z \<^loc>< x \<or> z \<^loc>< y"  | 
| 23212 | 218  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
219  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
220  | 
lemma min_less_iff_conj [simp]:  | 
| 22841 | 221  | 
"z \<^loc>< min x y \<longleftrightarrow> z \<^loc>< x \<and> z \<^loc>< y"  | 
| 23212 | 222  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
223  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
224  | 
lemma max_less_iff_conj [simp]:  | 
| 22841 | 225  | 
"max x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<and> y \<^loc>< z"  | 
| 23212 | 226  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
227  | 
|
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23948 
diff
changeset
 | 
228  | 
lemma split_min [noatp]:  | 
| 22841 | 229  | 
"P (min i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P i) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P j)"  | 
| 23212 | 230  | 
by (simp add: min_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
231  | 
|
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23948 
diff
changeset
 | 
232  | 
lemma split_max [noatp]:  | 
| 22841 | 233  | 
"P (max i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P j) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P i)"  | 
| 23212 | 234  | 
by (simp add: max_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
235  | 
|
| 21248 | 236  | 
end  | 
237  | 
||
| 23948 | 238  | 
|
239  | 
subsection {* Name duplicates *}
 | 
|
| 21248 | 240  | 
|
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
241  | 
lemmas order_less_le = less_le  | 
| 22841 | 242  | 
lemmas order_eq_refl = order_class.eq_refl  | 
243  | 
lemmas order_less_irrefl = order_class.less_irrefl  | 
|
244  | 
lemmas order_le_less = order_class.le_less  | 
|
245  | 
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq  | 
|
246  | 
lemmas order_less_imp_le = order_class.less_imp_le  | 
|
247  | 
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq  | 
|
248  | 
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2  | 
|
249  | 
lemmas order_neq_le_trans = order_class.neq_le_trans  | 
|
250  | 
lemmas order_le_neq_trans = order_class.le_neq_trans  | 
|
| 22316 | 251  | 
|
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
252  | 
lemmas order_antisym = antisym  | 
| 22316 | 253  | 
lemmas order_less_not_sym = order_class.less_not_sym  | 
254  | 
lemmas order_less_asym = order_class.less_asym  | 
|
255  | 
lemmas order_eq_iff = order_class.eq_iff  | 
|
256  | 
lemmas order_antisym_conv = order_class.antisym_conv  | 
|
257  | 
lemmas order_less_trans = order_class.less_trans  | 
|
258  | 
lemmas order_le_less_trans = order_class.le_less_trans  | 
|
259  | 
lemmas order_less_le_trans = order_class.less_le_trans  | 
|
260  | 
lemmas order_less_imp_not_less = order_class.less_imp_not_less  | 
|
261  | 
lemmas order_less_imp_triv = order_class.less_imp_triv  | 
|
262  | 
lemmas order_less_asym' = order_class.less_asym'  | 
|
263  | 
||
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
264  | 
lemmas linorder_linear = linear  | 
| 22316 | 265  | 
lemmas linorder_less_linear = linorder_class.less_linear  | 
266  | 
lemmas linorder_le_less_linear = linorder_class.le_less_linear  | 
|
267  | 
lemmas linorder_le_cases = linorder_class.le_cases  | 
|
268  | 
lemmas linorder_not_less = linorder_class.not_less  | 
|
269  | 
lemmas linorder_not_le = linorder_class.not_le  | 
|
270  | 
lemmas linorder_neq_iff = linorder_class.neq_iff  | 
|
271  | 
lemmas linorder_neqE = linorder_class.neqE  | 
|
272  | 
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1  | 
|
273  | 
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2  | 
|
274  | 
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3  | 
|
| 16796 | 275  | 
|
| 23948 | 276  | 
lemmas min_le_iff_disj = linorder_class.min_le_iff_disj  | 
277  | 
lemmas le_max_iff_disj = linorder_class.le_max_iff_disj  | 
|
278  | 
lemmas min_less_iff_disj = linorder_class.min_less_iff_disj  | 
|
279  | 
lemmas less_max_iff_disj = linorder_class.less_max_iff_disj  | 
|
280  | 
lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj  | 
|
281  | 
lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj  | 
|
282  | 
lemmas split_min = linorder_class.split_min  | 
|
283  | 
lemmas split_max = linorder_class.split_max  | 
|
| 22916 | 284  | 
|
| 21083 | 285  | 
|
286  | 
subsection {* Reasoning tools setup *}
 | 
|
287  | 
||
| 21091 | 288  | 
ML {*
 | 
289  | 
local  | 
|
290  | 
||
291  | 
fun decomp_gen sort thy (Trueprop $ t) =  | 
|
| 21248 | 292  | 
let  | 
293  | 
fun of_sort t =  | 
|
294  | 
let  | 
|
295  | 
val T = type_of t  | 
|
296  | 
in  | 
|
| 21091 | 297  | 
(* exclude numeric types: linear arithmetic subsumes transitivity *)  | 
| 21248 | 298  | 
