| author | paulson <lp15@cam.ac.uk> | 
| Thu, 10 Apr 2025 17:07:18 +0100 | |
| changeset 82470 | 785615e37846 | 
| parent 81125 | ec121999a9cb | 
| permissions | -rw-r--r-- | 
| 63575 | 1 | (* Title: HOL/Complete_Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Author: Markus Wenzel | |
| 5 | Author: Florian Haftmann | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 6 | Author: Viorel Preoteasa (Complete Distributive Lattices) | 
| 63575 | 7 | *) | 
| 11979 | 8 | |
| 60758 | 9 | section \<open>Complete lattices\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 10 | |
| 44860 
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
 haftmann parents: 
44845diff
changeset | 11 | theory Complete_Lattices | 
| 63575 | 12 | imports Fun | 
| 32139 | 13 | begin | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 14 | |
| 60758 | 15 | subsection \<open>Syntactic infimum and supremum operations\<close> | 
| 32879 | 16 | |
| 17 | class Inf = | |
| 81125 | 18 | fixes Inf :: "'a set \<Rightarrow> 'a" (\<open>(\<open>open_block notation=\<open>prefix \<Sqinter>\<close>\<close>\<Sqinter> _)\<close> [900] 900) | 
| 32879 | 19 | |
| 20 | class Sup = | |
| 81125 | 21 | fixes Sup :: "'a set \<Rightarrow> 'a" (\<open>(\<open>open_block notation=\<open>prefix \<Squnion>\<close>\<close>\<Squnion> _)\<close> [900] 900) | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 22 | |
| 68801 
c898c2b1fd58
deprecation of ASCII syntax for indexed big operators
 haftmann parents: 
68797diff
changeset | 23 | syntax | 
| 80934 | 24 | "_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder INF\<close>\<close>INF _./ _)\<close> [0, 10] 10) | 
| 25 | "_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder INF\<close>\<close>INF _\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 26 | "_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder SUP\<close>\<close>SUP _./ _)\<close> [0, 10] 10) | |
| 27 | "_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder SUP\<close>\<close>SUP _\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 28 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 29 | syntax | 
| 80934 | 30 | "_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Sqinter>\<close>\<close>\<Sqinter>_./ _)\<close> [0, 10] 10) | 
| 31 | "_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Sqinter>\<close>\<close>\<Sqinter>_\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 32 | "_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_./ _)\<close> [0, 10] 10) | |
| 33 | "_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 34 | |
| 80760 | 35 | syntax_consts | 
| 36 | "_INF1" "_INF" \<rightleftharpoons> Inf and | |
| 37 | "_SUP1" "_SUP" \<rightleftharpoons> Sup | |
| 38 | ||
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 39 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 40 | "\<Sqinter>x y. f" \<rightleftharpoons> "\<Sqinter>x. \<Sqinter>y. f" | 
| 69745 | 41 | "\<Sqinter>x. f" \<rightleftharpoons> "\<Sqinter>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 42 | "\<Sqinter>x\<in>A. f" \<rightleftharpoons> "CONST Inf ((\<lambda>x. f) ` A)" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 43 | "\<Squnion>x y. f" \<rightleftharpoons> "\<Squnion>x. \<Squnion>y. f" | 
| 69745 | 44 | "\<Squnion>x. f" \<rightleftharpoons> "\<Squnion>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 45 | "\<Squnion>x\<in>A. f" \<rightleftharpoons> "CONST Sup ((\<lambda>x. f) ` A)" | 
| 46691 | 46 | |
| 68797 | 47 | context Inf | 
| 48 | begin | |
| 49 | ||
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 50 | lemma INF_image: "\<Sqinter> (g ` f ` A) = \<Sqinter> ((g \<circ> f) ` A)" | 
| 68797 | 51 | by (simp add: image_comp) | 
| 52 | ||
| 53 | lemma INF_identity_eq [simp]: "(\<Sqinter>x\<in>A. x) = \<Sqinter>A" | |
| 54 | by simp | |
| 55 | ||
| 56 | lemma INF_id_eq [simp]: "\<Sqinter>(id ` A) = \<Sqinter>A" | |
| 57 | by simp | |
| 58 | ||
| 59 | lemma INF_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)" | |
| 60 | by (simp add: image_def) | |
| 61 | ||
| 69768 | 62 | lemma INF_cong_simp: | 
| 68797 | 63 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)" | 
| 64 | unfolding simp_implies_def by (fact INF_cong) | |
| 65 | ||
| 66 | end | |
| 67 | ||
| 68 | context Sup | |
| 69 | begin | |
| 70 | ||
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 71 | lemma SUP_image: "\<Squnion> (g ` f ` A) = \<Squnion> ((g \<circ> f) ` A)" | 
| 69164 | 72 | by(fact Inf.INF_image) | 
| 68797 | 73 | |
| 74 | lemma SUP_identity_eq [simp]: "(\<Squnion>x\<in>A. x) = \<Squnion>A" | |
| 69164 | 75 | by(fact Inf.INF_identity_eq) | 
| 68797 | 76 | |
| 77 | lemma SUP_id_eq [simp]: "\<Squnion>(id ` A) = \<Squnion>A" | |
| 69164 | 78 | by(fact Inf.INF_id_eq) | 
| 68797 | 79 | |
| 80 | lemma SUP_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)" | |
| 69164 | 81 | by (fact Inf.INF_cong) | 
| 68797 | 82 | |
| 69768 | 83 | lemma SUP_cong_simp: | 
| 68797 | 84 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69275diff
