src/HOL/Hyperreal/Log.thy
author paulson
Tue Feb 24 16:38:51 2004 +0100 (2004-02-24)
changeset 14411 7851e526b8b7
parent 12224 02df7cbe7d25
child 14430 5cb24165a2e1
permissions -rw-r--r--
converted Hyperreal/Log and Hyperreal/HLog to Isar scripts
paulson@12224
     1
(*  Title       : Log.thy
paulson@12224
     2
    Author      : Jacques D. Fleuriot
paulson@12224
     3
    Copyright   : 2000,2001 University of Edinburgh
paulson@12224
     4
*)
paulson@12224
     5
paulson@14411
     6
header{*Logarithms: Standard Version*}
paulson@14411
     7
paulson@14411
     8
theory Log = Transcendental:
paulson@12224
     9
paulson@12224
    10
constdefs
paulson@12224
    11
paulson@14411
    12
  powr  :: "[real,real] => real"     (infixr "powr" 80)
paulson@14411
    13
    --{*exponentation with real exponent*}
paulson@12224
    14
    "x powr a == exp(a * ln x)"
paulson@12224
    15
paulson@14411
    16
  log :: "[real,real] => real"
paulson@14411
    17
    --{*logarithm of @[term x} to base @[term a}*}
paulson@12224
    18
    "log a x == ln x / ln a"
paulson@12224
    19
paulson@14411
    20
paulson@14411
    21
paulson@14411
    22
lemma powr_one_eq_one [simp]: "1 powr a = 1"
paulson@14411
    23
by (simp add: powr_def)
paulson@14411
    24
paulson@14411
    25
lemma powr_zero_eq_one [simp]: "x powr 0 = 1"
paulson@14411
    26
by (simp add: powr_def)
paulson@14411
    27
paulson@14411
    28
lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)"
paulson@14411
    29
by (simp add: powr_def)
paulson@14411
    30
declare powr_one_gt_zero_iff [THEN iffD2, simp]
paulson@14411
    31
paulson@14411
    32
lemma powr_mult: 
paulson@14411
    33
      "[| 0 < x; 0 < y |] ==> (x * y) powr a = (x powr a) * (y powr a)"
paulson@14411
    34
by (simp add: powr_def exp_add [symmetric] ln_mult right_distrib)
paulson@14411
    35
paulson@14411
    36
lemma powr_gt_zero [simp]: "0 < x powr a"
paulson@14411
    37
by (simp add: powr_def)
paulson@14411
    38
paulson@14411
    39
lemma powr_not_zero [simp]: "x powr a \<noteq> 0"
paulson@14411
    40
by (simp add: powr_def)
paulson@14411
    41
paulson@14411
    42
lemma powr_divide:
paulson@14411
    43
     "[| 0 < x; 0 < y |] ==> (x / y) powr a = (x powr a)/(y powr a)"
paulson@14411
    44
apply (simp add: divide_inverse_zero positive_imp_inverse_positive powr_mult)
paulson@14411
    45
apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
paulson@14411
    46
done
paulson@14411
    47
paulson@14411
    48
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
paulson@14411
    49
by (simp add: powr_def exp_add [symmetric] left_distrib)
paulson@14411
    50
paulson@14411
    51
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
paulson@14411
    52
by (simp add: powr_def)
paulson@14411
    53
paulson@14411
    54
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
paulson@14411
    55
by (simp add: powr_powr real_mult_commute)
paulson@14411
    56
paulson@14411
    57
lemma powr_minus: "x powr (-a) = inverse (x powr a)"
paulson@14411
    58
by (simp add: powr_def exp_minus [symmetric])
paulson@14411
    59
paulson@14411
    60
lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)"
paulson@14411
    61
by (simp add: divide_inverse_zero powr_minus)
paulson@14411
    62
paulson@14411
    63
lemma powr_less_mono: "[| a < b; 1 < x |] ==> x powr a < x powr b"
paulson@14411
    64
by (simp add: powr_def)
paulson@14411
    65
paulson@14411
    66
lemma powr_less_cancel: "[| x powr a < x powr b; 1 < x |] ==> a < b"
paulson@14411
    67
by (simp add: powr_def)
paulson@14411
    68
paulson@14411
    69
lemma powr_less_cancel_iff [simp]: "1 < x ==> (x powr a < x powr b) = (a < b)"
paulson@14411
    70
by (blast intro: powr_less_cancel powr_less_mono)
paulson@14411
    71
paulson@14411
    72
lemma powr_le_cancel_iff [simp]: "1 < x ==> (x powr a \<le> x powr b) = (a \<le> b)"
paulson@14411
    73
by (simp add: linorder_not_less [symmetric])
paulson@14411
    74
paulson@14411
    75
lemma log_ln: "ln x = log (exp(1)) x"
paulson@14411
    76
by (simp add: log_def)
paulson@14411
    77
paulson@14411
    78
lemma powr_log_cancel [simp]:
paulson@14411
    79
     "[| 0 < a; a \<noteq> 1; 0 < x |] ==> a powr (log a x) = x"
paulson@14411
    80
by (simp add: powr_def log_def)
paulson@14411
    81
paulson@14411
    82
lemma log_powr_cancel [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a (a powr y) = y"
paulson@14411
    83
by (simp add: log_def powr_def)
paulson@14411
    84
paulson@14411
    85
lemma log_mult: 
paulson@14411
    86
     "[| 0 < a; a \<noteq> 1; 0 < x; 0 < y |]  
paulson@14411
    87
      ==> log a (x * y) = log a x + log a y"
paulson@14411
    88
by (simp add: log_def ln_mult divide_inverse_zero left_distrib)
paulson@14411
    89
paulson@14411
    90
lemma log_eq_div_ln_mult_log: 
paulson@14411
    91
     "[| 0 < a; a \<noteq> 1; 0 < b; b \<noteq> 1; 0 < x |]  
paulson@14411
    92
      ==> log a x = (ln b/ln a) * log b x"
paulson@14411
    93
by (simp add: log_def divide_inverse_zero)
paulson@14411
    94
paulson@14411
    95
text{*Base 10 logarithms*}
paulson@14411
    96
lemma log_base_10_eq1: "0 < x ==> log 10 x = (ln (exp 1) / ln 10) * ln x"
paulson@14411
    97
by (simp add: log_def)
paulson@14411
    98
paulson@14411
    99
lemma log_base_10_eq2: "0 < x ==> log 10 x = (log 10 (exp 1)) * ln x"
paulson@14411
   100
by (simp add: log_def)
paulson@14411
   101
paulson@14411
   102
lemma log_one [simp]: "log a 1 = 0"
paulson@14411
   103
by (simp add: log_def)
paulson@14411
   104
paulson@14411
   105
lemma log_eq_one [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a a = 1"
paulson@14411
   106
by (simp add: log_def)
paulson@14411
   107
paulson@14411
   108
lemma log_inverse:
paulson@14411
   109
     "[| 0 < a; a \<noteq> 1; 0 < x |] ==> log a (inverse x) = - log a x"
paulson@14411
   110
apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1])
paulson@14411
   111
apply (simp add: log_mult [symmetric])
paulson@14411
   112
done
paulson@14411
   113
paulson@14411
   114
lemma log_divide:
paulson@14411
   115
     "[|0 < a; a \<noteq> 1; 0 < x; 0 < y|] ==> log a (x/y) = log a x - log a y"
paulson@14411
   116
by (simp add: log_mult divide_inverse_zero log_inverse)
paulson@14411
   117
paulson@14411
   118
lemma log_less_cancel_iff [simp]:
paulson@14411
   119
     "[| 1 < a; 0 < x; 0 < y |] ==> (log a x < log a y) = (x < y)"
paulson@14411
   120
apply safe
paulson@14411
   121
apply (rule_tac [2] powr_less_cancel)
paulson@14411
   122
apply (drule_tac a = "log a x" in powr_less_mono, auto)
paulson@14411
   123
done
paulson@14411
   124
paulson@14411
   125
lemma log_le_cancel_iff [simp]:
paulson@14411
   126
     "[| 1 < a; 0 < x; 0 < y |] ==> (log a x \<le> log a y) = (x \<le> y)"
paulson@14411
   127
by (simp add: linorder_not_less [symmetric])
paulson@14411
   128
paulson@14411
   129
paulson@14411
   130
paulson@14411
   131
ML
paulson@14411
   132
{*
paulson@14411
   133
val powr_one_eq_one = thm "powr_one_eq_one";
paulson@14411
   134
val powr_zero_eq_one = thm "powr_zero_eq_one";
paulson@14411
   135
val powr_one_gt_zero_iff = thm "powr_one_gt_zero_iff";
paulson@14411
   136
val powr_mult = thm "powr_mult";
paulson@14411
   137
val powr_gt_zero = thm "powr_gt_zero";
paulson@14411
   138
val powr_not_zero = thm "powr_not_zero";
paulson@14411
   139
val powr_divide = thm "powr_divide";
paulson@14411
   140
val powr_add = thm "powr_add";
paulson@14411
   141
val powr_powr = thm "powr_powr";
paulson@14411
   142
val powr_powr_swap = thm "powr_powr_swap";
paulson@14411
   143
val powr_minus = thm "powr_minus";
paulson@14411
   144
val powr_minus_divide = thm "powr_minus_divide";
paulson@14411
   145
val powr_less_mono = thm "powr_less_mono";
paulson@14411
   146
val powr_less_cancel = thm "powr_less_cancel";
paulson@14411
   147
val powr_less_cancel_iff = thm "powr_less_cancel_iff";
paulson@14411
   148
val powr_le_cancel_iff = thm "powr_le_cancel_iff";
paulson@14411
   149
val log_ln = thm "log_ln";
paulson@14411
   150
val powr_log_cancel = thm "powr_log_cancel";
paulson@14411
   151
val log_powr_cancel = thm "log_powr_cancel";
paulson@14411
   152
val log_mult = thm "log_mult";
paulson@14411
   153
val log_eq_div_ln_mult_log = thm "log_eq_div_ln_mult_log";
paulson@14411
   154
val log_base_10_eq1 = thm "log_base_10_eq1";
paulson@14411
   155
val log_base_10_eq2 = thm "log_base_10_eq2";
paulson@14411
   156
val log_one = thm "log_one";
paulson@14411
   157
val log_eq_one = thm "log_eq_one";
paulson@14411
   158
val log_inverse = thm "log_inverse";
paulson@14411
   159
val log_divide = thm "log_divide";
paulson@14411
   160
val log_less_cancel_iff = thm "log_less_cancel_iff";
paulson@14411
   161
val log_le_cancel_iff = thm "log_le_cancel_iff";
paulson@14411
   162
*}
paulson@14411
   163
paulson@12224
   164
end