T <> HOLogic.natT andalso T <> HOLogic.intT  | 
299  | 
andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort)  | 
|
300  | 
end;  | 
|
| 22916 | 301  | 
    fun dec (Const (@{const_name Not}, _) $ t) = (case dec t
 | 
| 21248 | 302  | 
of NONE => NONE  | 
303  | 
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))  | 
|
| 22916 | 304  | 
      | dec (Const (@{const_name "op ="},  _) $ t1 $ t2) =
 | 
| 21248 | 305  | 
if of_sort t1  | 
306  | 
then SOME (t1, "=", t2)  | 
|
307  | 
else NONE  | 
|
| 23881 | 308  | 
      | dec (Const (@{const_name HOL.less_eq},  _) $ t1 $ t2) =
 | 
| 21248 | 309  | 
if of_sort t1  | 
310  | 
then SOME (t1, "<=", t2)  | 
|
311  | 
else NONE  | 
|
| 23881 | 312  | 
      | dec (Const (@{const_name HOL.less},  _) $ t1 $ t2) =
 | 
| 21248 | 313  | 
if of_sort t1  | 
314  | 
then SOME (t1, "<", t2)  | 
|
315  | 
else NONE  | 
|
316  | 
| dec _ = NONE;  | 
|
| 21091 | 317  | 
in dec t end;  | 
318  | 
||
319  | 
in  | 
|
320  | 
||
| 22841 | 321  | 
(* sorry - there is no preorder class  | 
| 21248 | 322  | 
structure Quasi_Tac = Quasi_Tac_Fun (  | 
323  | 
struct  | 
|
324  | 
val le_trans = thm "order_trans";  | 
|
325  | 
val le_refl = thm "order_refl";  | 
|
326  | 
val eqD1 = thm "order_eq_refl";  | 
|
327  | 
val eqD2 = thm "sym" RS thm "order_eq_refl";  | 
|
328  | 
val less_reflE = thm "order_less_irrefl" RS thm "notE";  | 
|
329  | 
val less_imp_le = thm "order_less_imp_le";  | 
|
330  | 
val le_neq_trans = thm "order_le_neq_trans";  | 
|
331  | 
val neq_le_trans = thm "order_neq_le_trans";  | 
|
332  | 
val less_imp_neq = thm "less_imp_neq";  | 
|
| 22738 | 333  | 
val decomp_trans = decomp_gen ["Orderings.preorder"];  | 
334  | 
val decomp_quasi = decomp_gen ["Orderings.preorder"];  | 
|
| 22841 | 335  | 
end);*)  | 
| 21091 | 336  | 
|
337  | 
structure Order_Tac = Order_Tac_Fun (  | 
|
| 21248 | 338  | 
struct  | 
339  | 
val less_reflE = thm "order_less_irrefl" RS thm "notE";  | 
|
340  | 
val le_refl = thm "order_refl";  | 
|
341  | 
val less_imp_le = thm "order_less_imp_le";  | 
|
342  | 
val not_lessI = thm "linorder_not_less" RS thm "iffD2";  | 
|
343  | 
val not_leI = thm "linorder_not_le" RS thm "iffD2";  | 
|
344  | 
val not_lessD = thm "linorder_not_less" RS thm "iffD1";  | 
|
345  | 
val not_leD = thm "linorder_not_le" RS thm "iffD1";  | 
|
346  | 
val eqI = thm "order_antisym";  | 
|
347  | 
val eqD1 = thm "order_eq_refl";  | 
|
348  | 
val eqD2 = thm "sym" RS thm "order_eq_refl";  | 
|
349  | 
val less_trans = thm "order_less_trans";  | 
|
350  | 
val less_le_trans = thm "order_less_le_trans";  | 
|
351  | 
val le_less_trans = thm "order_le_less_trans";  | 
|
352  | 
val le_trans = thm "order_trans";  | 
|
353  | 
val le_neq_trans = thm "order_le_neq_trans";  | 
|
354  | 
val neq_le_trans = thm "order_neq_le_trans";  | 
|
355  | 
val less_imp_neq = thm "less_imp_neq";  | 
|
356  | 
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";  | 
|
357  | 
val not_sym = thm "not_sym";  | 
|
358  | 
val decomp_part = decomp_gen ["Orderings.order"];  | 
|
359  | 
val decomp_lin = decomp_gen ["Orderings.linorder"];  | 
|
360  | 
end);  | 
|
| 21091 | 361  | 
|
362  | 
end;  | 
|
363  | 
*}  | 
|
364  | 
||
| 21083 | 365  | 
setup {*
 | 
366  | 
let  | 
|
367  | 
||
368  | 
fun prp t thm = (#prop (rep_thm thm) = t);  | 
|
| 15524 | 369  | 
|
| 21083 | 370  | 
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =  | 
371  | 
let val prems = prems_of_ss ss;  | 
|
| 22916 | 372  | 
      val less = Const (@{const_name less}, T);
 | 
| 21083 | 373  | 
val t = HOLogic.mk_Trueprop(le $ s $ r);  | 
374  | 
in case find_first (prp t) prems of  | 
|
375  | 
NONE =>  | 
|
376  | 
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))  | 
|
377  | 
in case find_first (prp t) prems of  | 
|
378  | 
NONE => NONE  | 
|
| 22738 | 379  | 
            | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv1}))
 | 
| 21083 | 380  | 
end  | 
| 22738 | 381  | 
     | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_antisym_conv}))
 | 
| 21083 | 382  | 
end  | 
383  | 
handle THM _ => NONE;  | 
|
| 15524 | 384  | 
|
| 21083 | 385  | 
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =  | 
386  | 
let val prems = prems_of_ss ss;  | 
|
| 22916 | 387  | 
      val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 388  | 
val t = HOLogic.mk_Trueprop(le $ r $ s);  | 
389  | 
in case find_first (prp t) prems of  | 
|
390  | 
NONE =>  | 
|
391  | 
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))  | 
|
392  | 
in case find_first (prp t) prems of  | 
|
393  | 
NONE => NONE  | 
|
| 22738 | 394  | 
            | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv3}))
 | 
| 21083 | 395  | 
end  | 
| 22738 | 396  | 
     | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv2}))