changeset | 85 | by (fact Inf.INF_cong_simp) | 
| 68797 | 86 | |
| 87 | end | |
| 88 | ||
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 89 | |
| 60758 | 90 | subsection \<open>Abstract complete lattices\<close> | 
| 32139 | 91 | |
| 60758 | 92 | text \<open>A complete lattice always has a bottom and a top, | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 93 | so we include them into the following type class, | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 94 | along with assumptions that define bottom and top | 
| 60758 | 95 | in terms of infimum and supremum.\<close> | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 96 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 97 | class complete_lattice = lattice + Inf + Sup + bot + top + | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 98 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<le> x" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 99 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> \<Sqinter>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 100 | and Sup_upper: "x \<in> A \<Longrightarrow> x \<le> \<Squnion>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 101 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> \<Squnion>A \<le> z" | 
| 63575 | 102 |     and Inf_empty [simp]: "\<Sqinter>{} = \<top>"
 | 
| 103 |     and Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 104 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 105 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 106 | subclass bounded_lattice | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 107 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 108 | fix a | 
| 63575 | 109 | show "\<bottom> \<le> a" | 
| 110 | by (auto intro: Sup_least simp only: Sup_empty [symmetric]) | |
| 111 | show "a \<le> \<top>" | |
| 112 | by (auto intro: Inf_greatest simp only: Inf_empty [symmetric]) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 113 | qed | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 114 | |
| 67399 | 115 | lemma dual_complete_lattice: "class.complete_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>" | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 116 | by (auto intro!: class.complete_lattice.intro dual_lattice) | 
| 63575 | 117 | (unfold_locales, (fact Inf_empty Sup_empty Sup_upper Sup_least Inf_lower Inf_greatest)+) | 
| 32678 | 118 | |
| 44040 | 119 | end | 
| 120 | ||
| 121 | context complete_lattice | |
| 122 | begin | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 123 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 124 | lemma Sup_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 125 | "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x" | 
| 73411 | 126 | by (blast intro: order.antisym Sup_least Sup_upper) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 127 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 128 | lemma Inf_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 129 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x" | 
| 73411 | 130 | by (blast intro: order.antisym Inf_greatest Inf_lower) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 131 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 132 | lemma SUP_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 133 | "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x" | 
| 56166 | 134 | using Sup_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 135 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 136 | lemma INF_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 137 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x" | 
| 56166 | 138 | using Inf_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 139 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 140 | lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> f i" | 
| 56166 | 141 | using Inf_lower [of _ "f ` A"] by simp | 
| 44040 | 142 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 143 | lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<le> f i) \<Longrightarrow> u \<le> (\<Sqinter>i\<in>A. f i)" | 
| 56166 | 144 | using Inf_greatest [of "f ` A"] by auto | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 145 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 146 | lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 56166 | 147 | using Sup_upper [of _ "f ` A"] by simp | 
| 44040 | 148 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 149 | lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<le> u" | 
| 56166 | 150 | using Sup_least [of "f ` A"] by auto | 
| 44040 | 151 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 152 | lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<le> v \<Longrightarrow> \<Sqinter>A \<le> v" | 
| 44040 | 153 | using Inf_lower [of u A] by auto | 
| 154 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 155 | lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<le> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> u" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 156 | using INF_lower [of i A f] by auto | 
