227

1 
(* Title: CCL/wfd.thy

0

2 
ID: $Id$


3 
Author: Martin Coen, Cambridge University Computer Laboratory


4 
Copyright 1993 University of Cambridge


5 


6 
Wellfounded relations in CCL.


7 
*)


8 


9 
Wfd = Trancl + Type +


10 


11 
consts


12 
(*** Predicates ***)


13 
Wfd :: "[i set] => o"


14 
(*** Relations ***)


15 
wf :: "[i set] => i set"


16 
wmap :: "[i=>i,i set] => i set"


17 
"**" :: "[i set,i set] => i set" (infixl 70)


18 
NatPR :: "i set"


19 
ListPR :: "i set => i set"


20 


21 
rules


22 


23 
Wfd_def


24 
"Wfd(R) == ALL P.(ALL x.(ALL y.<y,x> : R > y:P) > x:P) > (ALL a.a:P)"


25 


26 
wf_def "wf(R) == {x.x:R & Wfd(R)}"


27 


28 
wmap_def "wmap(f,R) == {p. EX x y. p=<x,y> & <f(x),f(y)> : R}"


29 
lex_def


30 
"ra**rb == {p. EX a a' b b'.p = <<a,b>,<a',b'>> & (<a,a'> : ra  (a=a' & <b,b'> : rb))}"


31 


32 
NatPR_def "NatPR == {p.EX x:Nat. p=<x,succ(x)>}"

289

33 
ListPR_def "ListPR(A) == {p.EX h:A.EX t:List(A). p=<t,h$t>}"

0

34 
end