 | 
| 21083 | 397  | 
end  | 
398  | 
handle THM _ => NONE;  | 
|
| 15524 | 399  | 
|
| 21248 | 400  | 
fun add_simprocs procs thy =  | 
401  | 
(Simplifier.change_simpset_of thy (fn ss => ss  | 
|
402  | 
addsimprocs (map (fn (name, raw_ts, proc) =>  | 
|
403  | 
Simplifier.simproc thy name raw_ts proc)) procs); thy);  | 
|
404  | 
fun add_solver name tac thy =  | 
|
405  | 
(Simplifier.change_simpset_of thy (fn ss => ss addSolver  | 
|
406  | 
(mk_solver name (K tac))); thy);  | 
|
| 21083 | 407  | 
|
408  | 
in  | 
|
| 21248 | 409  | 
add_simprocs [  | 
410  | 
       ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | 
|
411  | 
       ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | 
|
412  | 
]  | 
|
413  | 
#> add_solver "Trans_linear" Order_Tac.linear_tac  | 
|
414  | 
#> add_solver "Trans_partial" Order_Tac.partial_tac  | 
|
415  | 
(* Adding the transitivity reasoners also as safe solvers showed a slight  | 
|
416  | 
speed up, but the reasoning strength appears to be not higher (at least  | 
|
417  | 
no breaking of additional proofs in the entire HOL distribution, as  | 
|
418  | 
of 5 March 2004, was observed). *)  | 
|
| 21083 | 419  | 
end  | 
420  | 
*}  | 
|
| 15524 | 421  | 
|
422  | 
||
| 21083 | 423  | 
subsection {* Bounded quantifiers *}
 | 
424  | 
||
425  | 
syntax  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
426  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
427  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
428  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
429  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 430  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
431  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
432  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
433  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
434  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 435  | 
|
436  | 
syntax (xsymbols)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
437  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
438  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
439  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
440  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 441  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
442  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
443  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
444  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
445  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 446  | 
|
447  | 
syntax (HOL)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
448  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
449  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
450  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
451  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 452  | 
|
453  | 
syntax (HTML output)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
454  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
455  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
456  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
457  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 458  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
459  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
460  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
461  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
462  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 463  | 
|
464  | 
translations  | 
|
465  | 
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"  | 
|
466  | 
"EX x<y. P" => "EX x. x < y \<and> P"  | 
|
467  | 
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"  | 
|
468  | 
"EX x<=y. P" => "EX x. x <= y \<and> P"  | 
|
469  | 
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"  | 
|
470  | 
"EX x>y. P" => "EX x. x > y \<and> P"  | 
|
471  | 
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"  | 
|
472  | 
"EX x>=y. P" => "EX x. x >= y \<and> P"  | 
|
473  | 
||
474  | 
print_translation {*
 | 
|
475  | 
let  | 
|
| 22916 | 476  | 
  val All_binder = Syntax.binder_name @{const_syntax All};
 | 
477  | 
  val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | 
|
| 22377 | 478  | 
  val impl = @{const_syntax "op -->"};
 | 
479  | 
  val conj = @{const_syntax "op &"};
 | 
|
| 22916 | 480  | 
  val less = @{const_syntax less};
 | 
481  | 
  val less_eq = @{const_syntax less_eq};
 | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
482  | 
|
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
483  | 
val trans =  | 
| 21524 | 484  | 
   [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
485  | 
    ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | 
|
486  | 
    ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | 