| 44040 | 157 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 158 | lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<le> u \<Longrightarrow> v \<le> \<Squnion>A" | 
| 44040 | 159 | using Sup_upper [of u A] by auto | 
| 160 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 161 | lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<le> f i \<Longrightarrow> u \<le> (\<Squnion>i\<in>A. f i)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 162 | using SUP_upper [of i A f] by auto | 
| 44040 | 163 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 164 | lemma le_Inf_iff: "b \<le> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<le> a)" | 
| 44040 | 165 | by (auto intro: Inf_greatest dest: Inf_lower) | 
| 166 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 167 | lemma le_INF_iff: "u \<le> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<le> f i)" | 
| 56166 | 168 | using le_Inf_iff [of _ "f ` A"] by simp | 
| 44040 | 169 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 170 | lemma Sup_le_iff: "\<Squnion>A \<le> b \<longleftrightarrow> (\<forall>a\<in>A. a \<le> b)" | 
| 44040 | 171 | by (auto intro: Sup_least dest: Sup_upper) | 
| 172 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 173 | lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<le> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<le> u)" | 
| 56166 | 174 | using Sup_le_iff [of "f ` A"] by simp | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 175 | |
| 69745 | 176 | lemma Inf_insert [simp]: "\<Sqinter>(insert a A) = a \<sqinter> \<Sqinter>A" | 
| 73411 | 177 | by (auto intro: le_infI le_infI1 le_infI2 order.antisym Inf_greatest Inf_lower) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 178 | |
| 71238 | 179 | lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> \<Sqinter>(f ` A)" | 
| 180 | by simp | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 181 | |
| 69745 | 182 | lemma Sup_insert [simp]: "\<Squnion>(insert a A) = a \<squnion> \<Squnion>A" | 
| 73411 | 183 | by (auto intro: le_supI le_supI1 le_supI2 order.antisym Sup_least Sup_upper) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 184 | |
| 71238 | 185 | lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> \<Squnion>(f ` A)" | 
| 186 | by simp | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 187 | |
| 71238 | 188 | lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
 | 
| 189 | by simp | |
| 44040 | 190 | |
| 71238 | 191 | lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
 | 
| 192 | by simp | |
| 44040 | 193 | |
| 63575 | 194 | lemma Inf_UNIV [simp]: "\<Sqinter>UNIV = \<bottom>" | 
| 73411 | 195 | by (auto intro!: order.antisym Inf_lower) | 
| 41080 | 196 | |
| 63575 | 197 | lemma Sup_UNIV [simp]: "\<Squnion>UNIV = \<top>" | 
| 73411 | 198 | by (auto intro!: order.antisym Sup_upper) | 
| 41080 | 199 | |
| 70949 
581083959358
renamed because of duplicateion to avoid very long qualified names
 nipkow parents: 
70337diff
changeset | 200 | lemma Inf_eq_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 73411 | 201 | by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 44040 | 202 | |
| 70949 
581083959358
renamed because of duplicateion to avoid very long qualified names
 nipkow parents: 
70337diff
changeset | 203 | lemma Sup_eq_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 73411 | 204 | by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 44040 | 205 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 206 | lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<le> \<Sqinter>B" | 
| 43899 | 207 | by (auto intro: Inf_greatest Inf_lower) | 
| 208 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 209 | lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<le> \<Squnion>B" | 
| 43899 | 210 | by (auto intro: Sup_least Sup_upper) | 
| 211 | ||
| 38705 | 212 | lemma Inf_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 213 | assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 214 | shows "\<Sqinter>A \<le> \<Sqinter>B" | 
| 38705 | 215 | proof (rule Inf_greatest) | 
| 216 | fix b assume "b \<in> B" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 217 | with assms obtain a where "a \<in> A" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 218 | from \<open>a \<in> A\<close> have "\<Sqinter>A \<le> a" by (rule Inf_lower) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 219 | with \<open>a \<le> b\<close> show "\<Sqinter>A \<le> b" by auto | 
| 38705 | 220 | qed | 
| 221 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 222 | lemma INF_mono: "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<le> (\<Sqinter>n\<in>B. g n)" | 
| 56166 | 223 | using Inf_mono [of "g ` B" "f ` A"] by auto | 
| 44041 | 224 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 225 | lemma INF_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>A. g x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 226 | by (rule INF_mono) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 227 | |
