author | wenzelm |
Tue, 02 Aug 2022 12:57:04 +0200 | |
changeset 75734 | 7671f9fc66d7 |
parent 67613 | ce654b0e6d69 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32235
diff
changeset
|
1 |
(* Title: HOL/UNITY/ListOrder.thy |
6708 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1998 University of Cambridge |
|
4 |
||
13798 | 5 |
Lists are partially ordered by Charpentier's Generalized Prefix Relation |
6 |
(xs,ys) : genPrefix(r) |
|
7 |
if ys = xs' @ zs where length xs = length xs' |
|
8 |
and corresponding elements of xs, xs' are pairwise related by r |
|
9 |
||
10 |
Also overloads <= and < for lists! |
|
6708 | 11 |
*) |
12 |
||
63146 | 13 |
section \<open>The Prefix Ordering on Lists\<close> |
13798 | 14 |
|
27682 | 15 |
theory ListOrder |
16 |
imports Main |
|
17 |
begin |
|
13798 | 18 |
|
23767 | 19 |
inductive_set |
13798 | 20 |
genPrefix :: "('a * 'a)set => ('a list * 'a list)set" |
23767 | 21 |
for r :: "('a * 'a)set" |
22 |
where |
|
67613 | 23 |
Nil: "([],[]) \<in> genPrefix(r)" |
13798 | 24 |
|
67613 | 25 |
| prepend: "[| (xs,ys) \<in> genPrefix(r); (x,y) \<in> r |] ==> |
26 |
(x#xs, y#ys) \<in> genPrefix(r)" |
|
13798 | 27 |
|
67613 | 28 |
| append: "(xs,ys) \<in> genPrefix(r) ==> (xs, ys@zs) \<in> genPrefix(r)" |
13798 | 29 |
|
27682 | 30 |
instantiation list :: (type) ord |
31 |
begin |
|
13798 | 32 |
|
27682 | 33 |
definition |
67613 | 34 |
prefix_def: "xs <= zs \<longleftrightarrow> (xs, zs) \<in> genPrefix Id" |
13798 | 35 |
|
27682 | 36 |
definition |
37 |
strict_prefix_def: "xs < zs \<longleftrightarrow> xs \<le> zs \<and> \<not> zs \<le> (xs :: 'a list)" |
|
38 |
||
39 |
instance .. |
|
13798 | 40 |
|
41 |
(*Constants for the <= and >= relations, used below in translations*) |
|
27682 | 42 |
|
43 |
end |
|
44 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
45 |
definition Le :: "(nat*nat) set" where |
13798 | 46 |
"Le == {(x,y). x <= y}" |
47 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
48 |
definition Ge :: "(nat*nat) set" where |
13798 | 49 |
"Ge == {(x,y). y <= x}" |
50 |
||
23767 | 51 |
abbreviation |
52 |
pfixLe :: "[nat list, nat list] => bool" (infixl "pfixLe" 50) where |
|
67613 | 53 |
"xs pfixLe ys == (xs,ys) \<in> genPrefix Le" |
13798 | 54 |
|
23767 | 55 |
abbreviation |
56 |
pfixGe :: "[nat list, nat list] => bool" (infixl "pfixGe" 50) where |
|
67613 | 57 |
"xs pfixGe ys == (xs,ys) \<in> genPrefix Ge" |
13798 | 58 |
|
59 |
||
63146 | 60 |
subsection\<open>preliminary lemmas\<close> |
13798 | 61 |
|
67613 | 62 |
lemma Nil_genPrefix [iff]: "([], xs) \<in> genPrefix r" |
13798 | 63 |
by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto) |
64 |
||
67613 | 65 |
lemma genPrefix_length_le: "(xs,ys) \<in> genPrefix r \<Longrightarrow> length xs <= length ys" |
13798 | 66 |
by (erule genPrefix.induct, auto) |
67 |
||
68 |
lemma cdlemma: |
|
67613 | 69 |
"[| (xs', ys') \<in> genPrefix r |] |
70 |