|
487  | 
    ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
488  | 
|
| 
22344
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
489  | 
fun matches_bound v t =  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
490  | 
     case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
491  | 
| _ => false  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
492  | 
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false)  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
493  | 
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P  | 
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
494  | 
|
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
495  | 
fun tr' q = (q,  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
496  | 
    fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
497  | 
(case AList.lookup (op =) trans (q, c, d) of  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
498  | 
NONE => raise Match  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
499  | 
| SOME (l, g) =>  | 
| 
22344
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
500  | 
if matches_bound v t andalso not (contains_var v u) then mk v l u P  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
501  | 
else if matches_bound v u andalso not (contains_var v t) then mk v g t P  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
502  | 
else raise Match)  | 
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
503  | 
| _ => raise Match);  | 
| 21524 | 504  | 
in [tr' All_binder, tr' Ex_binder] end  | 
| 21083 | 505  | 
*}  | 
506  | 
||
507  | 
||
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
508  | 
subsection {* Transitivity reasoning *}
 | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
509  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
510  | 
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"  | 
| 23212 | 511  | 
by (rule subst)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
512  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
513  | 
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"  | 
| 23212 | 514  | 
by (rule ssubst)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
515  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
516  | 
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"  | 
| 23212 | 517  | 
by (rule subst)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
518  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
519  | 
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"  | 
| 23212 | 520  | 
by (rule ssubst)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
521  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
522  | 
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
523  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
524  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
525  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
526  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
527  | 
also assume "f b < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
528  | 
finally (order_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
529  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
530  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
531  | 
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
532  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
533  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
534  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
535  | 
assume "a < f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
536  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
537  | 
finally (order_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
538  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
539  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
540  | 
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
541  | 
(!!x y. x <= y ==> f x <= f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
542  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
543  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
544  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
545  | 
also assume "f b < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
546  | 
finally (order_le_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
547  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
548  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
549  | 
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
550  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
551  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
552  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
553  | 
assume "a <= f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