| 41082 | 228 | lemma Sup_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 229 | assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 230 | shows "\<Squnion>A \<le> \<Squnion>B" | 
| 41082 | 231 | proof (rule Sup_least) | 
| 232 | fix a assume "a \<in> A" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 233 | with assms obtain b where "b \<in> B" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 234 | from \<open>b \<in> B\<close> have "b \<le> \<Squnion>B" by (rule Sup_upper) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 235 | with \<open>a \<le> b\<close> show "a \<le> \<Squnion>B" by auto | 
| 41082 | 236 | qed | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 237 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 238 | lemma SUP_mono: "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<le> (\<Squnion>n\<in>B. g n)" | 
| 56166 | 239 | using Sup_mono [of "f ` A" "g ` B"] by auto | 
| 44041 | 240 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 241 | lemma SUP_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>A. g x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 242 | by (rule SUP_mono) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 243 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 244 | lemma INF_superset_mono: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>B. g x)" | 
| 61799 | 245 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 44041 | 246 | by (blast intro: INF_mono dest: subsetD) | 
| 247 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 248 | lemma SUP_subset_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>B. g x)" | 
| 44041 | 249 | by (blast intro: SUP_mono dest: subsetD) | 
| 250 | ||
| 43868 | 251 | lemma Inf_less_eq: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 252 | assumes "\<And>v. v \<in> A \<Longrightarrow> v \<le> u" | 
| 43868 | 253 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 254 | shows "\<Sqinter>A \<le> u" | 
| 43868 | 255 | proof - | 
| 60758 | 256 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 257 | moreover from \<open>v \<in> A\<close> assms(1) have "v \<le> u" by blast | 
| 43868 | 258 | ultimately show ?thesis by (rule Inf_lower2) | 
| 259 | qed | |
| 260 | ||
| 261 | lemma less_eq_Sup: | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 262 | assumes "\<And>v. v \<in> A \<Longrightarrow> u \<le> v" | 
| 43868 | 263 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 264 | shows "u \<le> \<Squnion>A" | 
| 43868 | 265 | proof - | 
| 60758 | 266 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 267 | moreover from \<open>v \<in> A\<close> assms(1) have "u \<le> v" by blast | 
| 43868 | 268 | ultimately show ?thesis by (rule Sup_upper2) | 
| 269 | qed | |
| 270 | ||
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 271 | lemma INF_eq: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 272 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j" | 
| 63575 | 273 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i" | 
| 68797 | 274 | shows "\<Sqinter>(f ` A) = \<Sqinter>(g ` B)" | 
| 73411 | 275 | by (intro order.antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+ | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 276 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 277 | lemma SUP_eq: | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 278 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j" | 
| 63575 | 279 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i" | 
| 68797 | 280 | shows "\<Squnion>(f ` A) = \<Squnion>(g ` B)" | 
| 73411 | 281 | by (intro order.antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+ | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 282 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 283 | lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<le> \<Sqinter>(A \<inter> B)" | 
| 43868 | 284 | by (auto intro: Inf_greatest Inf_lower) | 
| 285 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 286 | lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<le> \<Squnion>A \<sqinter> \<Squnion>B " | 
| 43868 | 287 | by (auto intro: Sup_least Sup_upper) | 
| 288 | ||
| 289 | lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B" | |
| 73411 | 290 | by (rule order.antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2) | 
| 43868 | 291 | |
| 63575 | 292 | lemma INF_union: "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)" | 
| 73411 | 293 | by (auto intro!: order.antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower) | 
| 44041 | 294 | |
| 43868 | 295 | lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B" | 
| 73411 | 296 | by (rule order.antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2) | 
| 43868 | 297 | |
| 63575 | 298 | lemma SUP_union: "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)" | 
| 73411 | 299 | by (auto intro!: order.antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper) | 
| 44041 | 300 | |