==> (\<forall>x xs. xs' = x#xs \<longrightarrow> (\<exists>y ys. ys' = y#ys & (x,y) \<in> r & (xs, ys) \<in> genPrefix r))" |
|
13798 | 71 |
apply (erule genPrefix.induct, blast, blast) |
72 |
apply (force intro: genPrefix.append) |
|
73 |
done |
|
74 |
||
75 |
(*As usual converting it to an elimination rule is tiresome*) |
|
76 |
lemma cons_genPrefixE [elim!]: |
|
67613 | 77 |
"[| (x#xs, zs) \<in> genPrefix r; |
78 |
!!y ys. [| zs = y#ys; (x,y) \<in> r; (xs, ys) \<in> genPrefix r |] ==> P |
|
13798 | 79 |
|] ==> P" |
80 |
by (drule cdlemma, simp, blast) |
|
81 |
||
82 |
lemma Cons_genPrefix_Cons [iff]: |
|
67613 | 83 |
"((x#xs,y#ys) \<in> genPrefix r) = ((x,y) \<in> r \<and> (xs,ys) \<in> genPrefix r)" |
13798 | 84 |
by (blast intro: genPrefix.prepend) |
85 |
||
86 |
||
63146 | 87 |
subsection\<open>genPrefix is a partial order\<close> |
13798 | 88 |
|
30198 | 89 |
lemma refl_genPrefix: "refl r ==> refl (genPrefix r)" |
90 |
apply (unfold refl_on_def, auto) |
|
13798 | 91 |
apply (induct_tac "x") |
92 |
prefer 2 apply (blast intro: genPrefix.prepend) |
|
93 |
apply (blast intro: genPrefix.Nil) |
|
94 |
done |
|
95 |
||
67613 | 96 |
lemma genPrefix_refl [simp]: "refl r \<Longrightarrow> (l,l) \<in> genPrefix r" |
30198 | 97 |
by (erule refl_onD [OF refl_genPrefix UNIV_I]) |
13798 | 98 |
|
99 |
lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s" |
|
100 |
apply clarify |
|
101 |
apply (erule genPrefix.induct) |
|
102 |
apply (auto intro: genPrefix.append) |
|
103 |
done |
|
104 |
||
105 |
||
106 |
(** Transitivity **) |
|
107 |
||
108 |
(*A lemma for proving genPrefix_trans_O*) |
|
45477 | 109 |
lemma append_genPrefix: |
67613 | 110 |
"(xs @ ys, zs) \<in> genPrefix r \<Longrightarrow> (xs, zs) \<in> genPrefix r" |
45477 | 111 |
by (induct xs arbitrary: zs) auto |
13798 | 112 |
|
113 |
(*Lemma proving transitivity and more*) |
|
45477 | 114 |
lemma genPrefix_trans_O: |
67613 | 115 |
assumes "(x, y) \<in> genPrefix r" |
116 |
shows "\<And>z. (y, z) \<in> genPrefix s \<Longrightarrow> (x, z) \<in> genPrefix (r O s)" |
|
45477 | 117 |
apply (atomize (full)) |
118 |
using assms |
|
119 |
apply induct |
|
120 |
apply blast |
|
121 |
apply (blast intro: genPrefix.prepend) |
|
122 |
apply (blast dest: append_genPrefix) |
|
123 |
done |
|
13798 | 124 |
|
45477 | 125 |
lemma genPrefix_trans: |
67613 | 126 |
"(x, y) \<in> genPrefix r \<Longrightarrow> (y, z) \<in> genPrefix r \<Longrightarrow> trans r |
127 |
\<Longrightarrow> (x, z) \<in> genPrefix r" |
|
45477 | 128 |
apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD]) |
129 |
apply assumption |
|
130 |
apply (blast intro: genPrefix_trans_O) |
|
131 |
done |
|
13798 | 132 |
|
45477 | 133 |
lemma prefix_genPrefix_trans: |
67613 | 134 |
"[| x<=y; (y,z) \<in> genPrefix r |] ==> (x, z) \<in> genPrefix r" |
13798 | 135 |
apply (unfold prefix_def) |
32235
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
krauss
parents:
30198
diff
changeset
|
136 |
apply (drule genPrefix_trans_O, assumption) |
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
krauss
parents:
30198
diff
changeset
|
137 |
apply simp |
13798 | 138 |
done |
139 |
||
45477 | 140 |
lemma genPrefix_prefix_trans: |
67613 | 141 |
"[| (x,y) \<in> genPrefix r; y<=z |] ==> (x,z) \<in> genPrefix r" |
13798 | 142 |
apply (unfold prefix_def) |
32235
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
krauss
parents:
30198
diff
changeset
|
143 |
apply (drule genPrefix_trans_O, assumption) |
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
krauss
parents:
30198
diff
changeset
|
144 |
apply simp |
13798 | 145 |
done |
146 |
||
147 |
lemma trans_genPrefix: "trans r ==> trans (genPrefix r)" |
|
148 |
by (blast intro: transI genPrefix_trans) |
|
149 |
||
150 |
||
151 |
(** Antisymmetry **) |
|
152 |
||
45477 | 153 |
lemma genPrefix_antisym: |
67613 | 154 |
assumes 1: "(xs, ys) \<in> genPrefix r" |
45477 | 155 |
and 2: "antisym r" |
67613 | 156 |
and 3: "(ys, xs) \<in> genPrefix r" |
45477 | 157 |
shows "xs = ys" |
158 |
using 1 3 |
|
159 |
proof induct |
|
160 |
case Nil |
|
161 |
then show ?case by blast |
|
162 |
next |
|
163 |
case prepend |
|
164 |
then show ?case using 2 by (simp add: antisym_def) |
|
165 |
next |
|
166 |
case (append xs ys zs) |
|
167 |
then show ?case |
|
168 |
apply - |
|
169 |
apply (subgoal_tac "length zs = 0", force) |
|
170 |
apply (drule genPrefix_length_le)+ |
|
171 |
apply (simp del: length_0_conv) |
|
172 |
done |
|
173 |
qed |
|
13798 | 174 |
|
175 |
lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)" |
|
45477 | 176 |
by (blast intro: antisymI genPrefix_antisym) |
13798 | 177 |
|
178 |
||
63146 | 179 |
subsection\<open>recursion equations\<close> |
13798 | 180 |
|
67613 | 181 |
lemma genPrefix_Nil [simp]: "((xs, []) \<in> genPrefix r) = (xs = [])" |
46911 | 182 |
by (induct xs) auto |
13798 | 183 |
|
184 |
lemma same_genPrefix_genPrefix [simp]: |
|
67613 | 185 |
"refl r \<Longrightarrow> ((xs@ys, xs@zs) \<in> genPrefix r) = ((ys,zs) \<in> genPrefix r)" |
46911 | 186 |
by (induct xs) (simp_all add: refl_on_def) |
13798 | 187 |
|
188 |
lemma genPrefix_Cons: |
|
67613 | 189 |
"((xs, y#ys) \<in> genPrefix r) = |
190 |
(xs=[] | (\<exists>z zs. xs=z#zs & (z,y) \<in> r & (zs,ys) \<in> genPrefix r))" |
|
46911 | 191 |
by (cases xs) auto |
13798 | 192 |
|
193 |
lemma genPrefix_take_append: |
|
67613 | 194 |
"[| refl r; (xs,ys) \<in> genPrefix r |] |
195 |
==> (xs@zs, take (length xs) ys @ zs) \<in> genPrefix r" |
|
13798 | 196 |
apply (erule genPrefix.induct) |
197 |
apply (frule_tac [3] genPrefix_length_le) |
|
198 |
apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2]) |
|
199 |
done |
|
200 |
||
201 |
lemma genPrefix_append_both: |
|
67613 | 202 |
"[| refl r; (xs,ys) \<in> genPrefix r; length xs = length ys |] |
203 |
==> (xs@zs, ys @ zs) \<in> genPrefix r" |
|
13798 | 204 |
apply (drule genPrefix_take_append, assumption) |
46577 | 205 |
apply simp |
13798 | 206 |
done |
207 |
||
208 |
||
209 |
(*NOT suitable for rewriting since [y] has the form y#ys*) |
|
210 |
lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys" |
|
211 |
by auto |
|
212 |
||
213 |
lemma aolemma: |
|
67613 | 214 |
"[| (xs,ys) \<in> genPrefix r; refl r |] |
215 |
==> length xs < length ys \<longrightarrow> (xs @ [ys ! length xs], ys) \<in> genPrefix r" |
|
13798 | 216 |
apply (erule genPrefix.induct) |
217 |
apply blast |
|
218 |
apply simp |
|
63146 | 219 |
txt\<open>Append case is hardest\<close> |
13798 | 220 |
apply simp |
221 |
apply (frule genPrefix_length_le [THEN le_imp_less_or_eq]) |
|
222 |
apply (erule disjE) |
|
223 |
apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append) |
|
224 |
apply (blast intro: genPrefix.append, auto) |
|
15481 | 225 |
apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append) |
13798 | 226 |
done |
227 |
||
228 |
lemma append_one_genPrefix: |
|
67613 | 229 |
"[| (xs,ys) \<in> genPrefix r; length xs < length ys; refl r |] |
230 |
==> (xs @ [ys ! length xs], ys) \<in> genPrefix r" |
|
13798 | 231 |
by (blast intro: aolemma [THEN mp]) |
232 |
||
233 |
||
234 |
(** Proving the equivalence with Charpentier's definition **) |
|
235 |
||
45477 | 236 |
lemma genPrefix_imp_nth: |
67613 | 237 |
"i < length xs \<Longrightarrow> (xs, ys) \<in> genPrefix r \<Longrightarrow> (xs ! i, ys ! i) \<in> r" |
45477 | 238 |
apply (induct xs arbitrary: i ys) |
239 |
apply auto |
|
240 |
apply (case_tac i) |
|
241 |
apply auto |
|
242 |
done |
|
13798 | 243 |
|
45477 | 244 |
lemma nth_imp_genPrefix: |
245 |
"length xs <= length ys \<Longrightarrow> |
|
67613 | 246 |
(\<forall>i. i < length xs \<longrightarrow> (xs ! i, ys ! i) \<in> r) \<Longrightarrow> |
247 |
(xs, ys) \<in> genPrefix r" |
|
45477 | 248 |
apply (induct xs arbitrary: ys) |
249 |
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) |
|
250 |
apply (case_tac ys) |
|
251 |
apply (force+) |
|
252 |
done |
|
13798 | 253 |
|
254 |
lemma genPrefix_iff_nth: |
|
67613 | 255 |
"((xs,ys) \<in> genPrefix r) = |
256 |
(length xs <= length ys & (\<forall>i. i < length xs \<longrightarrow> (xs!i, ys!i) \<in> r))" |
|
13798 | 257 |
apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix) |
258 |
done |
|
259 |
||
260 |
||
63146 | 261 |
subsection\<open>The type of lists is partially ordered\<close> |
13798 | 262 |
|
30198 | 263 |
declare refl_Id [iff] |
13798 | 264 |
antisym_Id [iff] |
265 |
trans_Id [iff] |
|
266 |
||
267 |
lemma prefix_refl [iff]: "xs <= (xs::'a list)" |
|
268 |
by (simp add: prefix_def) |
|
269 |
||
270 |
lemma prefix_trans: "!!xs::'a list. [| xs <= ys; ys <= zs |] ==> xs <= zs" |
|
271 |
apply (unfold prefix_def) |
|
272 |
apply (blast intro: genPrefix_trans) |
|
273 |
done |
|
274 |
||
275 |
lemma prefix_antisym: "!!xs::'a list. [| xs <= ys; ys <= xs |] ==> xs = ys" |
|
276 |
apply (unfold prefix_def) |
|
277 |
apply (blast intro: genPrefix_antisym) |
|
278 |
done |
|
279 |
||
27682 | 280 |
lemma prefix_less_le_not_le: "!!xs::'a list. (xs < zs) = (xs <= zs & \<not> zs \<le> xs)" |
13798 | 281 |
by (unfold strict_prefix_def, auto) |
6708 | 282 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
6810
diff
changeset
|
283 |
instance list :: (type) order |
13798 | 284 |
by (intro_classes, |
285 |
(assumption | rule prefix_refl prefix_trans prefix_antisym |
|
27682 | 286 |
prefix_less_le_not_le)+) |
13798 | 287 |
|
288 |
(*Monotonicity of "set" operator WRT prefix*) |
|
289 |
lemma set_mono: "xs <= ys ==> set xs <= set ys" |
|
290 |
apply (unfold prefix_def) |
|
291 |
apply (erule genPrefix.induct, auto) |
|
292 |
done |
|
293 |
||
294 |
||
295 |
(** recursion equations **) |
|
296 |
||
297 |
lemma Nil_prefix [iff]: "[] <= xs" |
|
46577 | 298 |
by (simp add: prefix_def) |
13798 | 299 |
|
300 |
lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])" |
|
46577 | 301 |
by (simp add: prefix_def) |
13798 | 302 |
|
303 |
lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)" |
|
304 |
by (simp add: prefix_def) |
|
305 |
||
306 |
lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)" |
|
307 |
by (simp add: prefix_def) |
|
308 |
||
309 |
lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])" |
|
310 |
by (insert same_prefix_prefix [of xs ys "[]"], simp) |
|
311 |
||
312 |
lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs" |
|
313 |
apply (unfold prefix_def) |
|
314 |
apply (erule genPrefix.append) |
|
315 |
done |
|
316 |
||
317 |
lemma prefix_Cons: |
|
67613 | 318 |
"(xs <= y#ys) = (xs=[] | (\<exists>zs. xs=y#zs \<and> zs <= ys))" |
13798 | 319 |
by (simp add: prefix_def genPrefix_Cons) |
320 |
||
321 |
lemma append_one_prefix: |
|
322 |
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys" |
|
323 |
apply (unfold prefix_def) |
|
324 |
apply (simp add: append_one_genPrefix) |
|
325 |
done |
|
326 |
||
327 |
lemma prefix_length_le: "xs <= ys ==> length xs <= length ys" |
|
328 |
apply (unfold prefix_def) |
|
329 |
apply (erule genPrefix_length_le) |
|
330 |
done |
|
331 |
||
332 |
lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys" |
|
333 |
apply (unfold prefix_def) |
|
334 |
apply (erule genPrefix.induct, auto) |
|
335 |
done |
|
336 |
||
337 |
lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys" |
|
338 |
apply (unfold strict_prefix_def) |
|
339 |
apply (blast intro: splemma [THEN mp]) |
|
340 |
done |
|
341 |
||
342 |
lemma mono_length: "mono length" |
|
343 |
by (blast intro: monoI prefix_length_le) |
|
344 |
||
345 |
(*Equivalence to the definition used in Lex/Prefix.thy*) |
|
67613 | 346 |
lemma prefix_iff: "(xs <= zs) = (\<exists>ys. zs = xs@ys)" |
13798 | 347 |
apply (unfold prefix_def) |
348 |
apply (auto simp add: genPrefix_iff_nth nth_append) |
|
349 |
apply (rule_tac x = "drop (length xs) zs" in exI) |
|
350 |
apply (rule nth_equalityI) |
|
351 |