554  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
555  | 
finally (order_le_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
556  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
557  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
558  | 
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
559  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
560  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
561  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
562  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
563  | 
also assume "f b <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
564  | 
finally (order_less_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
565  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
566  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
567  | 
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
568  | 
(!!x y. x <= y ==> f x <= f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
569  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
570  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
571  | 
assume "a < f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
572  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
573  | 
finally (order_less_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
574  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
575  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
576  | 
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
577  | 
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
578  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
579  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
580  | 
assume "a <= f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
581  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
582  | 
finally (order_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
583  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
584  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
585  | 
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
586  | 
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
587  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
588  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
589  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
590  | 
also assume "f b <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
591  | 
finally (order_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
592  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
593  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
594  | 
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
595  | 
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
596  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
597  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
598  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
599  | 
also assume "f b = c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
600  | 
finally (ord_le_eq_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
601  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
602  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
603  | 
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
604  | 
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
605  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
606  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
607  | 
assume "a = f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
608  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
609  | 
finally (ord_eq_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
610  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
611  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
612  | 
lemma ord_less_eq_subst: "a < b ==> f b = c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
613  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
614  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
615  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
616  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
617  | 
also assume "f b = c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
618  | 
finally (ord_less_eq_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
619  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
620  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
621  | 
lemma ord_eq_less_subst: "a = f b ==> b < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
622  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
623  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
624  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
625  | 
assume "a = f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
626  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
627  | 