| 301 | lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)" | |
| 73411 | 302 | by (rule order.antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono) | 
| 44041 | 303 | |
| 63575 | 304 | lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" | 
| 305 | (is "?L = ?R") | |
| 73411 | 306 | proof (rule order.antisym) | 
| 63575 | 307 | show "?L \<le> ?R" | 
| 308 | by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono) | |
| 309 | show "?R \<le> ?L" | |
| 310 | by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper) | |
| 44918 | 311 | qed | 
| 44041 | 312 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 313 | lemma Inf_top_conv [simp]: | 
| 43868 | 314 | "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | 
| 315 | "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 316 | proof - | |
| 317 | show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 318 | proof | |
| 319 | assume "\<forall>x\<in>A. x = \<top>" | |
| 320 |     then have "A = {} \<or> A = {\<top>}" by auto
 | |
| 44919 | 321 | then show "\<Sqinter>A = \<top>" by auto | 
| 43868 | 322 | next | 
| 323 | assume "\<Sqinter>A = \<top>" | |
| 324 | show "\<forall>x\<in>A. x = \<top>" | |
| 325 | proof (rule ccontr) | |
| 326 | assume "\<not> (\<forall>x\<in>A. x = \<top>)" | |
| 327 | then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast | |
| 328 | then obtain B where "A = insert x B" by blast | |
| 60758 | 329 | with \<open>\<Sqinter>A = \<top>\<close> \<open>x \<noteq> \<top>\<close> show False by simp | 
| 43868 | 330 | qed | 
| 331 | qed | |
| 332 | then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto | |
| 333 | qed | |
| 334 | ||
| 44918 | 335 | lemma INF_top_conv [simp]: | 
| 56166 | 336 | "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | 
| 337 | "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | |
| 338 | using Inf_top_conv [of "B ` A"] by simp_all | |
| 44041 | 339 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 340 | lemma Sup_bot_conv [simp]: | 
| 63575 | 341 | "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | 
| 342 | "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | |
| 44920 | 343 | using dual_complete_lattice | 
| 344 | by (rule complete_lattice.Inf_top_conv)+ | |
| 43868 | 345 | |
| 44918 | 346 | lemma SUP_bot_conv [simp]: | 
| 63575 | 347 | "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | 
| 348 | "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | |
| 56166 | 349 | using Sup_bot_conv [of "B ` A"] by simp_all | 
| 44041 | 350 | |
| 73411 | 351 | lemma INF_constant: "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
 | 
| 352 | by (auto intro: order.antisym INF_lower INF_greatest) | |
| 353 | ||
| 354 | lemma SUP_constant: "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
 | |
| 355 | by (auto intro: order.antisym SUP_upper SUP_least) | |
| 356 | ||
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 357 | lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
 | 
| 73411 | 358 | by (simp add: INF_constant) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 359 | |
| 43870 | 360 | lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
 | 
| 73411 | 361 | by (simp add: SUP_constant) | 
| 43870 | 362 | |
| 44918 | 363 | lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>" | 
| 44921 | 364 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 365 | |
| 44918 | 366 | lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>" | 
| 44921 | 367 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 368 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 369 | lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)" | 
| 73411 | 370 | by (iprover intro: INF_lower INF_greatest order_trans order.antisym) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 371 | |
| 43870 | 372 | lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)" | 
| 73411 | 373 | by (iprover intro: SUP_upper SUP_least order_trans order.antisym) | 
| 43870 | 374 | |
| 43871 | 375 | lemma INF_absorb: | 
| 43868 | 376 | assumes "k \<in> I" | 
| 377 | shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)" | |
| 378 | proof - | |
| 379 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 380 | then show ?thesis by simp | 
| 43868 | 381 | qed | 
| 382 | ||
| 43871 | 383 | lemma SUP_absorb: | 
| 384 | assumes "k \<in> I" | |
| 385 | shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)" | |
| 386 | proof - | |
| 387 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 388 | then show ?thesis by simp | 
| 43871 | 389 | qed | 
| 390 | ||
| 67613 | 391 | lemma INF_inf_const1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf x (f i)) = inf x (\<Sqinter>i\<in>I. f i)"
 | 
| 73411 | 392 | by (intro order.antisym INF_greatest inf_mono order_refl INF_lower) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 393 | (auto intro: INF_lower2 le_infI2 intro!: INF_mono) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 394 | |