apply (simp_all (no_asm_simp) add: nth_append) |
|
352 |
done |
|
353 |
||
354 |
lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)" |
|
355 |
apply (simp add: prefix_iff) |
|
356 |
apply (rule iffI) |
|
357 |
apply (erule exE) |
|
358 |
apply (rename_tac "zs") |
|
359 |
apply (rule_tac xs = zs in rev_exhaust) |
|
360 |
apply simp |
|
361 |
apply clarify |
|
362 |
apply (simp del: append_assoc add: append_assoc [symmetric], force) |
|
363 |
done |
|
364 |
||
365 |
lemma prefix_append_iff: |
|
67613 | 366 |
"(xs <= ys@zs) = (xs <= ys | (\<exists>us. xs = ys@us & us <= zs))" |
13798 | 367 |
apply (rule_tac xs = zs in rev_induct) |
368 |
apply force |
|
369 |
apply (simp del: append_assoc add: append_assoc [symmetric], force) |
|
370 |
done |
|
371 |
||
372 |
(*Although the prefix ordering is not linear, the prefixes of a list |
|
373 |
are linearly ordered.*) |
|
45477 | 374 |
lemma common_prefix_linear: |
375 |
fixes xs ys zs :: "'a list" |
|
376 |
shows "xs <= zs \<Longrightarrow> ys <= zs \<Longrightarrow> xs <= ys | ys <= xs" |
|
377 |
by (induct zs rule: rev_induct) auto |
|
13798 | 378 |
|
63146 | 379 |
subsection\<open>pfixLe, pfixGe: properties inherited from the translations\<close> |
13798 | 380 |
|
381 |
(** pfixLe **) |
|
382 |
||
30198 | 383 |
lemma refl_Le [iff]: "refl Le" |
384 |
by (unfold refl_on_def Le_def, auto) |
|
13798 | 385 |
|
386 |
lemma antisym_Le [iff]: "antisym Le" |
|
387 |
by (unfold antisym_def Le_def, auto) |
|
388 |
||
389 |
lemma trans_Le [iff]: "trans Le" |
|
390 |
by (unfold trans_def Le_def, auto) |
|
391 |
||
392 |
lemma pfixLe_refl [iff]: "x pfixLe x" |
|
393 |
by simp |
|
394 |
||
395 |
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z" |
|
396 |
by (blast intro: genPrefix_trans) |
|
397 |
||
398 |
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y" |
|
399 |
by (blast intro: genPrefix_antisym) |
|
400 |
||
401 |
lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys" |
|
402 |
apply (unfold prefix_def Le_def) |
|
403 |
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD]) |
|
404 |
done |
|
405 |
||
30198 | 406 |
lemma refl_Ge [iff]: "refl Ge" |
407 |
by (unfold refl_on_def Ge_def, auto) |
|
13798 | 408 |
|
409 |
lemma antisym_Ge [iff]: "antisym Ge" |
|
410 |
by (unfold antisym_def Ge_def, auto) |
|
411 |
||
412 |
lemma trans_Ge [iff]: "trans Ge" |
|
413 |
by (unfold trans_def Ge_def, auto) |
|
414 |
||
415 |
lemma pfixGe_refl [iff]: "x pfixGe x" |
|
416 |
by simp |
|
417 |
||
418 |
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z" |
|
419 |
by (blast intro: genPrefix_trans) |
|
420 |
||
421 |
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y" |
|
422 |
by (blast intro: genPrefix_antisym) |
|
423 |
||
424 |
lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys" |
|
425 |
apply (unfold prefix_def Ge_def) |
|
426 |
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD]) |
|
427 |
done |
|
6708 | 428 |
|
429 |
end |