author | huffman |
Wed, 19 Mar 2014 20:50:24 -0700 | |
changeset 56223 | 7696903b9e61 |
parent 56217 | dc429a5b13c4 |
child 56238 | 5d147e1e18d1 |
permissions | -rw-r--r-- |
56215 | 1 |
(* Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno |
2 |
Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014) |
|
3 |
*) |
|
4 |
||
5 |
header {* Complex Analysis Basics *} |
|
6 |
||
7 |
theory Complex_Analysis_Basics |
|
8 |
imports "~~/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space" |
|
9 |
||
10 |
begin |
|
11 |
||
12 |
subsection {*Complex number lemmas *} |
|
13 |
||
14 |
lemma abs_sqrt_wlog: |
|
15 |
fixes x::"'a::linordered_idom" |
|
16 |
assumes "!!x::'a. x\<ge>0 \<Longrightarrow> P x (x\<^sup>2)" shows "P \<bar>x\<bar> (x\<^sup>2)" |
|
17 |
by (metis abs_ge_zero assms power2_abs) |
|
18 |
||
19 |
lemma complex_abs_le_norm: "abs(Re z) + abs(Im z) \<le> sqrt(2) * norm z" |
|
20 |
proof (cases z) |
|
21 |
case (Complex x y) |
|
22 |
show ?thesis |
|
23 |
apply (rule power2_le_imp_le) |
|
24 |
apply (auto simp: real_sqrt_mult [symmetric] Complex) |
|
25 |
apply (rule abs_sqrt_wlog [where x=x]) |
|
26 |
apply (rule abs_sqrt_wlog [where x=y]) |
|
27 |
apply (simp add: power2_sum add_commute sum_squares_bound) |
|
28 |
done |
|
29 |
qed |
|
30 |
||
31 |
lemma continuous_Re: "continuous_on UNIV Re" |
|
32 |
by (metis (poly_guards_query) bounded_linear.continuous_on bounded_linear_Re |
|
33 |
continuous_on_cong continuous_on_id) |
|
34 |
||
35 |
lemma continuous_Im: "continuous_on UNIV Im" |
|
36 |
by (metis (poly_guards_query) bounded_linear.continuous_on bounded_linear_Im |
|
37 |
continuous_on_cong continuous_on_id) |
|
38 |
||
39 |
lemma open_halfspace_Re_lt: "open {z. Re(z) < b}" |
|
40 |
proof - |
|
41 |
have "{z. Re(z) < b} = Re -`{..<b}" |
|
42 |
by blast |
|
43 |
then show ?thesis |
|
44 |
by (auto simp: continuous_Re continuous_imp_open_vimage [of UNIV]) |
|
45 |
qed |
|
46 |
||
47 |
lemma open_halfspace_Re_gt: "open {z. Re(z) > b}" |
|
48 |
proof - |
|
49 |
have "{z. Re(z) > b} = Re -`{b<..}" |
|
50 |
by blast |
|
51 |
then show ?thesis |
|
52 |
by (auto simp: continuous_Re continuous_imp_open_vimage [of UNIV]) |
|
53 |
qed |
|
54 |
||
55 |
lemma closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}" |
|
56 |
proof - |
|
57 |
have "{z. Re(z) \<ge> b} = - {z. Re(z) < b}" |
|
58 |
by auto |
|
59 |
then show ?thesis |
|
60 |
by (simp add: closed_def open_halfspace_Re_lt) |
|
61 |
qed |
|
62 |
||
63 |
lemma closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}" |
|
64 |
proof - |
|
65 |
have "{z. Re(z) \<le> b} = - {z. Re(z) > b}" |
|
66 |
by auto |
|
67 |
then show ?thesis |
|
68 |
by (simp add: closed_def open_halfspace_Re_gt) |
|
69 |
qed |
|
70 |
||
71 |
lemma closed_halfspace_Re_eq: "closed {z. Re(z) = b}" |
|
72 |
proof - |
|
73 |
have "{z. Re(z) = b} = {z. Re(z) \<le> b} \<inter> {z. Re(z) \<ge> b}" |
|
74 |
by auto |
|
75 |
then show ?thesis |
|
76 |
by (auto simp: closed_Int closed_halfspace_Re_le closed_halfspace_Re_ge) |
|
77 |
qed |
|
78 |
||
79 |
lemma open_halfspace_Im_lt: "open {z. Im(z) < b}" |
|
80 |
proof - |
|
81 |
have "{z. Im(z) < b} = Im -`{..<b}" |
|
82 |
by blast |
|
83 |
then show ?thesis |
|
84 |
by (auto simp: continuous_Im continuous_imp_open_vimage [of UNIV]) |
|
85 |
qed |
|
86 |
||
87 |
lemma open_halfspace_Im_gt: "open {z. Im(z) > b}" |
|
88 |
proof - |
|
89 |
have "{z. Im(z) > b} = Im -`{b<..}" |
|
90 |
by blast |
|
91 |
then show ?thesis |
|
92 |
by (auto simp: continuous_Im continuous_imp_open_vimage [of UNIV]) |
|
93 |
qed |
|
94 |
||
95 |
lemma closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}" |
|
96 |
proof - |
|
97 |
have "{z. Im(z) \<ge> b} = - {z. Im(z) < b}" |
|
98 |
by auto |
|
99 |
then show ?thesis |
|
100 |
by (simp add: closed_def open_halfspace_Im_lt) |
|
101 |
qed |
|
102 |
||
103 |
lemma closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}" |
|
104 |
proof - |
|
105 |
have "{z. Im(z) \<le> b} = - {z. Im(z) > b}" |
|
106 |
by auto |
|
107 |
then show ?thesis |
|
108 |
by (simp add: closed_def open_halfspace_Im_gt) |
|
109 |
qed |
|
110 |
||
111 |
lemma closed_halfspace_Im_eq: "closed {z. Im(z) = b}" |
|
112 |
proof - |
|
113 |
have "{z. Im(z) = b} = {z. Im(z) \<le> b} \<inter> {z. Im(z) \<ge> b}" |
|
114 |
by auto |
|
115 |
then show ?thesis |
|
116 |
by (auto simp: closed_Int closed_halfspace_Im_le closed_halfspace_Im_ge) |
|
117 |
qed |
|
118 |
||
119 |
lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0" |
|
120 |
by (metis Complex_in_Reals Im_complex_of_real Reals_cases complex_surj) |
|
121 |
||
122 |
lemma closed_complex_Reals: "closed (Reals :: complex set)" |
|
123 |
proof - |
|
124 |
have "-(Reals :: complex set) = {z. Im(z) < 0} \<union> {z. 0 < Im(z)}" |
|
125 |
by (auto simp: complex_is_Real_iff) |
|
126 |
then show ?thesis |
|
127 |
by (metis closed_def open_Un open_halfspace_Im_gt open_halfspace_Im_lt) |
|
128 |
qed |
|
129 |
||
130 |
||
131 |
lemma linear_times: |
|
132 |
fixes c::"'a::{real_algebra,real_vector}" shows "linear (\<lambda>x. c * x)" |
|
133 |
by (auto simp: linearI distrib_left) |
|
134 |
||
135 |
lemma bilinear_times: |
|
136 |
fixes c::"'a::{real_algebra,real_vector}" shows "bilinear (\<lambda>x y::'a. x*y)" |
|
137 |
unfolding bilinear_def |
|
138 |
by (auto simp: distrib_left distrib_right intro!: linearI) |
|
139 |
||
140 |
lemma linear_cnj: "linear cnj" |
|
141 |
by (auto simp: linearI cnj_def) |
|
142 |
||
143 |
lemma tendsto_mult_left: |
|
144 |
fixes c::"'a::real_normed_algebra" |
|
145 |
shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) ---> c * l) F" |
|
146 |
by (rule tendsto_mult [OF tendsto_const]) |
|
147 |
||
148 |
lemma tendsto_mult_right: |
|
149 |
fixes c::"'a::real_normed_algebra" |
|
150 |
shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) ---> l * c) F" |
|
151 |
by (rule tendsto_mult [OF _ tendsto_const]) |
|
152 |
||
153 |
lemma tendsto_Re_upper: |
|
154 |
assumes "~ (trivial_limit F)" |
|
155 |
"(f ---> l) F" |
|
156 |
"eventually (\<lambda>x. Re(f x) \<le> b) F" |
|
157 |
shows "Re(l) \<le> b" |
|
158 |
by (metis assms tendsto_le [OF _ tendsto_const] tendsto_Re) |
|
159 |
||
160 |
lemma tendsto_Re_lower: |
|
161 |
assumes "~ (trivial_limit F)" |
|
162 |
"(f ---> l) F" |
|
163 |
"eventually (\<lambda>x. b \<le> Re(f x)) F" |
|
164 |
shows "b \<le> Re(l)" |
|
165 |
by (metis assms tendsto_le [OF _ _ tendsto_const] tendsto_Re) |
|
166 |
||
167 |
lemma tendsto_Im_upper: |
|
168 |
assumes "~ (trivial_limit F)" |
|
169 |
"(f ---> l) F" |
|
170 |
"eventually (\<lambda>x. Im(f x) \<le> b) F" |
|
171 |
shows "Im(l) \<le> b" |
|
172 |
by (metis assms tendsto_le [OF _ tendsto_const] tendsto_Im) |
|
173 |
||
174 |
lemma tendsto_Im_lower: |
|
175 |
assumes "~ (trivial_limit F)" |
|
176 |
"(f ---> l) F" |
|
177 |
"eventually (\<lambda>x. b \<le> Im(f x)) F" |
|
178 |
shows "b \<le> Im(l)" |
|
179 |
by (metis assms tendsto_le [OF _ _ tendsto_const] tendsto_Im) |
|
180 |
||
181 |
subsection{*General lemmas*} |
|
182 |
||
183 |
lemma continuous_mult_left: |
|
184 |
fixes c::"'a::real_normed_algebra" |
|
185 |
shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)" |
|
186 |
by (rule continuous_mult [OF continuous_const]) |
|
187 |
||
188 |
lemma continuous_mult_right: |
|
189 |
fixes c::"'a::real_normed_algebra" |
|
190 |
shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)" |
|
191 |
by (rule continuous_mult [OF _ continuous_const]) |
|
192 |
||
193 |
lemma continuous_on_mult_left: |
|
194 |
fixes c::"'a::real_normed_algebra" |
|
195 |
shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)" |
|
196 |
by (rule continuous_on_mult [OF continuous_on_const]) |
|
197 |
||
198 |
lemma continuous_on_mult_right: |
|
199 |
fixes c::"'a::real_normed_algebra" |
|
200 |
shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)" |
|
201 |
by (rule continuous_on_mult [OF _ continuous_on_const]) |
|
202 |
||
203 |
lemma uniformly_continuous_on_cmul_right [continuous_on_intros]: |
|
204 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" |
|
205 |
assumes "uniformly_continuous_on s f" |
|
206 |
shows "uniformly_continuous_on s (\<lambda>x. f x * c)" |
|
207 |
proof (cases "c=0") |
|
208 |
case True then show ?thesis |
|
209 |
by (simp add: uniformly_continuous_on_const) |
|
210 |
next |
|
211 |
case False show ?thesis |
|
212 |
apply (rule bounded_linear.uniformly_continuous_on) |
|
213 |
apply (metis bounded_linear_ident) |
|
214 |
using assms |
|
215 |
apply (auto simp: uniformly_continuous_on_def dist_norm) |
|
216 |
apply (drule_tac x = "e / norm c" in spec, auto) |
|
217 |
apply (metis divide_pos_pos zero_less_norm_iff False) |
|
218 |
apply (rule_tac x=d in exI, auto) |
|
219 |
apply (drule_tac x = x in bspec, assumption) |
|
220 |
apply (drule_tac x = "x'" in bspec) |
|
221 |
apply (auto simp: False less_divide_eq) |
|
222 |
by (metis dual_order.strict_trans2 left_diff_distrib norm_mult_ineq) |
|
223 |
qed |
|
224 |
||
225 |
lemma uniformly_continuous_on_cmul_left[continuous_on_intros]: |
|
226 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" |
|
227 |
assumes "uniformly_continuous_on s f" |
|
228 |
shows "uniformly_continuous_on s (\<lambda>x. c * f x)" |
|
229 |
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right) |
|
230 |
||
231 |
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm" |
|
232 |
by (rule continuous_norm [OF continuous_ident]) |
|
233 |
||
234 |
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm" |
|
235 |
by (metis continuous_on_eq continuous_on_id continuous_on_norm) |
|
236 |
||
237 |
||
238 |
subsection{*DERIV stuff*} |
|
239 |
||
240 |
(*move some premises to a sensible order. Use more \<And> symbols.*) |
|
241 |
||
242 |
lemma DERIV_continuous_on: "\<lbrakk>\<And>x. x \<in> s \<Longrightarrow> DERIV f x :> D\<rbrakk> \<Longrightarrow> continuous_on s f" |
|
243 |
by (metis DERIV_continuous continuous_at_imp_continuous_on) |
|
244 |
||
245 |
lemma DERIV_subset: |
|
246 |
"(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s |
|
247 |
\<Longrightarrow> (f has_field_derivative f') (at x within t)" |
|
248 |
by (simp add: has_field_derivative_def has_derivative_within_subset) |
|
249 |
||
250 |
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0" |
|
251 |
by auto |
|
252 |
||
253 |
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1" |
|
254 |
by auto |
|
255 |
||
256 |
lemma has_derivative_zero_constant: |
|
257 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
|
258 |
assumes "convex s" |
|
259 |
and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_derivative (\<lambda>h. 0)) (at x within s)" |
|
260 |
shows "\<exists>c. \<forall>x\<in>s. f x = c" |
|
261 |
proof (cases "s={}") |
|
262 |
case False |
|
263 |
then obtain x where "x \<in> s" |
|
264 |
by auto |
|
265 |
have d0': "\<forall>x\<in>s. (f has_derivative (\<lambda>h. 0)) (at x within s)" |
|
266 |
by (metis d0) |
|
267 |
have "\<And>y. y \<in> s \<Longrightarrow> f x = f y" |
|
268 |
proof - |
|
269 |
case goal1 |
|
270 |
then show ?case |
|
271 |
using differentiable_bound[OF assms(1) d0', of 0 x y] and `x \<in> s` |
|
56223
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
huffman
parents:
56217
diff
changeset
|
272 |
unfolding onorm_zero |
56215 | 273 |
by auto |
274 |
qed |
|
275 |
then show ?thesis |
|
276 |
by metis |
|
277 |
next |
|
278 |
case True |
|
279 |
then show ?thesis by auto |
|
280 |
qed |
|
281 |
||
282 |
lemma has_derivative_zero_unique: |
|
283 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
|
284 |
assumes "convex s" |
|
285 |
and "\<And>x. x\<in>s \<Longrightarrow> (f has_derivative (\<lambda>h. 0)) (at x within s)" |
|
286 |
and "a \<in> s" |
|
287 |
and "x \<in> s" |
|
288 |
shows "f x = f a" |
|
289 |
using assms |
|
290 |
by (metis has_derivative_zero_constant) |
|
291 |
||
292 |
lemma has_derivative_zero_connected_constant: |
|
293 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" |
|
294 |
assumes "connected s" |
|
295 |
and "open s" |
|
296 |
and "finite k" |
|
297 |
and "continuous_on s f" |
|
298 |
and "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" |
|
299 |
obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c" |
|
300 |
proof (cases "s = {}") |
|
301 |
case True |
|
302 |
then show ?thesis |
|
303 |
by (metis empty_iff that) |
|
304 |
next |
|
305 |
case False |
|
306 |
then obtain c where "c \<in> s" |
|
307 |
by (metis equals0I) |
|
308 |
then show ?thesis |
|
309 |
by (metis has_derivative_zero_unique_strong_connected assms that) |
|
310 |
qed |
|
311 |
||
312 |
lemma DERIV_zero_connected_constant: |
|
313 |
fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a" |
|
314 |
assumes "connected s" |
|
315 |
and "open s" |
|
316 |
and "finite k" |
|
317 |
and "continuous_on s f" |
|
318 |
and "\<forall>x\<in>(s - k). DERIV f x :> 0" |
|
319 |
obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c" |
|
320 |
using has_derivative_zero_connected_constant [OF assms(1-4)] assms |
|
321 |
by (metis DERIV_const Derivative.has_derivative_const Diff_iff at_within_open |
|
322 |
frechet_derivative_at has_field_derivative_def) |
|
323 |
||
324 |
lemma DERIV_zero_constant: |
|
325 |
fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a" |
|
326 |
shows "\<lbrakk>convex s; |
|
327 |
\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk> |
|
328 |
\<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c" |
|
329 |
unfolding has_field_derivative_def |
|
330 |
by (auto simp: lambda_zero intro: has_derivative_zero_constant) |
|
331 |
||
332 |
lemma DERIV_zero_unique: |
|
333 |
fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a" |
|
334 |
assumes "convex s" |
|
335 |
and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)" |
|
336 |
and "a \<in> s" |
|
337 |
and "x \<in> s" |
|
338 |
shows "f x = f a" |
|
339 |
apply (rule has_derivative_zero_unique [where f=f, OF assms(1) _ assms(3,4)]) |
|
340 |
by (metis d0 has_field_derivative_imp_has_derivative lambda_zero) |
|
341 |
||
342 |
lemma DERIV_zero_connected_unique: |
|
343 |
fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a" |
|
344 |
assumes "connected s" |
|
345 |
and "open s" |
|
346 |
and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0" |
|
347 |
and "a \<in> s" |
|
348 |
and "x \<in> s" |
|
349 |
shows "f x = f a" |
|
350 |
apply (rule Integration.has_derivative_zero_unique_strong_connected [of s "{}" f]) |
|
351 |
using assms |
|
352 |
apply auto |
|
353 |
apply (metis DERIV_continuous_on) |
|
354 |
by (metis at_within_open has_field_derivative_def lambda_zero) |
|
355 |
||
356 |
lemma DERIV_transform_within: |
|
357 |
assumes "(f has_field_derivative f') (at a within s)" |
|
358 |
and "0 < d" "a \<in> s" |
|
359 |
and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x" |
|
360 |
shows "(g has_field_derivative f') (at a within s)" |
|
361 |
using assms unfolding has_field_derivative_def |
|
362 |
by (blast intro: Derivative.has_derivative_transform_within) |
|
363 |
||
364 |
lemma DERIV_transform_within_open: |
|
365 |
assumes "DERIV f a :> f'" |
|
366 |
and "open s" "a \<in> s" |
|
367 |
and "\<And>x. x\<in>s \<Longrightarrow> f x = g x" |
|
368 |
shows "DERIV g a :> f'" |
|
369 |
using assms unfolding has_field_derivative_def |
|
370 |
by (metis has_derivative_transform_within_open) |
|
371 |
||
372 |
lemma DERIV_transform_at: |
|
373 |
assumes "DERIV f a :> f'" |
|
374 |
and "0 < d" |
|
375 |
and "\<And>x. dist x a < d \<Longrightarrow> f x = g x" |
|
376 |
shows "DERIV g a :> f'" |
|
377 |
by (blast intro: assms DERIV_transform_within) |
|
378 |
||
379 |
||
380 |
subsection{*Holomorphic functions*} |
|
381 |
||
382 |
lemma has_derivative_ident[has_derivative_intros, simp]: |
|
383 |
"FDERIV complex_of_real x :> complex_of_real" |
|
384 |
by (simp add: has_derivative_def tendsto_const bounded_linear_of_real) |
|
385 |
||
386 |
lemma has_real_derivative: |
|
387 |
fixes f :: "real\<Rightarrow>real" |
|
388 |
assumes "(f has_derivative f') F" |
|
389 |
obtains c where "(f has_derivative (\<lambda>x. x * c)) F" |
|
390 |
proof - |
|
391 |
obtain c where "f' = (\<lambda>x. x * c)" |
|
392 |
by (metis assms derivative_linear real_bounded_linear) |
|
393 |
then show ?thesis |
|
394 |
by (metis assms that) |
|
395 |
qed |
|
396 |
||
397 |
lemma has_real_derivative_iff: |
|
398 |
fixes f :: "real\<Rightarrow>real" |
|
399 |
shows "(\<exists>f'. (f has_derivative (\<lambda>x. x * f')) F) = (\<exists>D. (f has_derivative D) F)" |
|
400 |
by (auto elim: has_real_derivative) |
|
401 |
||
402 |
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool" |
|
403 |
(infixr "(complex'_differentiable)" 50) |
|
404 |
where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F" |
|
405 |
||
406 |
definition DD :: "['a \<Rightarrow> 'a::real_normed_field, 'a] \<Rightarrow> 'a" --{*for real, complex?*} |
|
407 |
where "DD f x \<equiv> THE f'. (f has_derivative (\<lambda>x. x * f')) (at x)" |
|
408 |
||
409 |
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool" |
|
410 |
(infixl "(holomorphic'_on)" 50) |
|
411 |
where "f holomorphic_on s \<equiv> \<forall>x \<in> s. \<exists>f'. (f has_field_derivative f') (at x within s)" |
|
412 |
||
413 |
lemma holomorphic_on_empty: "f holomorphic_on {}" |
|
414 |
by (simp add: holomorphic_on_def) |
|
415 |
||
416 |
lemma holomorphic_on_differentiable: |
|
417 |
"f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. f complex_differentiable (at x within s))" |
|
418 |
unfolding holomorphic_on_def complex_differentiable_def has_field_derivative_def |
|
419 |
by (metis mult_commute_abs) |
|
420 |
||
421 |
lemma holomorphic_on_open: |
|
422 |
"open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')" |
|
423 |
by (auto simp: holomorphic_on_def has_field_derivative_def at_within_open [of _ s]) |
|
424 |
||
425 |
lemma complex_differentiable_imp_continuous_at: |
|
426 |
"f complex_differentiable (at x) \<Longrightarrow> continuous (at x) f" |
|
427 |
by (metis DERIV_continuous complex_differentiable_def) |
|
428 |
||
429 |
lemma holomorphic_on_imp_continuous_on: |
|
430 |
"f holomorphic_on s \<Longrightarrow> continuous_on s f" |
|
431 |
by (metis DERIV_continuous continuous_on_eq_continuous_within holomorphic_on_def) |
|
432 |
||
433 |
lemma has_derivative_within_open: |
|
434 |
"a \<in> s \<Longrightarrow> open s \<Longrightarrow> (f has_field_derivative f') (at a within s) \<longleftrightarrow> DERIV f a :> f'" |
|
435 |
by (simp add: has_field_derivative_def) (metis has_derivative_within_open) |
|
436 |
||
437 |
lemma holomorphic_on_subset: |
|
438 |
"f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t" |
|
439 |
unfolding holomorphic_on_def |
|
440 |
by (metis DERIV_subset subsetD) |
|
441 |
||
442 |
lemma complex_differentiable_within_subset: |
|
443 |
"\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk> |
|
444 |
\<Longrightarrow> f complex_differentiable (at x within t)" |
|
445 |
unfolding complex_differentiable_def |
|
446 |
by (metis DERIV_subset) |
|
447 |
||
448 |
lemma complex_differentiable_at_within: |
|
449 |
"\<lbrakk>f complex_differentiable (at x)\<rbrakk> |
|
450 |
\<Longrightarrow> f complex_differentiable (at x within s)" |
|
451 |
unfolding complex_differentiable_def |
|
452 |
by (metis DERIV_subset top_greatest) |
|
453 |
||
454 |
||
455 |
lemma has_derivative_mult_right: |
|
456 |
fixes c:: "'a :: real_normed_algebra" |
|
457 |
shows "((op * c) has_derivative (op * c)) F" |
|
458 |
by (rule has_derivative_mult_right [OF has_derivative_id]) |
|
459 |
||
460 |
lemma complex_differentiable_linear: |
|
461 |
"(op * c) complex_differentiable F" |
|
462 |
proof - |
|
463 |
have "\<And>u::complex. (\<lambda>x. x * u) = op * u" |
|
464 |
by (rule ext) (simp add: mult_ac) |
|
465 |
then show ?thesis |
|
466 |
unfolding complex_differentiable_def has_field_derivative_def |
|
467 |
by (force intro: has_derivative_mult_right) |
|
468 |
qed |
|
469 |
||
470 |
lemma complex_differentiable_const: |
|
471 |
"(\<lambda>z. c) complex_differentiable F" |
|
472 |
unfolding complex_differentiable_def has_field_derivative_def |
|
473 |
apply (rule exI [where x=0]) |
|
474 |
by (metis Derivative.has_derivative_const lambda_zero) |
|
475 |
||
476 |
lemma complex_differentiable_id: |
|
477 |
"(\<lambda>z. z) complex_differentiable F" |
|
478 |
unfolding complex_differentiable_def has_field_derivative_def |
|
479 |
apply (rule exI [where x=1]) |
|
480 |
apply (simp add: lambda_one [symmetric]) |
|
481 |
done |
|
482 |
||
483 |
(*DERIV_minus*) |
|
484 |
lemma field_differentiable_minus: |
|
485 |
assumes "(f has_field_derivative f') F" |
|
486 |
shows "((\<lambda>z. - (f z)) has_field_derivative -f') F" |
|
487 |
apply (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus]) |
|
488 |
using assms |
|
489 |
by (auto simp: has_field_derivative_def field_simps mult_commute_abs) |
|
490 |
||
491 |
(*DERIV_add*) |
|
492 |
lemma field_differentiable_add: |
|
493 |
assumes "(f has_field_derivative f') F" "(g has_field_derivative g') F" |
|
494 |
shows "((\<lambda>z. f z + g z) has_field_derivative f' + g') F" |
|
495 |
apply (rule has_derivative_imp_has_field_derivative[OF has_derivative_add]) |
|
496 |
using assms |
|
497 |
by (auto simp: has_field_derivative_def field_simps mult_commute_abs) |
|
498 |
||
499 |
(*DERIV_diff*) |
|
500 |
lemma field_differentiable_diff: |
|
501 |
assumes "(f has_field_derivative f') F" "(g has_field_derivative g') F" |
|
502 |
shows "((\<lambda>z. f z - g z) has_field_derivative f' - g') F" |
|
503 |
by (simp only: assms diff_conv_add_uminus field_differentiable_add field_differentiable_minus) |
|
504 |
||
505 |
lemma complex_differentiable_minus: |
|
506 |
"f complex_differentiable F \<Longrightarrow> (\<lambda>z. -(f z)) complex_differentiable F" |
|
507 |
using assms unfolding complex_differentiable_def |
|
508 |
by (metis field_differentiable_minus) |
|
509 |
||
510 |
lemma complex_differentiable_add: |
|
511 |
assumes "f complex_differentiable F" "g complex_differentiable F" |
|
512 |
shows "(\<lambda>z. f z + g z) complex_differentiable F" |
|
513 |
using assms unfolding complex_differentiable_def |
|
514 |
by (metis field_differentiable_add) |
|
515 |
||
516 |
lemma complex_differentiable_diff: |
|
517 |
assumes "f complex_differentiable F" "g complex_differentiable F" |
|
518 |
shows "(\<lambda>z. f z - g z) complex_differentiable F" |
|
519 |
using assms unfolding complex_differentiable_def |
|
520 |
by (metis field_differentiable_diff) |
|
521 |
||
522 |
lemma complex_differentiable_inverse: |
|
523 |
assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0" |
|
524 |
shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)" |
|
525 |
using assms unfolding complex_differentiable_def |
|
526 |
by (metis DERIV_inverse_fun) |
|
527 |
||
528 |
lemma complex_differentiable_mult: |
|
529 |
assumes "f complex_differentiable (at a within s)" |
|
530 |
"g complex_differentiable (at a within s)" |
|
531 |
shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)" |
|
532 |
using assms unfolding complex_differentiable_def |
|
533 |
by (metis DERIV_mult [of f _ a s g]) |
|
534 |
||
535 |
lemma complex_differentiable_divide: |
|
536 |
assumes "f complex_differentiable (at a within s)" |
|
537 |
"g complex_differentiable (at a within s)" |
|
538 |
"g a \<noteq> 0" |
|
539 |
shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)" |
|
540 |
using assms unfolding complex_differentiable_def |
|
541 |
by (metis DERIV_divide [of f _ a s g]) |
|
542 |
||
543 |
lemma complex_differentiable_power: |
|
544 |
assumes "f complex_differentiable (at a within s)" |
|
545 |
shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)" |
|
546 |
using assms unfolding complex_differentiable_def |
|
547 |
by (metis DERIV_power) |
|
548 |
||
549 |
lemma complex_differentiable_transform_within: |
|
550 |
"0 < d \<Longrightarrow> |
|
551 |
x \<in> s \<Longrightarrow> |
|
552 |
(\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow> |
|
553 |
f complex_differentiable (at x within s) |
|
554 |
\<Longrightarrow> g complex_differentiable (at x within s)" |
|
555 |
unfolding complex_differentiable_def has_field_derivative_def |
|
556 |
by (blast intro: has_derivative_transform_within) |
|
557 |
||
558 |
lemma complex_differentiable_compose_within: |
|
559 |
assumes "f complex_differentiable (at a within s)" |
|
560 |
"g complex_differentiable (at (f a) within f`s)" |
|
561 |
shows "(g o f) complex_differentiable (at a within s)" |
|
562 |
using assms unfolding complex_differentiable_def |
|
563 |
by (metis DERIV_image_chain) |
|
564 |
||
565 |
lemma complex_differentiable_within_open: |
|
566 |
"\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow> |
|
567 |
f complex_differentiable at a" |
|
568 |
unfolding complex_differentiable_def |
|
569 |
by (metis at_within_open) |
|
570 |
||
571 |
lemma holomorphic_transform: |
|
572 |
"\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s" |
|
573 |
apply (auto simp: holomorphic_on_def has_field_derivative_def) |
|
574 |
by (metis complex_differentiable_def complex_differentiable_transform_within has_field_derivative_def linordered_field_no_ub) |
|
575 |
||
576 |
lemma holomorphic_eq: |
|
577 |
"(\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on s" |
|
578 |
by (metis holomorphic_transform) |
|
579 |
||
580 |
subsection{*Holomorphic*} |
|
581 |
||
582 |
lemma holomorphic_on_linear: |
|
583 |
"(op * c) holomorphic_on s" |
|
584 |
unfolding holomorphic_on_def by (metis DERIV_cmult_Id) |
|
585 |
||
586 |
lemma holomorphic_on_const: |
|
587 |
"(\<lambda>z. c) holomorphic_on s" |
|
588 |
unfolding holomorphic_on_def |
|
589 |
by (metis DERIV_const) |
|
590 |
||
591 |
lemma holomorphic_on_id: |
|
592 |
"id holomorphic_on s" |
|
593 |
unfolding holomorphic_on_def id_def |
|
594 |
by (metis DERIV_ident) |
|
595 |
||
596 |
lemma holomorphic_on_compose: |
|
597 |
"f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) |
|
598 |
\<Longrightarrow> (g o f) holomorphic_on s" |
|
599 |
unfolding holomorphic_on_def |
|
600 |
by (metis DERIV_image_chain imageI) |
|
601 |
||
602 |
lemma holomorphic_on_compose_gen: |
|
603 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on t; f ` s \<subseteq> t\<rbrakk> \<Longrightarrow> (g o f) holomorphic_on s" |
|
604 |
unfolding holomorphic_on_def |
|
605 |
by (metis DERIV_image_chain DERIV_subset image_subset_iff) |
|
606 |
||
607 |
lemma holomorphic_on_minus: |
|
608 |
"f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s" |
|
609 |
unfolding holomorphic_on_def |
|
610 |
by (metis DERIV_minus) |
|
611 |
||
612 |
lemma holomorphic_on_add: |
|
613 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s" |
|
614 |
unfolding holomorphic_on_def |
|
615 |
by (metis DERIV_add) |
|
616 |
||
617 |
lemma holomorphic_on_diff: |
|
618 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s" |
|
619 |
unfolding holomorphic_on_def |
|
620 |
by (metis DERIV_diff) |
|
621 |
||
622 |
lemma holomorphic_on_mult: |
|
623 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s" |
|
624 |
unfolding holomorphic_on_def |
|
625 |
by auto (metis DERIV_mult) |
|
626 |
||
627 |
lemma holomorphic_on_inverse: |
|
628 |
"\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s" |
|
629 |
unfolding holomorphic_on_def |
|
630 |
by (metis DERIV_inverse') |
|
631 |
||
632 |
lemma holomorphic_on_divide: |
|
633 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s" |
|
634 |
unfolding holomorphic_on_def |
|
635 |
by (metis (full_types) DERIV_divide) |
|
636 |
||
637 |
lemma holomorphic_on_power: |
|
638 |
"f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s" |
|
639 |
unfolding holomorphic_on_def |
|
640 |
by (metis DERIV_power) |
|
641 |
||
642 |
lemma holomorphic_on_setsum: |
|
643 |
"finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) |
|
644 |
\<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s" |
|
645 |
unfolding holomorphic_on_def |
|
646 |
apply (induct I rule: finite_induct) |
|
647 |
apply (force intro: DERIV_const DERIV_add)+ |
|
648 |
done |
|
649 |
||
650 |
lemma DERIV_imp_DD: "DERIV f x :> f' \<Longrightarrow> DD f x = f'" |
|
651 |
apply (simp add: DD_def has_field_derivative_def mult_commute_abs) |
|
652 |
apply (rule the_equality, assumption) |
|
653 |
apply (metis DERIV_unique has_field_derivative_def) |
|
654 |
done |
|
655 |
||
656 |
lemma DD_iff_derivative_differentiable: |
|
657 |
fixes f :: "real\<Rightarrow>real" |
|
658 |
shows "DERIV f x :> DD f x \<longleftrightarrow> f differentiable at x" |
|
659 |
unfolding DD_def differentiable_def |
|
660 |
by (metis (full_types) DD_def DERIV_imp_DD has_field_derivative_def has_real_derivative_iff |
|
661 |
mult_commute_abs) |
|
662 |
||
663 |
lemma DD_iff_derivative_complex_differentiable: |
|
664 |
fixes f :: "complex\<Rightarrow>complex" |
|
665 |
shows "DERIV f x :> DD f x \<longleftrightarrow> f complex_differentiable at x" |
|
666 |
unfolding DD_def complex_differentiable_def |
|
667 |
by (metis DD_def DERIV_imp_DD) |
|
668 |
||
669 |
lemma complex_differentiable_compose: |
|
670 |
"f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z) |
|
671 |
\<Longrightarrow> (g o f) complex_differentiable at z" |
|
672 |
by (metis complex_differentiable_at_within complex_differentiable_compose_within) |
|
673 |
||
674 |
lemma complex_derivative_chain: |
|
675 |
fixes z::complex |
|
676 |
shows |
|
677 |
"f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z) |
|
678 |
\<Longrightarrow> DD (g o f) z = DD g (f z) * DD f z" |
|
679 |
by (metis DD_iff_derivative_complex_differentiable DERIV_chain DERIV_imp_DD) |
|
680 |
||
681 |
lemma comp_derivative_chain: |
|
682 |
fixes z::real |
|
683 |
shows "\<lbrakk>f differentiable at z; g differentiable at (f z)\<rbrakk> |
|
684 |
\<Longrightarrow> DD (g o f) z = DD g (f z) * DD f z" |
|
685 |
by (metis DD_iff_derivative_differentiable DERIV_chain DERIV_imp_DD) |
|
686 |
||
687 |
lemma complex_derivative_linear: "DD (\<lambda>w. c * w) = (\<lambda>z. c)" |
|
688 |
by (metis DERIV_imp_DD DERIV_cmult_Id) |
|
689 |
||
690 |
lemma complex_derivative_ident: "DD (\<lambda>w. w) = (\<lambda>z. 1)" |
|
691 |
by (metis DERIV_imp_DD DERIV_ident) |
|
692 |
||
693 |
lemma complex_derivative_const: "DD (\<lambda>w. c) = (\<lambda>z. 0)" |
|
694 |
by (metis DERIV_imp_DD DERIV_const) |
|
695 |
||
696 |
lemma complex_derivative_add: |
|
697 |
"\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk> |
|
698 |
\<Longrightarrow> DD (\<lambda>w. f w + g w) z = DD f z + DD g z" |
|
699 |
unfolding complex_differentiable_def |
|
700 |
by (rule DERIV_imp_DD) (metis (poly_guards_query) DERIV_add DERIV_imp_DD) |
|
701 |
||
702 |
lemma complex_derivative_diff: |
|
703 |
"\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk> |
|
704 |
\<Longrightarrow> DD (\<lambda>w. f w - g w) z = DD f z - DD g z" |
|
705 |
unfolding complex_differentiable_def |
|
706 |
by (rule DERIV_imp_DD) (metis (poly_guards_query) DERIV_diff DERIV_imp_DD) |
|
707 |
||
708 |
lemma complex_derivative_mult: |
|
709 |
"\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk> |
|
710 |
\<Longrightarrow> DD (\<lambda>w. f w * g w) z = f z * DD g z + DD f z * g z" |
|
711 |
unfolding complex_differentiable_def |
|
712 |
by (rule DERIV_imp_DD) (metis DERIV_imp_DD DERIV_mult') |
|
713 |
||
714 |
lemma complex_derivative_cmult: |
|
715 |
"f complex_differentiable at z \<Longrightarrow> DD (\<lambda>w. c * f w) z = c * DD f z" |
|
716 |
unfolding complex_differentiable_def |
|
717 |
by (metis DERIV_cmult DERIV_imp_DD) |
|
718 |
||
719 |
lemma complex_derivative_cmult_right: |
|
720 |
"f complex_differentiable at z \<Longrightarrow> DD (\<lambda>w. f w * c) z = DD f z * c" |
|
721 |
unfolding complex_differentiable_def |
|
722 |
by (metis DERIV_cmult_right DERIV_imp_DD) |
|
723 |
||
724 |
lemma complex_derivative_transform_within_open: |
|
725 |
"\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> |
|
726 |
\<Longrightarrow> DD f z = DD g z" |
|
727 |
unfolding holomorphic_on_def |
|
728 |
by (rule DERIV_imp_DD) (metis has_derivative_within_open DERIV_imp_DD DERIV_transform_within_open) |
|
729 |
||
730 |
lemma complex_derivative_compose_linear: |
|
731 |
"f complex_differentiable at (c * z) \<Longrightarrow> DD (\<lambda>w. f (c * w)) z = c * DD f (c * z)" |
|
732 |
apply (rule DERIV_imp_DD) |
|
733 |
apply (simp add: DD_iff_derivative_complex_differentiable [symmetric]) |
|
734 |
apply (metis DERIV_chain' DERIV_cmult_Id comm_semiring_1_class.normalizing_semiring_rules(7)) |
|
735 |
done |
|
736 |
||
737 |
subsection{*Caratheodory characterization.*} |
|
738 |
||
739 |
(*REPLACE the original version. BUT IN WHICH FILE??*) |
|
740 |
thm Deriv.CARAT_DERIV |
|
741 |
||
742 |
lemma complex_differentiable_caratheodory_at: |
|
743 |
"f complex_differentiable (at z) \<longleftrightarrow> |
|
744 |
(\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)" |
|
745 |
using CARAT_DERIV [of f] |
|
746 |
by (simp add: complex_differentiable_def has_field_derivative_def) |
|
747 |
||
748 |
lemma complex_differentiable_caratheodory_within: |
|
749 |
"f complex_differentiable (at z within s) \<longleftrightarrow> |
|
750 |
(\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)" |
|
751 |
using DERIV_caratheodory_within [of f] |
|
752 |
by (simp add: complex_differentiable_def has_field_derivative_def) |
|
753 |
||
754 |
subsection{*analyticity on a set*} |
|
755 |
||
756 |
definition analytic_on (infixl "(analytic'_on)" 50) |
|
757 |
where |
|
758 |
"f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)" |
|
759 |
||
760 |
lemma analytic_imp_holomorphic: |
|
761 |
"f analytic_on s \<Longrightarrow> f holomorphic_on s" |
|
762 |
unfolding analytic_on_def holomorphic_on_def |
|
763 |
apply (simp add: has_derivative_within_open [OF _ open_ball]) |
|
764 |
apply (metis DERIV_subset dist_self mem_ball top_greatest) |
|
765 |
done |
|
766 |
||
767 |
lemma analytic_on_open: |
|
768 |
"open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s" |
|
769 |
apply (auto simp: analytic_imp_holomorphic) |
|
770 |
apply (auto simp: analytic_on_def holomorphic_on_def) |
|
771 |
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball) |
|
772 |
||
773 |
lemma analytic_on_imp_differentiable_at: |
|
774 |
"f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)" |
|
775 |
apply (auto simp: analytic_on_def holomorphic_on_differentiable) |
|
776 |
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open) |
|
777 |
||
778 |
lemma analytic_on_subset: |
|
779 |
"f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t" |
|
780 |
by (auto simp: analytic_on_def) |
|
781 |
||
782 |
lemma analytic_on_Un: |
|
783 |
"f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t" |
|
784 |
by (auto simp: analytic_on_def) |
|
785 |
||
786 |
lemma analytic_on_Union: |
|
787 |
"f analytic_on (\<Union> s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)" |
|
788 |
by (auto simp: analytic_on_def) |
|
789 |
||
790 |
lemma analytic_on_holomorphic: |
|
791 |
"f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)" |
|
792 |
(is "?lhs = ?rhs") |
|
793 |
proof - |
|
794 |
have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)" |
|
795 |
proof safe |
|
796 |
assume "f analytic_on s" |
|
797 |
then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t" |
|
798 |
apply (simp add: analytic_on_def) |
|
799 |
apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto) |
|
800 |
apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball) |
|
801 |
by (metis analytic_on_def) |
|
802 |
next |
|
803 |
fix t |
|
804 |
assume "open t" "s \<subseteq> t" "f analytic_on t" |
|
805 |
then show "f analytic_on s" |
|
806 |
by (metis analytic_on_subset) |
|
807 |
qed |
|
808 |
also have "... \<longleftrightarrow> ?rhs" |
|
809 |
by (auto simp: analytic_on_open) |
|
810 |
finally show ?thesis . |
|
811 |
qed |
|
812 |
||
813 |
lemma analytic_on_linear: "(op * c) analytic_on s" |
|
814 |
apply (simp add: analytic_on_holomorphic holomorphic_on_linear) |
|
815 |
by (metis open_UNIV top_greatest) |
|
816 |
||
817 |
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s" |
|
818 |
unfolding analytic_on_def |
|
819 |
by (metis holomorphic_on_const zero_less_one) |
|
820 |
||
821 |
lemma analytic_on_id: "id analytic_on s" |
|
822 |
unfolding analytic_on_def |
|
823 |
apply (simp add: holomorphic_on_id) |
|
824 |
by (metis gt_ex) |
|
825 |
||
826 |
lemma analytic_on_compose: |
|
827 |
assumes f: "f analytic_on s" |
|
828 |
and g: "g analytic_on (f ` s)" |
|
829 |
shows "(g o f) analytic_on s" |
|
830 |
unfolding analytic_on_def |
|
831 |
proof (intro ballI) |
|
832 |
fix x |
|
833 |
assume x: "x \<in> s" |
|
834 |
then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f |
|
835 |
by (metis analytic_on_def) |
|
836 |
obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g |
|
837 |
by (metis analytic_on_def g image_eqI x) |
|
838 |
have "isCont f x" |
|
839 |
by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x) |
|
840 |
with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'" |
|
841 |
by (auto simp: continuous_at_ball) |
|
842 |
have "g \<circ> f holomorphic_on ball x (min d e)" |
|
843 |
apply (rule holomorphic_on_compose) |
|
844 |
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
845 |
by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball) |
|
846 |
then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e" |
|
847 |
by (metis d e min_less_iff_conj) |
|
848 |
qed |
|
849 |
||
850 |
lemma analytic_on_compose_gen: |
|
851 |
"f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t) |
|
852 |
\<Longrightarrow> g o f analytic_on s" |
|
853 |
by (metis analytic_on_compose analytic_on_subset image_subset_iff) |
|
854 |
||
855 |
lemma analytic_on_neg: |
|
856 |
"f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s" |
|
857 |
by (metis analytic_on_holomorphic holomorphic_on_minus) |
|
858 |
||
859 |
lemma analytic_on_add: |
|
860 |
assumes f: "f analytic_on s" |
|
861 |
and g: "g analytic_on s" |
|
862 |
shows "(\<lambda>z. f z + g z) analytic_on s" |
|
863 |
unfolding analytic_on_def |
|
864 |
proof (intro ballI) |
|
865 |
fix z |
|
866 |
assume z: "z \<in> s" |
|
867 |
then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f |
|
868 |
by (metis analytic_on_def) |
|
869 |
obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g |
|
870 |
by (metis analytic_on_def g z) |
|
871 |
have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" |
|
872 |
apply (rule holomorphic_on_add) |
|
873 |
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
874 |
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
875 |
then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e" |
|
876 |
by (metis e e' min_less_iff_conj) |
|
877 |
qed |
|
878 |
||
879 |
lemma analytic_on_diff: |
|
880 |
assumes f: "f analytic_on s" |
|
881 |
and g: "g analytic_on s" |
|
882 |
shows "(\<lambda>z. f z - g z) analytic_on s" |
|
883 |
unfolding analytic_on_def |
|
884 |
proof (intro ballI) |
|
885 |
fix z |
|
886 |
assume z: "z \<in> s" |
|
887 |
then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f |
|
888 |
by (metis analytic_on_def) |
|
889 |
obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g |
|
890 |
by (metis analytic_on_def g z) |
|
891 |
have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" |
|
892 |
apply (rule holomorphic_on_diff) |
|
893 |
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
894 |
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
895 |
then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e" |
|
896 |
by (metis e e' min_less_iff_conj) |
|
897 |
qed |
|
898 |
||
899 |
lemma analytic_on_mult: |
|
900 |
assumes f: "f analytic_on s" |
|
901 |
and g: "g analytic_on s" |
|
902 |
shows "(\<lambda>z. f z * g z) analytic_on s" |
|
903 |
unfolding analytic_on_def |
|
904 |
proof (intro ballI) |
|
905 |
fix z |
|
906 |
assume z: "z \<in> s" |
|
907 |
then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f |
|
908 |
by (metis analytic_on_def) |
|
909 |
obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g |
|
910 |
by (metis analytic_on_def g z) |
|
911 |
have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" |
|
912 |
apply (rule holomorphic_on_mult) |
|
913 |
apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
914 |
by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) |
|
915 |
then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e" |
|
916 |
by (metis e e' min_less_iff_conj) |
|
917 |
qed |
|
918 |
||
919 |
lemma analytic_on_inverse: |
|
920 |
assumes f: "f analytic_on s" |
|
921 |
and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)" |
|
922 |
shows "(\<lambda>z. inverse (f z)) analytic_on s" |
|
923 |
unfolding analytic_on_def |
|
924 |
proof (intro ballI) |
|
925 |
fix z |
|
926 |
assume z: "z \<in> s" |
|
927 |
then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f |
|
928 |
by (metis analytic_on_def) |
|
929 |
have "continuous_on (ball z e) f" |
|
930 |
by (metis fh holomorphic_on_imp_continuous_on) |
|
931 |
then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" |
|
932 |
by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz) |
|
933 |
have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" |
|
934 |
apply (rule holomorphic_on_inverse) |
|
935 |
apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball) |
|
936 |
by (metis nz' mem_ball min_less_iff_conj) |
|
937 |
then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e" |
|
938 |
by (metis e e' min_less_iff_conj) |
|
939 |
qed |
|
940 |
||
941 |
||
942 |
lemma analytic_on_divide: |
|
943 |
assumes f: "f analytic_on s" |
|
944 |
and g: "g analytic_on s" |
|
945 |
and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)" |
|
946 |
shows "(\<lambda>z. f z / g z) analytic_on s" |
|
947 |
unfolding divide_inverse |
|
948 |
by (metis analytic_on_inverse analytic_on_mult f g nz) |
|
949 |
||
950 |
lemma analytic_on_power: |
|
951 |
"f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s" |
|
952 |
by (induct n) (auto simp: analytic_on_const analytic_on_mult) |
|
953 |
||
954 |
lemma analytic_on_setsum: |
|
955 |
"finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) |
|
956 |
\<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s" |
|
957 |
by (induct I rule: finite_induct) (auto simp: analytic_on_const analytic_on_add) |
|
958 |
||
959 |
subsection{*analyticity at a point.*} |
|
960 |
||
961 |
lemma analytic_at_ball: |
|
962 |
"f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)" |
|
963 |
by (metis analytic_on_def singleton_iff) |
|
964 |
||
965 |
lemma analytic_at: |
|
966 |
"f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)" |
|
967 |
by (metis analytic_on_holomorphic empty_subsetI insert_subset) |
|
968 |
||
969 |
lemma analytic_on_analytic_at: |
|
970 |
"f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})" |
|
971 |
by (metis analytic_at_ball analytic_on_def) |
|
972 |
||
973 |
lemma analytic_at_two: |
|
974 |
"f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow> |
|
975 |
(\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)" |
|
976 |
(is "?lhs = ?rhs") |
|
977 |
proof |
|
978 |
assume ?lhs |
|
979 |
then obtain s t |
|
980 |
where st: "open s" "z \<in> s" "f holomorphic_on s" |
|
981 |
"open t" "z \<in> t" "g holomorphic_on t" |
|
982 |
by (auto simp: analytic_at) |
|
983 |
show ?rhs |
|
984 |
apply (rule_tac x="s \<inter> t" in exI) |
|
985 |
using st |
|
986 |
apply (auto simp: Diff_subset holomorphic_on_subset) |
|
987 |
done |
|
988 |
next |
|
989 |
assume ?rhs |
|
990 |
then show ?lhs |
|
991 |
by (force simp add: analytic_at) |
|
992 |
qed |
|
993 |
||
994 |
subsection{*Combining theorems for derivative with ``analytic at'' hypotheses*} |
|
995 |
||
996 |
lemma |
|
997 |
assumes "f analytic_on {z}" "g analytic_on {z}" |
|
998 |
shows complex_derivative_add_at: "DD (\<lambda>w. f w + g w) z = DD f z + DD g z" |
|
999 |
and complex_derivative_diff_at: "DD (\<lambda>w. f w - g w) z = DD f z - DD g z" |
|
1000 |
and complex_derivative_mult_at: "DD (\<lambda>w. f w * g w) z = |
|
1001 |
f z * DD g z + DD f z * g z" |
|
1002 |
proof - |
|
1003 |
obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s" |
|
1004 |
using assms by (metis analytic_at_two) |
|
1005 |
show "DD (\<lambda>w. f w + g w) z = DD f z + DD g z" |
|
1006 |
apply (rule DERIV_imp_DD [OF DERIV_add]) |
|
1007 |
using s |
|
1008 |
apply (auto simp: holomorphic_on_open complex_differentiable_def DD_iff_derivative_complex_differentiable) |
|
1009 |
done |
|
1010 |
show "DD (\<lambda>w. f w - g w) z = DD f z - DD g z" |
|
1011 |
apply (rule DERIV_imp_DD [OF DERIV_diff]) |
|
1012 |
using s |
|
1013 |
apply (auto simp: holomorphic_on_open complex_differentiable_def DD_iff_derivative_complex_differentiable) |
|
1014 |
done |
|
1015 |
show "DD (\<lambda>w. f w * g w) z = f z * DD g z + DD f z * g z" |
|
1016 |
apply (rule DERIV_imp_DD [OF DERIV_mult']) |
|
1017 |
using s |
|
1018 |
apply (auto simp: holomorphic_on_open complex_differentiable_def DD_iff_derivative_complex_differentiable) |
|
1019 |
done |
|
1020 |
qed |
|
1021 |
||
1022 |
lemma complex_derivative_cmult_at: |
|
1023 |
"f analytic_on {z} \<Longrightarrow> DD (\<lambda>w. c * f w) z = c * DD f z" |
|
1024 |
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const) |
|
1025 |
||
1026 |
lemma complex_derivative_cmult_right_at: |
|
1027 |
"f analytic_on {z} \<Longrightarrow> DD (\<lambda>w. f w * c) z = DD f z * c" |
|
1028 |
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const) |
|
1029 |
||
1030 |
text{*A composition lemma for functions of mixed type*} |
|
1031 |
lemma has_vector_derivative_real_complex: |
|
1032 |
fixes f :: "complex \<Rightarrow> complex" |
|
1033 |
assumes "DERIV f (of_real a) :> f'" |
|
1034 |
shows "((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a)" |
|
1035 |
using diff_chain_at [OF has_derivative_ident, of f "op * f'" a] assms |
|
1036 |
unfolding has_field_derivative_def has_vector_derivative_def o_def |
|
1037 |
by (auto simp: mult_ac scaleR_conv_of_real) |
|
1038 |
||
1039 |
subsection{*Complex differentiation of sequences and series*} |
|
1040 |
||
1041 |
lemma has_complex_derivative_sequence: |
|
1042 |
fixes s :: "complex set" |
|
1043 |
assumes cvs: "convex s" |
|
1044 |
and df: "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)" |
|
1045 |
and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e" |
|
1046 |
and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) ---> l) sequentially" |
|
1047 |
shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) ---> g x) sequentially \<and> |
|
1048 |
(g has_field_derivative (g' x)) (at x within s)" |
|
1049 |
proof - |
|
1050 |
from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) ---> l) sequentially" |
|
1051 |
by blast |
|
1052 |
{ fix e::real assume e: "e > 0" |
|
1053 |
then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e" |
|
1054 |
by (metis conv) |
|
1055 |
have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" |
|
1056 |
proof (rule exI [of _ N], clarify) |
|
1057 |
fix n y h |
|
1058 |
assume "N \<le> n" "y \<in> s" |
|
1059 |
then have "cmod (f' n y - g' y) \<le> e" |
|
1060 |
by (metis N) |
|
1061 |
then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e" |
|
1062 |
by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) |
|
1063 |
then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h" |
|
1064 |
by (simp add: norm_mult [symmetric] field_simps) |
|
1065 |
qed |
|
1066 |
} note ** = this |
|
1067 |
show ?thesis |
|
1068 |
unfolding has_field_derivative_def |
|
1069 |
proof (rule has_derivative_sequence [OF cvs _ _ x]) |
|
1070 |
show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)" |
|
1071 |
by (metis has_field_derivative_def df) |
|
1072 |
next show "(\<lambda>n. f n x) ----> l" |
|
1073 |
by (rule tf) |
|
1074 |
next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" |
|
1075 |
by (blast intro: **) |
|
1076 |
qed |
|
1077 |
qed |
|
1078 |
||
1079 |
||
1080 |
lemma has_complex_derivative_series: |
|
1081 |
fixes s :: "complex set" |
|
1082 |
assumes cvs: "convex s" |
|
1083 |
and df: "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)" |
|
1084 |
and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s |
|
1085 |
\<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" |
|
1086 |
and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)" |
|
1087 |
shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))" |
|
1088 |
proof - |
|
1089 |
from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)" |
|
1090 |
by blast |
|
1091 |
{ fix e::real assume e: "e > 0" |
|
1092 |
then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s |
|
1093 |
\<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" |
|
1094 |
by (metis conv) |
|
1095 |
have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" |
|
1096 |
proof (rule exI [of _ N], clarify) |
|
1097 |
fix n y h |
|
1098 |
assume "N \<le> n" "y \<in> s" |
|
1099 |
then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e" |
|
1100 |
by (metis N) |
|
1101 |
then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e" |
|
1102 |
by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) |
|
1103 |
then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h" |
|
1104 |
by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib) |
|
1105 |
qed |
|
1106 |
} note ** = this |
|
1107 |
show ?thesis |
|
1108 |
unfolding has_field_derivative_def |
|
1109 |
proof (rule has_derivative_series [OF cvs _ _ x]) |
|
1110 |
fix n x |
|
1111 |
assume "x \<in> s" |
|
1112 |
then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)" |
|
1113 |
by (metis df has_field_derivative_def mult_commute_abs) |
|
1114 |
next show " ((\<lambda>n. f n x) sums l)" |
|
1115 |
by (rule sf) |
|
1116 |
next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" |
|
1117 |
by (blast intro: **) |
|
1118 |
qed |
|
1119 |
qed |
|
1120 |
||
1121 |
subsection{*Bound theorem*} |
|
1122 |
||
1123 |
lemma complex_differentiable_bound: |
|
1124 |
fixes s :: "complex set" |
|
1125 |
assumes cvs: "convex s" |
|
1126 |
and df: "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)" |
|
1127 |
and dn: "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B" |
|
1128 |
and "x \<in> s" "y \<in> s" |
|
1129 |
shows "norm(f x - f y) \<le> B * norm(x - y)" |
|
1130 |
apply (rule differentiable_bound [OF cvs]) |
|
56223
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
huffman
parents:
56217
diff
changeset
|
1131 |
apply (rule ballI, erule df [unfolded has_field_derivative_def]) |
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
huffman
parents:
56217
diff
changeset
|
1132 |
apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn) |
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
huffman
parents:
56217
diff
changeset
|
1133 |
apply fact |
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
huffman
parents:
56217
diff
changeset
|
1134 |
apply fact |
56215 | 1135 |
done |
1136 |
||
1137 |
subsection{*Inverse function theorem for complex derivatives.*} |
|
1138 |
||
1139 |
lemma has_complex_derivative_inverse_basic: |
|
1140 |
fixes f :: "complex \<Rightarrow> complex" |
|
1141 |
shows "DERIV f (g y) :> f' \<Longrightarrow> |
|
1142 |
f' \<noteq> 0 \<Longrightarrow> |
|
1143 |
continuous (at y) g \<Longrightarrow> |
|
1144 |
open t \<Longrightarrow> |
|
1145 |
y \<in> t \<Longrightarrow> |
|
1146 |
(\<And>z. z \<in> t \<Longrightarrow> f (g z) = z) |
|
1147 |
\<Longrightarrow> DERIV g y :> inverse (f')" |
|
1148 |
unfolding has_field_derivative_def |
|
1149 |
apply (rule has_derivative_inverse_basic) |
|
1150 |
apply (auto simp: bounded_linear_mult_right) |
|
1151 |
done |
|
1152 |
||
1153 |
(*Used only once, in Multivariate/cauchy.ml. *) |
|
1154 |
lemma has_complex_derivative_inverse_strong: |
|
1155 |
fixes f :: "complex \<Rightarrow> complex" |
|
1156 |
shows "DERIV f x :> f' \<Longrightarrow> |
|
1157 |
f' \<noteq> 0 \<Longrightarrow> |
|
1158 |
open s \<Longrightarrow> |
|
1159 |
x \<in> s \<Longrightarrow> |
|
1160 |
continuous_on s f \<Longrightarrow> |
|
1161 |
(\<And>z. z \<in> s \<Longrightarrow> g (f z) = z) |
|
1162 |
\<Longrightarrow> DERIV g (f x) :> inverse (f')" |
|
1163 |
unfolding has_field_derivative_def |
|
1164 |
apply (rule has_derivative_inverse_strong [of s x f g ]) |
|
1165 |
using assms |
|
1166 |
by auto |
|
1167 |
||
1168 |
lemma has_complex_derivative_inverse_strong_x: |
|
1169 |
fixes f :: "complex \<Rightarrow> complex" |
|
1170 |
shows "DERIV f (g y) :> f' \<Longrightarrow> |
|
1171 |
f' \<noteq> 0 \<Longrightarrow> |
|
1172 |
open s \<Longrightarrow> |
|
1173 |
continuous_on s f \<Longrightarrow> |
|
1174 |
g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow> |
|
1175 |
(\<And>z. z \<in> s \<Longrightarrow> g (f z) = z) |
|
1176 |
\<Longrightarrow> DERIV g y :> inverse (f')" |
|
1177 |
unfolding has_field_derivative_def |
|
1178 |
apply (rule has_derivative_inverse_strong_x [of s g y f]) |
|
1179 |
using assms |
|
1180 |
by auto |
|
1181 |
||
1182 |
subsection{*Further useful properties of complex conjugation*} |
|
1183 |
||
1184 |
lemma lim_cnj: "((\<lambda>x. cnj(f x)) ---> cnj l) F \<longleftrightarrow> (f ---> l) F" |
|
1185 |
by (simp add: tendsto_iff dist_complex_def Complex.complex_cnj_diff [symmetric]) |
|
1186 |
||
1187 |
lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)" |
|
1188 |
by (simp add: sums_def lim_cnj cnj_setsum [symmetric]) |
|
1189 |
||
1190 |
lemma continuous_within_cnj: "continuous (at z within s) cnj" |
|
1191 |
by (metis bounded_linear_cnj linear_continuous_within) |
|
1192 |
||
1193 |
lemma continuous_on_cnj: "continuous_on s cnj" |
|
1194 |
by (metis bounded_linear_cnj linear_continuous_on) |
|
1195 |
||
1196 |
subsection{*Some limit theorems about real part of real series etc.*} |
|
1197 |
||
1198 |
lemma real_lim: |
|
1199 |
fixes l::complex |
|
1200 |
assumes "(f ---> l) F" and " ~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>" |
|
1201 |
shows "l \<in> \<real>" |
|
1202 |
proof - |
|
1203 |
have 1: "((\<lambda>i. Im (f i)) ---> Im l) F" |
|
1204 |
by (metis assms(1) tendsto_Im) |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
56215
diff
changeset
|
1205 |
then have "((\<lambda>i. Im (f i)) ---> 0) F" using assms |
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
56215
diff
changeset
|
1206 |
by (metis (mono_tags, lifting) Lim_eventually complex_is_Real_iff eventually_mono) |
56215 | 1207 |
then show ?thesis using 1 |
1208 |
by (metis 1 assms(2) complex_is_Real_iff tendsto_unique) |
|
1209 |
qed |
|
1210 |
||
1211 |
lemma real_lim_sequentially: |
|
1212 |
fixes l::complex |
|
1213 |
shows "(f ---> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" |
|
1214 |
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially) |
|
1215 |
||
1216 |
lemma real_series: |
|
1217 |
fixes l::complex |
|
1218 |
shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" |
|
1219 |
unfolding sums_def |
|
1220 |
by (metis real_lim_sequentially setsum_in_Reals) |
|
1221 |
||
1222 |
||
1223 |
lemma Lim_null_comparison_Re: |
|
1224 |
"eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F \<Longrightarrow> (g ---> 0) F \<Longrightarrow> (f ---> 0) F" |
|
1225 |
by (metis Lim_null_comparison complex_Re_zero tendsto_Re) |
|
1226 |
||
1227 |
||
1228 |
lemma norm_setsum_bound: |
|
1229 |
fixes n::nat |
|
1230 |
shows" \<lbrakk>\<And>n. N \<le> n \<Longrightarrow> norm (f n) \<le> g n; N \<le> m\<rbrakk> |
|
1231 |
\<Longrightarrow> norm (setsum f {m..<n}) \<le> setsum g {m..<n}" |
|
1232 |
apply (induct n, auto) |
|
1233 |
by (metis dual_order.trans le_cases le_neq_implies_less norm_triangle_mono) |
|
1234 |
||
1235 |
||
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
56215
diff
changeset
|
1236 |
(*MOVE? But not to Finite_Cartesian_Product*) |
56215 | 1237 |
lemma sums_vec_nth : |
1238 |
assumes "f sums a" |
|
1239 |
shows "(\<lambda>x. f x $ i) sums a $ i" |
|
1240 |
using assms unfolding sums_def |
|
1241 |
by (auto dest: tendsto_vec_nth [where i=i]) |
|
1242 |
||
1243 |
lemma summable_vec_nth : |
|
1244 |
assumes "summable f" |
|
1245 |
shows "summable (\<lambda>x. f x $ i)" |
|
1246 |
using assms unfolding summable_def |
|
1247 |
by (blast intro: sums_vec_nth) |
|
1248 |
||
1249 |
lemma sums_Re: |
|
1250 |
assumes "f sums a" |
|
1251 |
shows "(\<lambda>x. Re (f x)) sums Re a" |
|
1252 |
using assms |
|
1253 |
by (auto simp: sums_def Re_setsum [symmetric] isCont_tendsto_compose [of a Re]) |
|
1254 |
||
1255 |
lemma sums_Im: |
|
1256 |
assumes "f sums a" |
|
1257 |
shows "(\<lambda>x. Im (f x)) sums Im a" |
|
1258 |
using assms |
|
1259 |
by (auto simp: sums_def Im_setsum [symmetric] isCont_tendsto_compose [of a Im]) |
|
1260 |
||
1261 |
lemma summable_Re: |
|
1262 |
assumes "summable f" |
|
1263 |
shows "summable (\<lambda>x. Re (f x))" |
|
1264 |
using assms unfolding summable_def |
|
1265 |
by (blast intro: sums_Re) |
|
1266 |
||
1267 |
lemma summable_Im: |
|
1268 |
assumes "summable f" |
|
1269 |
shows "summable (\<lambda>x. Im (f x))" |
|
1270 |
using assms unfolding summable_def |
|
1271 |
by (blast intro: sums_Im) |
|
1272 |
||
1273 |
lemma series_comparison_complex: |
|
1274 |
fixes f:: "nat \<Rightarrow> 'a::banach" |
|
1275 |
assumes sg: "summable g" |
|
1276 |
and "\<And>n. g n \<in> \<real>" "\<And>n. Re (g n) \<ge> 0" |
|
1277 |
and fg: "\<And>n. n \<ge> N \<Longrightarrow> norm(f n) \<le> norm(g n)" |
|
1278 |
shows "summable f" |
|
1279 |
proof - |
|
1280 |
have g: "\<And>n. cmod (g n) = Re (g n)" using assms |
|
1281 |
by (metis abs_of_nonneg in_Reals_norm) |
|
1282 |
show ?thesis |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
56215
diff
changeset
|
1283 |
apply (rule summable_comparison_test' [where g = "\<lambda>n. norm (g n)" and N=N]) |
56215 | 1284 |
using sg |
1285 |
apply (auto simp: summable_def) |
|
1286 |
apply (rule_tac x="Re s" in exI) |
|
1287 |
apply (auto simp: g sums_Re) |
|
1288 |
apply (metis fg g) |
|
1289 |
done |
|
1290 |
qed |
|
1291 |
||
1292 |
lemma summable_complex_of_real [simp]: |
|
1293 |
"summable (\<lambda>n. complex_of_real (f n)) = summable f" |
|
1294 |
apply (auto simp: Series.summable_Cauchy) |
|
1295 |
apply (drule_tac x = e in spec, auto) |
|
1296 |
apply (rule_tac x=N in exI) |
|
1297 |
apply (auto simp: of_real_setsum [symmetric]) |
|
1298 |
done |
|
1299 |
||
1300 |
||
1301 |
||
1302 |
||
1303 |
lemma setsum_Suc_reindex: |
|
1304 |
fixes f :: "nat \<Rightarrow> 'a::ab_group_add" |
|
1305 |
shows "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}" |
|
1306 |
by (induct n) auto |
|
1307 |
||
1308 |
||
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
56215
diff
changeset
|
1309 |
text{*A kind of complex Taylor theorem.*} |
56215 | 1310 |
lemma complex_taylor: |
1311 |
assumes s: "convex s" |
|
1312 |
and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)" |
|
1313 |
and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B" |
|
1314 |
and w: "w \<in> s" |
|
1315 |
and z: "z \<in> s" |
|
1316 |
shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / of_nat (fact i))) |
|
1317 |
\<le> B * cmod(z - w)^(Suc n) / fact n" |
|
1318 |
proof - |
|
1319 |
have wzs: "closed_segment w z \<subseteq> s" using assms |
|
1320 |
by (metis convex_contains_segment) |
|
1321 |
{ fix u |
|
1322 |
assume "u \<in> closed_segment w z" |
|
1323 |
then have "u \<in> s" |
|
1324 |
by (metis wzs subsetD) |
|
1325 |
have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / of_nat (fact i) + |
|
1326 |
f (Suc i) u * (z-u)^i / of_nat (fact i)) = |
|
1327 |
f (Suc n) u * (z-u) ^ n / of_nat (fact n)" |
|
1328 |
proof (induction n) |
|
1329 |
case 0 show ?case by simp |
|
1330 |
next |
|
1331 |
case (Suc n) |
|
1332 |
have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / of_nat (fact i) + |
|
1333 |
f (Suc i) u * (z-u) ^ i / of_nat (fact i)) = |
|
1334 |
f (Suc n) u * (z-u) ^ n / of_nat (fact n) + |
|
1335 |
f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / of_nat (fact (Suc n)) - |
|
1336 |
f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / of_nat (fact (Suc n))" |
|
1337 |
using Suc by simp |
|
1338 |
also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n))" |
|
1339 |
proof - |
|
1340 |
have "of_nat(fact(Suc n)) * |
|
1341 |
(f(Suc n) u *(z-u) ^ n / of_nat(fact n) + |
|
1342 |
f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / of_nat(fact(Suc n)) - |
|
1343 |
f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / of_nat(fact(Suc n))) = |
|
1344 |
(of_nat(fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / of_nat(fact n) + |
|
1345 |
(of_nat(fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / of_nat(fact(Suc n))) - |
|
1346 |
(of_nat(fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / of_nat(fact(Suc n))" |
|
1347 |
by (simp add: algebra_simps del: fact_Suc) |
|
1348 |
also have "... = |
|
1349 |
(of_nat (fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / of_nat (fact n) + |
|
1350 |
(f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - |
|
1351 |
(f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" |
|
1352 |
by (simp del: fact_Suc) |
|
1353 |
also have "... = |
|
1354 |
(of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) + |
|
1355 |
(f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - |
|
1356 |
(f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" |
|
1357 |
by (simp only: fact_Suc of_nat_mult mult_ac) simp |
|
1358 |
also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)" |
|
1359 |
by (simp add: algebra_simps) |
|
1360 |
finally show ?thesis |
|
1361 |
by (simp add: mult_left_cancel [where c = "of_nat (fact (Suc n))", THEN iffD1] del: fact_Suc) |
|
1362 |
qed |
|
1363 |
finally show ?case . |
|
1364 |
qed |
|
1365 |
then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / of_nat (fact i))) |
|
1366 |
has_field_derivative f (Suc n) u * (z-u) ^ n / of_nat (fact n)) |
|
1367 |
(at u within s)" |
|
1368 |
apply (intro DERIV_intros DERIV_power[THEN DERIV_cong]) |
|
1369 |
apply (blast intro: assms `u \<in> s`) |
|
1370 |
apply (rule refl)+ |
|
1371 |
apply (auto simp: field_simps) |
|
1372 |
done |
|
1373 |
} note sum_deriv = this |
|
1374 |
{ fix u |
|
1375 |
assume u: "u \<in> closed_segment w z" |
|
1376 |
then have us: "u \<in> s" |
|
1377 |
by (metis wzs subsetD) |
|
1378 |
have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n" |
|
1379 |
by (metis norm_minus_commute order_refl) |
|
1380 |
also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n" |
|
1381 |
by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u]) |
|
1382 |
also have "... \<le> B * cmod (z - w) ^ n" |
|
1383 |
by (metis norm_ge_zero zero_le_power mult_right_mono B [OF us]) |
|
1384 |
finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" . |
|
1385 |
} note cmod_bound = this |
|
1386 |
have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)) = (\<Sum>i\<le>n. (f i z / of_nat (fact i)) * 0 ^ i)" |
|
1387 |
by simp |
|
1388 |
also have "\<dots> = f 0 z / of_nat (fact 0)" |
|
1389 |
by (subst setsum_zero_power) simp |
|
1390 |
finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i))) |
|
1391 |
\<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i)) - |
|
1392 |
(\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)))" |
|
1393 |
by (simp add: norm_minus_commute) |
|
1394 |
also have "... \<le> B * cmod (z - w) ^ n / real_of_nat (fact n) * cmod (w - z)" |
|
1395 |
apply (rule complex_differentiable_bound |
|
1396 |
[where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / of_nat(fact n)" |
|
1397 |
and s = "closed_segment w z", OF convex_segment]) |
|
1398 |
apply (auto simp: ends_in_segment real_of_nat_def DERIV_subset [OF sum_deriv wzs] |
|
1399 |
norm_divide norm_mult norm_power divide_le_cancel cmod_bound) |
|
1400 |
done |
|
1401 |
also have "... \<le> B * cmod (z - w) ^ Suc n / real (fact n)" |
|
1402 |
by (simp add: algebra_simps norm_minus_commute real_of_nat_def) |
|
1403 |
finally show ?thesis . |
|
1404 |
qed |
|
1405 |
||
1406 |
end |