| 67613 | 395 | lemma INF_inf_const2: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf (f i) x) = inf (\<Sqinter>i\<in>I. f i) x"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 396 | using INF_inf_const1[of I x f] by (simp add: inf_commute) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 397 | |
| 43943 | 398 | lemma less_INF_D: | 
| 63575 | 399 | assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" | 
| 400 | shows "y < f i" | |
| 43943 | 401 | proof - | 
| 60758 | 402 | note \<open>y < (\<Sqinter>i\<in>A. f i)\<close> | 
| 403 | also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using \<open>i \<in> A\<close> | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 404 | by (rule INF_lower) | 
| 43943 | 405 | finally show "y < f i" . | 
| 406 | qed | |
| 407 | ||
| 408 | lemma SUP_lessD: | |
| 63575 | 409 | assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" | 
| 410 | shows "f i < y" | |
| 43943 | 411 | proof - | 
| 63575 | 412 | have "f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 413 | using \<open>i \<in> A\<close> by (rule SUP_upper) | |
| 60758 | 414 | also note \<open>(\<Squnion>i\<in>A. f i) < y\<close> | 
| 43943 | 415 | finally show "f i < y" . | 
| 416 | qed | |
| 417 | ||
| 63575 | 418 | lemma INF_UNIV_bool_expand: "(\<Sqinter>b. A b) = A True \<sqinter> A False" | 
| 56166 | 419 | by (simp add: UNIV_bool inf_commute) | 
| 43868 | 420 | |
| 63575 | 421 | lemma SUP_UNIV_bool_expand: "(\<Squnion>b. A b) = A True \<squnion> A False" | 
| 56166 | 422 | by (simp add: UNIV_bool sup_commute) | 
| 43871 | 423 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 424 | lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 425 | by (blast intro: Sup_upper2 Inf_lower ex_in_conv) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 426 | |
| 68797 | 427 | lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> \<Sqinter>(f ` A) \<le> \<Squnion>(f ` A)"
 | 
| 56166 | 428 | using Inf_le_Sup [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 429 | |
| 68797 | 430 | lemma INF_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Sqinter>(f ` I) = x"
 | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 431 | by (auto intro: INF_eqI) | 
| 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 432 | |
| 68797 | 433 | lemma SUP_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Squnion>(f ` I) = x"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 434 | by (auto intro: SUP_eqI) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 435 | |
| 68797 | 436 | lemma INF_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> \<Sqinter>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 73411 | 437 | by (auto intro: INF_eq_const INF_lower order.antisym) | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 438 | |
| 68797 | 439 | lemma SUP_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> \<Squnion>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 73411 | 440 | by (auto intro: SUP_eq_const SUP_upper order.antisym) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 441 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 442 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 443 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 444 | context complete_lattice | 
| 44024 | 445 | begin | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 446 | lemma Sup_Inf_le: "Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)}) \<le> Inf (Sup ` A)"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 447 | by (rule SUP_least, clarify, rule INF_greatest, simp add: INF_lower2 Sup_upper) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 448 | end | 
| 44039 | 449 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 450 | class complete_distrib_lattice = complete_lattice + | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 451 |   assumes Inf_Sup_le: "Inf (Sup ` A) \<le> Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 452 | begin | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 453 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 454 | lemma Inf_Sup: "Inf (Sup ` A) = Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
 | 
| 73411 | 455 | by (rule order.antisym, rule Inf_Sup_le, rule Sup_Inf_le) | 
| 44024 | 456 | |
| 63575 | 457 | subclass distrib_lattice | 
| 458 | proof | |
| 44024 | 459 | fix a b c | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 460 | show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" | 
| 73411 | 461 | proof (rule order.antisym, simp_all, safe) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 462 | show "b \<sqinter> c \<le> a \<squnion> b" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 463 | by (rule le_infI1, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 464 | show "b \<sqinter> c \<le> a \<squnion> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 465 | by (rule le_infI2, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 466 | have [simp]: "a \<sqinter> c \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 467 | by (rule le_infI1, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 468 | have [simp]: "b \<sqinter> a \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 469 | by (rule le_infI2, simp) | 