finally (ord_eq_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
628  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
629  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
630  | 
text {*
 | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
631  | 
Note that this list of rules is in reverse order of priorities.  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
632  | 
*}  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
633  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
634  | 
lemmas order_trans_rules [trans] =  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
635  | 
order_less_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
636  | 
order_less_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
637  | 
order_le_less_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
638  | 
order_le_less_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
639  | 
order_less_le_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
640  | 
order_less_le_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
641  | 
order_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
642  | 
order_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
643  | 
ord_le_eq_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
644  | 
ord_eq_le_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
645  | 
ord_less_eq_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
646  | 
ord_eq_less_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
647  | 
forw_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
648  | 
back_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
649  | 
rev_mp  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
650  | 
mp  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
651  | 
order_neq_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
652  | 
order_le_neq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
653  | 
order_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
654  | 
order_less_asym'  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
655  | 
order_le_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
656  | 
order_less_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
657  | 
order_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
658  | 
order_antisym  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
659  | 
ord_le_eq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
660  | 
ord_eq_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
661  | 
ord_less_eq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
662  | 
ord_eq_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
663  | 
trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
664  | 
|
| 21083 | 665  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
666  | 
(* FIXME cleanup *)  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
667  | 
|
| 21083 | 668  | 
text {* These support proving chains of decreasing inequalities
 | 
669  | 
a >= b >= c ... in Isar proofs. *}  | 
|
670  | 
||
671  | 
lemma xt1:  | 
|
672  | 
"a = b ==> b > c ==> a > c"  | 
|
673  | 
"a > b ==> b = c ==> a > c"  | 
|
674  | 
"a = b ==> b >= c ==> a >= c"  | 
|
675  | 
"a >= b ==> b = c ==> a >= c"  | 
|
676  | 
"(x::'a::order) >= y ==> y >= x ==> x = y"  | 
|
677  | 
"(x::'a::order) >= y ==> y >= z ==> x >= z"  | 
|
678  | 
"(x::'a::order) > y ==> y >= z ==> x > z"  | 
|
679  | 
"(x::'a::order) >= y ==> y > z ==> x > z"  | 
|
| 23417 | 680  | 
"(a::'a::order) > b ==> b > a ==> P"  | 
| 21083 | 681  | 
"(x::'a::order) > y ==> y > z ==> x > z"  | 
682  | 
"(a::'a::order) >= b ==> a ~= b ==> a > b"  | 
|
683  | 
"(a::'a::order) ~= b ==> a >= b ==> a > b"  | 
|
684  | 
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
685  | 
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
686  | 
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"  | 
|
687  | 
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"  | 
|
688  | 
by auto  | 
|
689  | 
||
690  | 
lemma xt2:  | 
|
691  | 
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"  | 
|
692  | 
by (subgoal_tac "f b >= f c", force, force)  | 
|
693  | 
||
694  | 
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>  | 
|
695  | 
(!!x y. x >= y ==> f x >= f y) ==> f a >= c"  | 
|
696  | 
by (subgoal_tac "f a >= f b", force, force)  | 
|
697  | 
||
698  | 
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>  | 
|
699  | 
(!!x y. x >= y ==> f x >= f y) ==> a > f c"  | 
|
700  | 
by (subgoal_tac "f b >= f c", force, force)  | 
|
701  | 
||
702  | 
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>  | 
|
703  | 
(!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
704  | 
by (subgoal_tac "f a > f b", force, force)  | 
|
705  | 
||
706  | 
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>  | 
|
707  | 
(!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
708  | 
by (subgoal_tac "f b > f c", force, force)  | 
|
709  | 
||
710  | 
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>  | 
|
711  | 
(!!x y. x >= y ==> f x >= f y) ==> f a > c"  | 
|
712  | 
by (subgoal_tac "f a >= f b", force, force)  | 
|
713  | 
||
714  | 
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>  | 
|
715  | 
(!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
716  | 
by (subgoal_tac "f b > f c", force, force)  | 
|
717  | 
||
718  | 
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>  | 
|
719  | 
(!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
720  | 
by (subgoal_tac "f a > f b", force, force)  | 
|
721  | 
||
722  | 
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9  | 
|
723  | 
||
724  | 
(*  | 
|
725  | 
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands  | 
|
726  | 
for the wrong thing in an Isar proof.  | 
|
727  | 
||
728  | 
The extra transitivity rules can be used as follows:  | 
|
729  | 
||
730  | 
lemma "(a::'a::order) > z"  | 
|
731  | 
proof -  | 
|
732  | 
have "a >= b" (is "_ >= ?rhs")  | 
|
733  | 
sorry  | 
|
734  | 
also have "?rhs >= c" (is "_ >= ?rhs")  | 
|
735  | 
sorry  | 
|
736  | 
also (xtrans) have "?rhs = d" (is "_ = ?rhs")  | 
|
737  | 
sorry  | 
|
738  | 
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")  | 
|
739  | 
sorry  | 
|
740  | 
also (xtrans) have "?rhs > f" (is "_ > ?rhs")  | 
|
741  | 
sorry  | 
|
742  | 
also (xtrans) have "?rhs > z"  | 
|
743  | 
sorry  | 
|
744  | 
finally (xtrans) show ?thesis .  | 
|
745  | 
qed  | 
|
746  | 
||
747  | 
Alternatively, one can use "declare xtrans [trans]" and then  | 
|
748  | 
leave out the "(xtrans)" above.  | 
|
749  | 
*)  | 
|
750  | 
||
| 21546 | 751  | 
subsection {* Order on bool *}
 | 
752  | 
||
| 22886 | 753  | 
instance bool :: order  | 
| 21546 | 754  | 
le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q"  | 
755  | 
less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q"  | 
|
| 22916 | 756  | 
by intro_classes (auto simp add: le_bool_def less_bool_def)  | 
| 21546 | 757  | 
|
758  | 
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"  | 
|
| 23212 | 759  | 
by (simp add: le_bool_def)  | 
| 21546 | 760  | 
|
761  | 
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"  | 
|
| 23212 | 762  | 
by (simp add: le_bool_def)  | 
| 21546 | 763  | 
|
764  | 
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"  | 
|
| 23212 | 765  | 
by (simp add: le_bool_def)  | 
| 21546 | 766  | 
|
767  | 
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"  | 
|
| 23212 | 768  | 
by (simp add: le_bool_def)  | 
| 21546 | 769  | 
|
| 22348 | 770  | 
lemma [code func]:  | 
771  | 
"False \<le> b \<longleftrightarrow> True"  | 
|
772  | 
"True \<le> b \<longleftrightarrow> b"  | 
|
773  | 
"False < b \<longleftrightarrow> b"  | 
|
774  | 
"True < b \<longleftrightarrow> False"  | 
|
775  | 
unfolding le_bool_def less_bool_def by simp_all  | 
|
776  | 
||
| 22424 | 777  | 
|
| 23881 | 778  | 
subsection {* Order on sets *}
 | 
779  | 
||
780  | 
instance set :: (type) order  | 
|
781  | 
by (intro_classes,  | 
|
782  | 
(assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)  | 
|
783  | 
||
784  | 
lemmas basic_trans_rules [trans] =  | 
|
785  | 
order_trans_rules set_rev_mp set_mp  | 
|
786  | 
||
787  | 
||
788  | 
subsection {* Order on functions *}
 | 
|
789  | 
||
790  | 
instance "fun" :: (type, ord) ord  | 
|
791  | 
le_fun_def: "f \<le> g \<equiv> \<forall>x. f x \<le> g x"  | 
|
792  | 
less_fun_def: "f < g \<equiv> f \<le> g \<and> f \<noteq> g" ..  | 
|
793  | 
||
794  | 
lemmas [code func del] = le_fun_def less_fun_def  | 
|
795  | 
||
796  | 
instance "fun" :: (type, order) order  | 
|
797  | 
by default  | 
|
798  | 
(auto simp add: le_fun_def less_fun_def expand_fun_eq  | 
|
799  | 
intro: order_trans order_antisym)  | 
|
800  | 
||
801  | 
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"  | 
|
802  | 
unfolding le_fun_def by simp  | 
|
803  | 
||
804  | 
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"  | 
|
805  | 
unfolding le_fun_def by simp  | 
|
806  | 
||
807  | 
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"  | 
|
808  | 
unfolding le_fun_def by simp  | 
|
809  | 
||
810  | 
text {*
 | 
|
811  | 
  Handy introduction and elimination rules for @{text "\<le>"}
 | 
|
812  | 
on unary and binary predicates  | 
|
813  | 
*}  | 
|
814  | 
||
815  | 
lemma predicate1I [Pure.intro!, intro!]:  | 
|
816  | 
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"  | 
|
817  | 
shows "P \<le> Q"  | 
|
818  | 
apply (rule le_funI)  | 
|
819  | 
apply (rule le_boolI)  | 
|
820  | 
apply (rule PQ)  | 
|
821  | 
apply assumption  | 
|
822  | 
done  | 
|
823  | 
||
824  | 
lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"  | 
|
825  | 
apply (erule le_funE)  | 
|
826  | 
apply (erule le_boolE)  | 
|
827  | 
apply assumption+  | 
|
828  | 
done  | 
|
829  | 
||
830  | 
lemma predicate2I [Pure.intro!, intro!]:  | 
|
831  | 
assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"  | 
|
832  | 
shows "P \<le> Q"  | 
|
833  | 
apply (rule le_funI)+  | 
|
834  | 
apply (rule le_boolI)  | 
|
835  | 
apply (rule PQ)  | 
|
836  | 
apply assumption  | 
|
837  | 
done  | 
|
838  | 
||
839  | 
lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"  | 
|
840  | 
apply (erule le_funE)+  | 
|
841  | 
apply (erule le_boolE)  | 
|
842  | 
apply assumption+  | 
|
843  | 
done  | 
|
844  | 
||
845  | 
lemma rev_predicate1D: "P x ==> P <= Q ==> Q x"  | 
|
846  | 
by (rule predicate1D)  | 
|
847  | 
||
848  | 
lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y"  | 
|
849  | 
by (rule predicate2D)  | 
|
850  | 
||
851  | 
||
852  | 
subsection {* Monotonicity, least value operator and min/max *}
 | 
|
| 21083 | 853  | 
|
| 
21216
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
854  | 
locale mono =  | 
| 
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
855  | 
fixes f  | 
| 
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
856  | 
assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B"  | 
| 
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
857  | 
|
| 
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
858  | 
lemmas monoI [intro?] = mono.intro  | 
| 
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
859  | 
and monoD [dest?] = mono.mono  | 
| 21083 | 860  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
861  | 
lemma LeastI2_order:  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
862  | 
"[| P (x::'a::order);  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
863  | 
!!y. P y ==> x <= y;  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
864  | 
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
865  | 
==> Q (Least P)"  | 
| 23212 | 866  | 
apply (unfold Least_def)  | 
867  | 
apply (rule theI2)  | 
|
868  | 
apply (blast intro: order_antisym)+  | 
|
869  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
870  | 
|
| 23881 | 871  | 
lemma Least_mono:  | 
872  | 
"mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y  | 
|
873  | 
==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"  | 
|
874  | 
    -- {* Courtesy of Stephan Merz *}
 | 
|
875  | 
apply clarify  | 
|
876  | 
apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)  | 
|
877  | 
apply (rule LeastI2_order)  | 
|
878  | 
apply (auto elim: monoD intro!: order_antisym)  | 
|
879  | 
done  | 
|
880  | 
||
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
881  | 
lemma Least_equality:  | 
| 23212 | 882  | 
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"  | 
883  | 
apply (simp add: Least_def)  | 
|
884  | 
apply (rule the_equality)  | 
|
885  | 
apply (auto intro!: order_antisym)  | 
|
886  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
887  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
888  | 
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"  | 
| 23212 | 889  | 
by (simp add: min_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
890  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
891  | 
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"  | 
| 23212 | 892  | 
by (simp add: max_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
893  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
894  | 
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"  | 
| 23212 | 895  | 
apply (simp add: min_def)  | 
896  | 
apply (blast intro: order_antisym)  | 
|
897  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
898  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
899  | 
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"  | 
| 23212 | 900  | 
apply (simp add: max_def)  | 
901  | 
apply (blast intro: order_antisym)  | 
|
902  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
903  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
904  | 
lemma min_of_mono:  | 
| 23212 | 905  | 
"(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)"  | 
906  | 
by (simp add: min_def)  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
907  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
908  | 
lemma max_of_mono:  | 
| 23212 | 909  | 
"(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)"  | 
910  | 
by (simp add: max_def)  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
911  | 
|
| 22548 | 912  | 
|
913  | 
subsection {* legacy ML bindings *}
 | 
|
| 21673 | 914  | 
|
915  | 
ML {*
 | 
|
| 22548 | 916  | 
val monoI = @{thm monoI};
 | 
| 22886 | 917  | 
*}  | 
| 21673 | 918  | 
|
| 15524 | 919  | 
end  |