| author | haftmann | 
| Thu, 29 Dec 2011 13:42:21 +0100 | |
| changeset 46034 | 773c0c4994df | 
| parent 41550 | efa734d9b221 | 
| permissions | -rw-r--r-- | 
| 19453 | 1  | 
(* Title: HOL/Matrix/LP.thy  | 
2  | 
Author: Steven Obua  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
theory LP  | 
|
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
37884 
diff
changeset
 | 
6  | 
imports Main "~~/src/HOL/Library/Lattice_Algebras"  | 
| 19453 | 7  | 
begin  | 
8  | 
||
| 
37884
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
9  | 
lemma le_add_right_mono:  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
10  | 
assumes  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
11  | 
"a <= b + (c::'a::ordered_ab_group_add)"  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
12  | 
"c <= d"  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
13  | 
shows "a <= b + d"  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
14  | 
apply (rule_tac order_trans[where y = "b+c"])  | 
| 41550 | 15  | 
apply (simp_all add: assms)  | 
| 
37884
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
16  | 
done  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
17  | 
|
| 19453 | 18  | 
lemma linprog_dual_estimate:  | 
19  | 
assumes  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32491 
diff
changeset
 | 
20  | 
"A * x \<le> (b::'a::lattice_ring)"  | 
| 19453 | 21  | 
"0 \<le> y"  | 
22  | 
"abs (A - A') \<le> \<delta>A"  | 
|
23  | 
"b \<le> b'"  | 
|
24  | 
"abs (c - c') \<le> \<delta>c"  | 
|
25  | 
"abs x \<le> r"  | 
|
26  | 
shows  | 
|
27  | 
"c * x \<le> y * b' + (y * \<delta>A + abs (y * A' - c') + \<delta>c) * r"  | 
|
28  | 
proof -  | 
|
| 41550 | 29  | 
from assms have 1: "y * b <= y * b'" by (simp add: mult_left_mono)  | 
30  | 
from assms have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono)  | 
|
| 29667 | 31  | 
have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: algebra_simps)  | 
| 19453 | 32  | 
from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp  | 
33  | 
have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"  | 
|
34  | 
by (simp only: 4 estimate_by_abs)  | 
|
35  | 
have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x"  | 
|
36  | 
by (simp add: abs_le_mult)  | 
|
37  | 
have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x"  | 
|
38  | 
by(rule abs_triangle_ineq [THEN mult_right_mono]) simp  | 
|
39  | 
have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <= (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x"  | 
|
40  | 
by (simp add: abs_triangle_ineq mult_right_mono)  | 
|
41  | 
have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x"  | 
|
42  | 
by (simp add: abs_le_mult mult_right_mono)  | 
|
| 29667 | 43  | 
have 10: "c'-c = -(c-c')" by (simp add: algebra_simps)  | 
| 19453 | 44  | 
have 11: "abs (c'-c) = abs (c-c')"  | 
45  | 
by (subst 10, subst abs_minus_cancel, simp)  | 
|
46  | 
have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x"  | 
|
| 41550 | 47  | 
by (simp add: 11 assms mult_right_mono)  | 
| 19453 | 48  | 
have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x"  | 
| 41550 | 49  | 
by (simp add: assms mult_right_mono mult_left_mono)  | 
| 19453 | 50  | 
have r: "(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"  | 
51  | 
apply (rule mult_left_mono)  | 
|
| 41550 | 52  | 
apply (simp add: assms)  | 
| 19453 | 53  | 
apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+  | 
54  | 
apply (rule mult_left_mono[of "0" "\<delta>A", simplified])  | 
|
55  | 
apply (simp_all)  | 
|
| 41550 | 56  | 
apply (rule order_trans[where y="abs (A-A')"], simp_all add: assms)  | 
57  | 
apply (rule order_trans[where y="abs (c-c')"], simp_all add: assms)  | 
|
| 19453 | 58  | 
done  | 
59  | 
from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"  | 
|
60  | 
by (simp)  | 
|
| 
37884
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
61  | 
show ?thesis  | 
| 
 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 
haftmann 
parents: 
35032 
diff
changeset
 | 
62  | 
apply (rule le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"])  | 
| 41550 | 63  | 
apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified assms]])  | 
| 19453 | 64  | 
done  | 
65  | 
qed  | 
|
66  | 
||
67  | 
lemma le_ge_imp_abs_diff_1:  | 
|
68  | 
assumes  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32491 
diff
changeset
 | 
69  | 
"A1 <= (A::'a::lattice_ring)"  | 
| 19453 | 70  | 
"A <= A2"  | 
71  | 
shows "abs (A-A1) <= A2-A1"  | 
|
72  | 
proof -  | 
|
73  | 
have "0 <= A - A1"  | 
|
74  | 
proof -  | 
|
75  | 
have 1: "A - A1 = A + (- A1)" by simp  | 
|
| 41550 | 76  | 
show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified assms])  | 
| 19453 | 77  | 
qed  | 
78  | 
then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg)  | 
|
| 41550 | 79  | 
with assms show "abs (A-A1) <= (A2-A1)" by simp  | 
| 19453 | 80  | 
qed  | 
81  | 
||
82  | 
lemma mult_le_prts:  | 
|
83  | 
assumes  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32491 
diff
changeset
 | 
84  | 
"a1 <= (a::'a::lattice_ring)"  | 
| 19453 | 85  | 
"a <= a2"  | 
86  | 
"b1 <= b"  | 
|
87  | 
"b <= b2"  | 
|
88  | 
shows  | 
|
89  | 
"a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"  | 
|
90  | 
proof -  | 
|
91  | 
have "a * b = (pprt a + nprt a) * (pprt b + nprt b)"  | 
|
92  | 
apply (subst prts[symmetric])+  | 
|
93  | 
apply simp  | 
|
94  | 
done  | 
|
95  | 
then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"  | 
|
| 29667 | 96  | 
by (simp add: algebra_simps)  | 
| 19453 | 97  | 
moreover have "pprt a * pprt b <= pprt a2 * pprt b2"  | 
| 41550 | 98  | 
by (simp_all add: assms mult_mono)  | 
| 19453 | 99  | 
moreover have "pprt a * nprt b <= pprt a1 * nprt b2"  | 
100  | 
proof -  | 
|
101  | 
have "pprt a * nprt b <= pprt a * nprt b2"  | 
|
| 41550 | 102  | 
by (simp add: mult_left_mono assms)  | 
| 19453 | 103  | 
moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"  | 
| 41550 | 104  | 
by (simp add: mult_right_mono_neg assms)  | 
| 19453 | 105  | 
ultimately show ?thesis  | 
106  | 
by simp  | 
|
107  | 
qed  | 
|
108  | 
moreover have "nprt a * pprt b <= nprt a2 * pprt b1"  | 
|
109  | 
proof -  | 
|
110  | 
have "nprt a * pprt b <= nprt a2 * pprt b"  | 
|
| 41550 | 111  | 
by (simp add: mult_right_mono assms)  | 
| 19453 | 112  | 
moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"  | 
| 41550 | 113  | 
by (simp add: mult_left_mono_neg assms)  | 
| 19453 | 114  | 
ultimately show ?thesis  | 
115  | 
by simp  | 
|
116  | 
qed  | 
|
117  | 
moreover have "nprt a * nprt b <= nprt a1 * nprt b1"  | 
|
118  | 
proof -  | 
|
119  | 
have "nprt a * nprt b <= nprt a * nprt b1"  | 
|
| 41550 | 120  | 
by (simp add: mult_left_mono_neg assms)  | 
| 19453 | 121  | 
moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"  | 
| 41550 | 122  | 
by (simp add: mult_right_mono_neg assms)  | 
| 19453 | 123  | 
ultimately show ?thesis  | 
124  | 
by simp  | 
|
125  | 
qed  | 
|
126  | 
ultimately show ?thesis  | 
|
127  | 
by - (rule add_mono | simp)+  | 
|
128  | 
qed  | 
|
129  | 
||
130  | 
lemma mult_le_dual_prts:  | 
|
131  | 
assumes  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32491 
diff
changeset
 | 
132  | 
"A * x \<le> (b::'a::lattice_ring)"  | 
| 19453 | 133  | 
"0 \<le> y"  | 
134  | 
"A1 \<le> A"  | 
|
135  | 
"A \<le> A2"  | 
|
136  | 
"c1 \<le> c"  | 
|
137  | 
"c \<le> c2"  | 
|
138  | 
"r1 \<le> x"  | 
|
139  | 
"x \<le> r2"  | 
|
140  | 
shows  | 
|
141  | 
"c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)"  | 
|
142  | 
(is "_ <= _ + ?C")  | 
|
143  | 
proof -  | 
|
| 41550 | 144  | 
from assms have "y * (A * x) <= y * b" by (simp add: mult_left_mono)  | 
| 29667 | 145  | 
moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: algebra_simps)  | 
| 19453 | 146  | 
ultimately have "c * x + (y * A - c) * x <= y * b" by simp  | 
147  | 
then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq)  | 
|
| 29667 | 148  | 
then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps)  | 
| 19453 | 149  | 
have s2: "c - y * A <= c2 - y * A1"  | 
| 41550 | 150  | 
by (simp add: diff_minus assms add_mono mult_left_mono)  | 
| 19453 | 151  | 
have s1: "c1 - y * A2 <= c - y * A"  | 
| 41550 | 152  | 
by (simp add: diff_minus assms add_mono mult_left_mono)  | 
| 19453 | 153  | 
have prts: "(c - y * A) * x <= ?C"  | 
154  | 
apply (simp add: Let_def)  | 
|
155  | 
apply (rule mult_le_prts)  | 
|
| 41550 | 156  | 
apply (simp_all add: assms s1 s2)  | 
| 19453 | 157  | 
done  | 
158  | 
then have "y * b + (c - y * A) * x <= y * b + ?C"  | 
|
159  | 
by simp  | 
|
160  | 
with cx show ?thesis  | 
|
161  | 
by(simp only:)  | 
|
162  | 
qed  | 
|
163  | 
||
164  | 
end  |