| 68797 | 470 |     have "\<Sqinter>(Sup ` {{a, b}, {a, c}}) =
 | 
| 471 |       \<Squnion>(Inf ` {f ` {{a, b}, {a, c}} | f. \<forall>Y\<in>{{a, b}, {a, c}}. f Y \<in> Y})"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 472 | by (rule Inf_Sup) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 473 | from this show "(a \<squnion> b) \<sqinter> (a \<squnion> c) \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 474 | apply simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 475 | by (rule SUP_least, safe, simp_all) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 476 | qed | 
| 44024 | 477 | qed | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 478 | end | 
| 44039 | 479 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 480 | context complete_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 481 | begin | 
| 56074 | 482 | context | 
| 483 | fixes f :: "'a \<Rightarrow> 'b::complete_lattice" | |
| 484 | assumes "mono f" | |
| 485 | begin | |
| 486 | ||
| 63575 | 487 | lemma mono_Inf: "f (\<Sqinter>A) \<le> (\<Sqinter>x\<in>A. f x)" | 
| 60758 | 488 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.INF_greatest Inf_lower dest: monoD) | 
| 56074 | 489 | |
| 63575 | 490 | lemma mono_Sup: "(\<Squnion>x\<in>A. f x) \<le> f (\<Squnion>A)" | 
| 60758 | 491 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.SUP_least Sup_upper dest: monoD) | 
| 56074 | 492 | |
| 67613 | 493 | lemma mono_INF: "f (\<Sqinter>i\<in>I. A i) \<le> (\<Sqinter>x\<in>I. f (A x))" | 
| 60758 | 494 | by (intro complete_lattice_class.INF_greatest monoD[OF \<open>mono f\<close>] INF_lower) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 495 | |
| 67613 | 496 | lemma mono_SUP: "(\<Squnion>x\<in>I. f (A x)) \<le> f (\<Squnion>i\<in>I. A i)" | 
| 60758 | 497 | by (intro complete_lattice_class.SUP_least monoD[OF \<open>mono f\<close>] SUP_upper) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 498 | |
| 56074 | 499 | end | 
| 500 | ||
| 44024 | 501 | end | 
| 502 | ||
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 503 | class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice | 
| 43873 | 504 | begin | 
| 505 | ||
| 63575 | 506 | lemma uminus_Inf: "- (\<Sqinter>A) = \<Squnion>(uminus ` A)" | 
| 73411 | 507 | proof (rule order.antisym) | 
| 43873 | 508 | show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)" | 
| 509 | by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp | |
| 510 | show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A" | |
| 511 | by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto | |
| 512 | qed | |
| 513 | ||
| 44041 | 514 | lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 515 | by (simp add: uminus_Inf image_image) | 
| 44041 | 516 | |
| 63575 | 517 | lemma uminus_Sup: "- (\<Squnion>A) = \<Sqinter>(uminus ` A)" | 
| 43873 | 518 | proof - | 
| 63575 | 519 | have "\<Squnion>A = - \<Sqinter>(uminus ` A)" | 
| 520 | by (simp add: image_image uminus_INF) | |
| 43873 | 521 | then show ?thesis by simp | 
| 522 | qed | |
| 63575 | 523 | |
| 43873 | 524 | lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 525 | by (simp add: uminus_Sup image_image) | 
| 43873 | 526 | |
| 527 | end | |
| 528 | ||
| 43940 | 529 | class complete_linorder = linorder + complete_lattice | 
| 530 | begin | |
| 531 | ||
| 43943 | 532 | lemma dual_complete_linorder: | 
| 67399 | 533 | "class.complete_linorder Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>" | 
| 43943 | 534 | by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder) | 
| 535 | ||
| 51386 | 536 | lemma complete_linorder_inf_min: "inf = min" | 
| 73411 | 537 | by (auto intro: order.antisym simp add: min_def fun_eq_iff) | 
| 51386 | 538 | |
| 539 | lemma complete_linorder_sup_max: "sup = max" | |
| 73411 | 540 | by (auto intro: order.antisym simp add: max_def fun_eq_iff) | 
| 51386 | 541 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 542 | lemma Inf_less_iff: "\<Sqinter>S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)" | 
| 63172 | 543 | by (simp add: not_le [symmetric] le_Inf_iff) | 
| 43940 | 544 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 545 | lemma INF_less_iff: "(\<Sqinter>i\<in>A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)" | 
| 63172 | 546 | by (simp add: Inf_less_iff [of "f ` A"]) | 
| 44041 | 547 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 548 | lemma less_Sup_iff: "a < \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a < x)" | 
| 63172 | 549 | by (simp add: not_le [symmetric] Sup_le_iff) | 
| 43940 | 550 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 551 | lemma less_SUP_iff: "a < (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)" | 
| 63172 | 552 | by (simp add: less_Sup_iff [of _ "f ` A"]) | 
| 43940 | 553 | |
| 63575 | 554 | lemma Sup_eq_top_iff [simp]: "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 43943 | 555 | proof | 
| 556 | assume *: "\<Squnion>A = \<top>" | |
| 63575 | 557 | show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 558 | unfolding * [symmetric] | |
| 43943 | 559 | proof (intro allI impI) | 
| 63575 | 560 | fix x | 
| 561 | assume "x < \<Squnion>A" | |
| 562 | then show "\<exists>i\<in>A. x < i" | |
| 63172 | 563 | by (simp add: less_Sup_iff) | 
| 43943 | 564 | qed | 
| 565 | next | |
| 566 | assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i" | |
| 567 | show "\<Squnion>A = \<top>" | |
| 568 | proof (rule ccontr) | |
| 569 | assume "\<Squnion>A \<noteq> \<top>" | |
| 63575 | 570 | with top_greatest [of "\<Squnion>A"] have "\<Squnion>A < \<top>" | 
| 571 | unfolding le_less by auto | |
| 572 | with * have "\<Squnion>A < \<Squnion>A" | |
| 573 | unfolding less_Sup_iff by auto | |
| 43943 | 574 | then show False by auto | 
| 575 | qed | |
| 576 | qed | |
| 577 | ||
| 63575 | 578 | lemma SUP_eq_top_iff [simp]: "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)" | 
| 56166 | 579 | using Sup_eq_top_iff [of "f ` A"] by simp | 
| 44041 | 580 | |
| 63575 | 581 | lemma Inf_eq_bot_iff [simp]: "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)" | 
| 44920 | 582 | using dual_complete_linorder | 
| 583 | by (rule complete_linorder.Sup_eq_top_iff) | |
| 43943 | 584 | |
| 63575 | 585 | lemma INF_eq_bot_iff [simp]: "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)" | 
| 56166 | 586 | using Inf_eq_bot_iff [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 587 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 588 | lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 589 | proof safe | 
| 63575 | 590 | fix y | 
| 591 | assume "x \<ge> \<Sqinter>A" "y > x" | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 592 | then have "y > \<Sqinter>A" by auto | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 593 | then show "\<exists>a\<in>A. y > a" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 594 | unfolding Inf_less_iff . | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 595 | qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 596 | |
| 68802 | 597 | lemma INF_le_iff: "\<Sqinter>(f ` A) \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)" | 
| 56166 | 598 | using Inf_le_iff [of "f ` A"] by simp | 
| 599 | ||
| 600 | lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)" | |
| 601 | proof safe | |
| 63575 | 602 | fix y | 
| 603 | assume "x \<le> \<Squnion>A" "y < x" | |
| 56166 | 604 | then have "y < \<Squnion>A" by auto | 
| 605 | then show "\<exists>a\<in>A. y < a" | |
| 606 | unfolding less_Sup_iff . | |
| 607 | qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper) | |
| 608 | ||
| 68802 | 609 | lemma le_SUP_iff: "x \<le> \<Squnion>(f ` A) \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)" | 
| 56166 | 610 | using le_Sup_iff [of _ "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 611 | |
| 43940 | 612 | end | 
| 613 | ||
| 69593 | 614 | subsection \<open>Complete lattice on \<^typ>\<open>bool\<close>\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 615 | |
| 44024 | 616 | instantiation bool :: complete_lattice | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 617 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 618 | |
| 63575 | 619 | definition [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 620 | |
| 63575 | 621 | definition [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 622 | |
| 63575 | 623 | instance | 
| 624 | by standard (auto intro: bool_induct) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 625 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 626 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 627 | |
| 63575 | 628 | lemma not_False_in_image_Ball [simp]: "False \<notin> P ` A \<longleftrightarrow> Ball A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 629 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 630 | |
| 63575 | 631 | lemma True_in_image_Bex [simp]: "True \<in> P ` A \<longleftrightarrow> Bex A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 632 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 633 | |
| 68802 | 634 | lemma INF_bool_eq [simp]: "(\<lambda>A f. \<Sqinter>(f ` A)) = Ball" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 635 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 636 | |
| 68802 | 637 | lemma SUP_bool_eq [simp]: "(\<lambda>A f. \<Squnion>(f ` A)) = Bex" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 638 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 639 | |
| 63575 | 640 | instance bool :: complete_boolean_algebra | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 641 | by (standard, fastforce) | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 642 | |
| 69593 | 643 | subsection \<open>Complete lattice on \<^typ>\<open>_ \<Rightarrow> _\<close>\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 644 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 645 | instantiation "fun" :: (type, