| 27468 |      1 | (*  Title       : HyperNat.thy
 | 
|  |      2 |     Author      : Jacques D. Fleuriot
 | 
|  |      3 |     Copyright   : 1998  University of Cambridge
 | 
|  |      4 | 
 | 
|  |      5 | Converted to Isar and polished by lcp    
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | header{*Hypernatural numbers*}
 | 
|  |      9 | 
 | 
|  |     10 | theory HyperNat
 | 
|  |     11 | imports StarDef
 | 
|  |     12 | begin
 | 
|  |     13 | 
 | 
|  |     14 | types hypnat = "nat star"
 | 
|  |     15 | 
 | 
|  |     16 | abbreviation
 | 
|  |     17 |   hypnat_of_nat :: "nat => nat star" where
 | 
|  |     18 |   "hypnat_of_nat == star_of"
 | 
|  |     19 | 
 | 
|  |     20 | definition
 | 
|  |     21 |   hSuc :: "hypnat => hypnat" where
 | 
| 28562 |     22 |   hSuc_def [transfer_unfold, code del]: "hSuc = *f* Suc"
 | 
| 27468 |     23 | 
 | 
|  |     24 | subsection{*Properties Transferred from Naturals*}
 | 
|  |     25 | 
 | 
|  |     26 | lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
 | 
|  |     27 | by transfer (rule Suc_not_Zero)
 | 
|  |     28 | 
 | 
|  |     29 | lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
 | 
|  |     30 | by transfer (rule Zero_not_Suc)
 | 
|  |     31 | 
 | 
|  |     32 | lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)"
 | 
|  |     33 | by transfer (rule nat.inject)
 | 
|  |     34 | 
 | 
|  |     35 | lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
 | 
|  |     36 | by transfer (rule zero_less_Suc)
 | 
|  |     37 | 
 | 
|  |     38 | lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)"
 | 
|  |     39 | by transfer (rule diff_self_eq_0)
 | 
|  |     40 | 
 | 
|  |     41 | lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0"
 | 
|  |     42 | by transfer (rule diff_0_eq_0)
 | 
|  |     43 | 
 | 
|  |     44 | lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)"
 | 
|  |     45 | by transfer (rule add_is_0)
 | 
|  |     46 | 
 | 
|  |     47 | lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)"
 | 
|  |     48 | by transfer (rule diff_diff_left)
 | 
|  |     49 | 
 | 
|  |     50 | lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j"
 | 
|  |     51 | by transfer (rule diff_commute)
 | 
|  |     52 | 
 | 
|  |     53 | lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m"
 | 
|  |     54 | by transfer (rule diff_add_inverse)
 | 
|  |     55 | 
 | 
|  |     56 | lemma hypnat_diff_add_inverse2 [simp]:  "!!m n. ((m::hypnat) + n) - n = m"
 | 
|  |     57 | by transfer (rule diff_add_inverse2)
 | 
|  |     58 | 
 | 
|  |     59 | lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n"
 | 
|  |     60 | by transfer (rule diff_cancel)
 | 
|  |     61 | 
 | 
|  |     62 | lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n"
 | 
|  |     63 | by transfer (rule diff_cancel2)
 | 
|  |     64 | 
 | 
|  |     65 | lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)"
 | 
|  |     66 | by transfer (rule diff_add_0)
 | 
|  |     67 | 
 | 
|  |     68 | lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)"
 | 
|  |     69 | by transfer (rule diff_mult_distrib)
 | 
|  |     70 | 
 | 
|  |     71 | lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)"
 | 
|  |     72 | by transfer (rule diff_mult_distrib2)
 | 
|  |     73 | 
 | 
|  |     74 | lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)"
 | 
|  |     75 | by transfer (rule le_0_eq)
 | 
|  |     76 | 
 | 
|  |     77 | lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)"
 | 
|  |     78 | by transfer (rule mult_is_0)
 | 
|  |     79 | 
 | 
|  |     80 | lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)"
 | 
|  |     81 | by transfer (rule diff_is_0_eq)
 | 
|  |     82 | 
 | 
|  |     83 | lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)"
 | 
|  |     84 | by transfer (rule not_less0)
 | 
|  |     85 | 
 | 
|  |     86 | lemma hypnat_less_one [iff]:
 | 
|  |     87 |       "!!n. (n < (1::hypnat)) = (n=0)"
 | 
|  |     88 | by transfer (rule less_one)
 | 
|  |     89 | 
 | 
|  |     90 | lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)"
 | 
|  |     91 | by transfer (rule add_diff_inverse)
 | 
|  |     92 | 
 | 
|  |     93 | lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)"
 | 
|  |     94 | by transfer (rule le_add_diff_inverse)
 | 
|  |     95 | 
 | 
|  |     96 | lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)"
 | 
|  |     97 | by transfer (rule le_add_diff_inverse2)
 | 
|  |     98 | 
 | 
|  |     99 | declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
 | 
|  |    100 | 
 | 
|  |    101 | lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n"
 | 
|  |    102 | by transfer (rule le0)
 | 
|  |    103 | 
 | 
|  |    104 | lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n"
 | 
|  |    105 | by transfer (rule le_add1)
 | 
|  |    106 | 
 | 
|  |    107 | lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x"
 | 
|  |    108 | by transfer (rule le_add2)
 | 
|  |    109 | 
 | 
|  |    110 | lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
 | 
|  |    111 | by (insert add_strict_left_mono [OF zero_less_one], auto)
 | 
|  |    112 | 
 | 
|  |    113 | lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))"
 | 
|  |    114 | by transfer (rule neq0_conv)
 | 
|  |    115 | 
 | 
|  |    116 | lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
 | 
|  |    117 | by (auto simp add: linorder_not_less [symmetric])
 | 
|  |    118 | 
 | 
|  |    119 | lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
 | 
|  |    120 | apply safe
 | 
|  |    121 |  apply (rule_tac x = "n - (1::hypnat) " in exI)
 | 
|  |    122 |  apply (simp add: hypnat_gt_zero_iff) 
 | 
|  |    123 | apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) 
 | 
|  |    124 | done
 | 
|  |    125 | 
 | 
|  |    126 | lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
 | 
|  |    127 | by (simp add: linorder_not_le [symmetric] add_commute [of x]) 
 | 
|  |    128 | 
 | 
|  |    129 | lemma hypnat_diff_split:
 | 
|  |    130 |     "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
 | 
|  |    131 |     -- {* elimination of @{text -} on @{text hypnat} *}
 | 
|  |    132 | proof (cases "a<b" rule: case_split)
 | 
|  |    133 |   case True
 | 
|  |    134 |     thus ?thesis
 | 
|  |    135 |       by (auto simp add: hypnat_add_self_not_less order_less_imp_le 
 | 
|  |    136 |                          hypnat_diff_is_0_eq [THEN iffD2])
 | 
|  |    137 | next
 | 
|  |    138 |   case False
 | 
|  |    139 |     thus ?thesis
 | 
|  |    140 |       by (auto simp add: linorder_not_less dest: order_le_less_trans) 
 | 
|  |    141 | qed
 | 
|  |    142 | 
 | 
|  |    143 | subsection{*Properties of the set of embedded natural numbers*}
 | 
|  |    144 | 
 | 
|  |    145 | lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
 | 
|  |    146 | proof
 | 
|  |    147 |   fix n :: nat
 | 
|  |    148 |   show "of_nat n = star_of n" by transfer simp
 | 
|  |    149 | qed
 | 
|  |    150 | 
 | 
|  |    151 | lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
 | 
|  |    152 | by (auto simp add: Nats_def Standard_def)
 | 
|  |    153 | 
 | 
|  |    154 | lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
 | 
|  |    155 | by (simp add: Nats_eq_Standard)
 | 
|  |    156 | 
 | 
|  |    157 | lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
 | 
|  |    158 | by transfer simp
 | 
|  |    159 | 
 | 
|  |    160 | lemma hypnat_of_nat_Suc [simp]:
 | 
|  |    161 |      "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
 | 
|  |    162 | by transfer simp
 | 
|  |    163 | 
 | 
|  |    164 | lemma of_nat_eq_add [rule_format]:
 | 
|  |    165 |      "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
 | 
|  |    166 | apply (induct n) 
 | 
|  |    167 | apply (auto simp add: add_assoc) 
 | 
|  |    168 | apply (case_tac x) 
 | 
|  |    169 | apply (auto simp add: add_commute [of 1]) 
 | 
|  |    170 | done
 | 
|  |    171 | 
 | 
|  |    172 | lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
 | 
|  |    173 | by (simp add: Nats_eq_Standard)
 | 
|  |    174 | 
 | 
|  |    175 | 
 | 
|  |    176 | subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
 | 
|  |    177 | 
 | 
|  |    178 | definition
 | 
|  |    179 |   (* the set of infinite hypernatural numbers *)
 | 
|  |    180 |   HNatInfinite :: "hypnat set" where
 | 
|  |    181 |   "HNatInfinite = {n. n \<notin> Nats}"
 | 
|  |    182 | 
 | 
|  |    183 | lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
 | 
|  |    184 | by (simp add: HNatInfinite_def)
 | 
|  |    185 | 
 | 
|  |    186 | lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
 | 
|  |    187 | by (simp add: HNatInfinite_def)
 | 
|  |    188 | 
 | 
|  |    189 | lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
 | 
|  |    190 | by (auto simp add: HNatInfinite_def Nats_eq_Standard)
 | 
|  |    191 | 
 | 
|  |    192 | lemma star_of_Suc_lessI:
 | 
|  |    193 |   "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N"
 | 
|  |    194 | by transfer (rule Suc_lessI)
 | 
|  |    195 | 
 | 
|  |    196 | lemma star_of_less_HNatInfinite:
 | 
|  |    197 |   assumes N: "N \<in> HNatInfinite"
 | 
|  |    198 |   shows "star_of n < N"
 | 
|  |    199 | proof (induct n)
 | 
|  |    200 |   case 0
 | 
|  |    201 |   from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite)
 | 
|  |    202 |   thus "star_of 0 < N" by simp
 | 
|  |    203 | next
 | 
|  |    204 |   case (Suc n)
 | 
|  |    205 |   from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite)
 | 
|  |    206 |   with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI)
 | 
|  |    207 | qed
 | 
|  |    208 | 
 | 
|  |    209 | lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
 | 
|  |    210 | by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
 | 
|  |    211 | 
 | 
|  |    212 | subsubsection {* Closure Rules *}
 | 
|  |    213 | 
 | 
|  |    214 | lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y"
 | 
|  |    215 | by (auto simp add: Nats_def star_of_less_HNatInfinite)
 | 
|  |    216 | 
 | 
|  |    217 | lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y"
 | 
|  |    218 | by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
 | 
|  |    219 | 
 | 
|  |    220 | lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
 | 
|  |    221 | by (simp add: Nats_less_HNatInfinite)
 | 
|  |    222 | 
 | 
|  |    223 | lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
 | 
|  |    224 | by (simp add: Nats_less_HNatInfinite)
 | 
|  |    225 | 
 | 
|  |    226 | lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
 | 
|  |    227 | by (simp add: Nats_le_HNatInfinite)
 | 
|  |    228 | 
 | 
|  |    229 | lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
 | 
|  |    230 | by (simp add: HNatInfinite_def)
 | 
|  |    231 | 
 | 
|  |    232 | lemma Nats_downward_closed:
 | 
|  |    233 |   "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats"
 | 
|  |    234 | apply (simp only: linorder_not_less [symmetric])
 | 
|  |    235 | apply (erule contrapos_np)
 | 
|  |    236 | apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])
 | 
|  |    237 | apply (erule (1) Nats_less_HNatInfinite)
 | 
|  |    238 | done
 | 
|  |    239 | 
 | 
|  |    240 | lemma HNatInfinite_upward_closed:
 | 
|  |    241 |   "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite"
 | 
|  |    242 | apply (simp only: HNatInfinite_not_Nats_iff)
 | 
|  |    243 | apply (erule contrapos_nn)
 | 
|  |    244 | apply (erule (1) Nats_downward_closed)
 | 
|  |    245 | done
 | 
|  |    246 | 
 | 
|  |    247 | lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
 | 
|  |    248 | apply (erule HNatInfinite_upward_closed)
 | 
|  |    249 | apply (rule hypnat_le_add1)
 | 
|  |    250 | done
 | 
|  |    251 | 
 | 
|  |    252 | lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"
 | 
|  |    253 | by (rule HNatInfinite_add)
 | 
|  |    254 | 
 | 
|  |    255 | lemma HNatInfinite_diff:
 | 
|  |    256 |   "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
 | 
|  |    257 | apply (frule (1) Nats_le_HNatInfinite)
 | 
|  |    258 | apply (simp only: HNatInfinite_not_Nats_iff)
 | 
|  |    259 | apply (erule contrapos_nn)
 | 
|  |    260 | apply (drule (1) Nats_add, simp)
 | 
|  |    261 | done
 | 
|  |    262 | 
 | 
|  |    263 | lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
 | 
|  |    264 | apply (rule_tac x = "x - (1::hypnat) " in exI)
 | 
|  |    265 | apply (simp add: Nats_le_HNatInfinite)
 | 
|  |    266 | done
 | 
|  |    267 | 
 | 
|  |    268 | 
 | 
|  |    269 | subsection{*Existence of an infinite hypernatural number*}
 | 
|  |    270 | 
 | 
|  |    271 | definition
 | 
|  |    272 |   (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
 | 
|  |    273 |   whn :: hypnat where
 | 
|  |    274 |   hypnat_omega_def: "whn = star_n (%n::nat. n)"
 | 
|  |    275 | 
 | 
|  |    276 | lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
 | 
|  |    277 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
 | 
|  |    278 | 
 | 
|  |    279 | lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
 | 
|  |    280 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
 | 
|  |    281 | 
 | 
|  |    282 | lemma whn_not_Nats [simp]: "whn \<notin> Nats"
 | 
|  |    283 | by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
 | 
|  |    284 | 
 | 
|  |    285 | lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
 | 
|  |    286 | by (simp add: HNatInfinite_def)
 | 
|  |    287 | 
 | 
|  |    288 | lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
 | 
| 29920 |    289 | apply (insert finite_atMost [of m])
 | 
| 27468 |    290 | apply (drule FreeUltrafilterNat.finite)
 | 
|  |    291 | apply (drule FreeUltrafilterNat.not_memD)
 | 
| 29920 |    292 | apply (simp add: Collect_neg_eq [symmetric] linorder_not_le atMost_def)
 | 
| 27468 |    293 | done
 | 
|  |    294 | 
 | 
|  |    295 | lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
 | 
|  |    296 | by (simp add: Collect_neg_eq [symmetric] linorder_not_le) 
 | 
|  |    297 | 
 | 
|  |    298 | lemma hypnat_of_nat_eq:
 | 
|  |    299 |      "hypnat_of_nat m  = star_n (%n::nat. m)"
 | 
|  |    300 | by (simp add: star_of_def)
 | 
|  |    301 | 
 | 
|  |    302 | lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
 | 
|  |    303 | by (simp add: Nats_def image_def)
 | 
|  |    304 | 
 | 
|  |    305 | lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
 | 
|  |    306 | by (simp add: Nats_less_HNatInfinite)
 | 
|  |    307 | 
 | 
|  |    308 | lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
 | 
|  |    309 | by (simp add: Nats_le_HNatInfinite)
 | 
|  |    310 | 
 | 
|  |    311 | lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
 | 
|  |    312 | by (simp add: Nats_less_whn)
 | 
|  |    313 | 
 | 
|  |    314 | lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
 | 
|  |    315 | by (simp add: Nats_le_whn)
 | 
|  |    316 | 
 | 
|  |    317 | lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
 | 
|  |    318 | by (simp add: Nats_less_whn)
 | 
|  |    319 | 
 | 
|  |    320 | lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
 | 
|  |    321 | by (simp add: Nats_less_whn)
 | 
|  |    322 | 
 | 
|  |    323 | 
 | 
|  |    324 | subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
 | 
|  |    325 | 
 | 
|  |    326 | text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
 | 
|  |    327 | 
 | 
|  |    328 | (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
 | 
|  |    329 | lemma HNatInfinite_FreeUltrafilterNat_lemma:
 | 
|  |    330 |   assumes "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat"
 | 
|  |    331 |   shows "{n. N < f n} \<in> FreeUltrafilterNat"
 | 
|  |    332 | apply (induct N)
 | 
|  |    333 | using assms
 | 
|  |    334 | apply (drule_tac x = 0 in spec, simp)
 | 
|  |    335 | using assms
 | 
|  |    336 | apply (drule_tac x = "Suc N" in spec)
 | 
|  |    337 | apply (elim ultra, auto)
 | 
|  |    338 | done
 | 
|  |    339 | 
 | 
|  |    340 | lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
 | 
|  |    341 | apply (safe intro!: Nats_less_HNatInfinite)
 | 
|  |    342 | apply (auto simp add: HNatInfinite_def)
 | 
|  |    343 | done
 | 
|  |    344 | 
 | 
|  |    345 | 
 | 
|  |    346 | subsubsection{*Alternative Characterization of @{term HNatInfinite} using 
 | 
|  |    347 | Free Ultrafilter*}
 | 
|  |    348 | 
 | 
|  |    349 | lemma HNatInfinite_FreeUltrafilterNat:
 | 
|  |    350 |      "star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
 | 
|  |    351 | apply (auto simp add: HNatInfinite_iff SHNat_eq)
 | 
|  |    352 | apply (drule_tac x="star_of u" in spec, simp)
 | 
|  |    353 | apply (simp add: star_of_def star_less_def starP2_star_n)
 | 
|  |    354 | done
 | 
|  |    355 | 
 | 
|  |    356 | lemma FreeUltrafilterNat_HNatInfinite:
 | 
|  |    357 |      "\<forall>u. {n. u < X n}:  FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
 | 
|  |    358 | by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
 | 
|  |    359 | 
 | 
|  |    360 | lemma HNatInfinite_FreeUltrafilterNat_iff:
 | 
|  |    361 |      "(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
 | 
|  |    362 | by (rule iffI [OF HNatInfinite_FreeUltrafilterNat 
 | 
|  |    363 |                  FreeUltrafilterNat_HNatInfinite])
 | 
|  |    364 | 
 | 
|  |    365 | subsection {* Embedding of the Hypernaturals into other types *}
 | 
|  |    366 | 
 | 
|  |    367 | definition
 | 
|  |    368 |   of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
 | 
| 28562 |    369 |   of_hypnat_def [transfer_unfold, code del]: "of_hypnat = *f* of_nat"
 | 
| 27468 |    370 | 
 | 
|  |    371 | lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
 | 
|  |    372 | by transfer (rule of_nat_0)
 | 
|  |    373 | 
 | 
|  |    374 | lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
 | 
|  |    375 | by transfer (rule of_nat_1)
 | 
|  |    376 | 
 | 
|  |    377 | lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
 | 
|  |    378 | by transfer (rule of_nat_Suc)
 | 
|  |    379 | 
 | 
|  |    380 | lemma of_hypnat_add [simp]:
 | 
|  |    381 |   "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
 | 
|  |    382 | by transfer (rule of_nat_add)
 | 
|  |    383 | 
 | 
|  |    384 | lemma of_hypnat_mult [simp]:
 | 
|  |    385 |   "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
 | 
|  |    386 | by transfer (rule of_nat_mult)
 | 
|  |    387 | 
 | 
|  |    388 | lemma of_hypnat_less_iff [simp]:
 | 
|  |    389 |   "\<And>m n. (of_hypnat m < (of_hypnat n::'a::ordered_semidom star)) = (m < n)"
 | 
|  |    390 | by transfer (rule of_nat_less_iff)
 | 
|  |    391 | 
 | 
|  |    392 | lemma of_hypnat_0_less_iff [simp]:
 | 
|  |    393 |   "\<And>n. (0 < (of_hypnat n::'a::ordered_semidom star)) = (0 < n)"
 | 
|  |    394 | by transfer (rule of_nat_0_less_iff)
 | 
|  |    395 | 
 | 
|  |    396 | lemma of_hypnat_less_0_iff [simp]:
 | 
|  |    397 |   "\<And>m. \<not> (of_hypnat m::'a::ordered_semidom star) < 0"
 | 
|  |    398 | by transfer (rule of_nat_less_0_iff)
 | 
|  |    399 | 
 | 
|  |    400 | lemma of_hypnat_le_iff [simp]:
 | 
|  |    401 |   "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::ordered_semidom star)) = (m \<le> n)"
 | 
|  |    402 | by transfer (rule of_nat_le_iff)
 | 
|  |    403 | 
 | 
|  |    404 | lemma of_hypnat_0_le_iff [simp]:
 | 
|  |    405 |   "\<And>n. 0 \<le> (of_hypnat n::'a::ordered_semidom star)"
 | 
|  |    406 | by transfer (rule of_nat_0_le_iff)
 | 
|  |    407 | 
 | 
|  |    408 | lemma of_hypnat_le_0_iff [simp]:
 | 
|  |    409 |   "\<And>m. ((of_hypnat m::'a::ordered_semidom star) \<le> 0) = (m = 0)"
 | 
|  |    410 | by transfer (rule of_nat_le_0_iff)
 | 
|  |    411 | 
 | 
|  |    412 | lemma of_hypnat_eq_iff [simp]:
 | 
|  |    413 |   "\<And>m n. (of_hypnat m = (of_hypnat n::'a::ordered_semidom star)) = (m = n)"
 | 
|  |    414 | by transfer (rule of_nat_eq_iff)
 | 
|  |    415 | 
 | 
|  |    416 | lemma of_hypnat_eq_0_iff [simp]:
 | 
|  |    417 |   "\<And>m. ((of_hypnat m::'a::ordered_semidom star) = 0) = (m = 0)"
 | 
|  |    418 | by transfer (rule of_nat_eq_0_iff)
 | 
|  |    419 | 
 | 
|  |    420 | lemma HNatInfinite_of_hypnat_gt_zero:
 | 
|  |    421 |   "N \<in> HNatInfinite \<Longrightarrow> (0::'a::ordered_semidom star) < of_hypnat N"
 | 
|  |    422 | by (rule ccontr, simp add: linorder_not_less)
 | 
|  |    423 | 
 | 
|  |    424 | end
 |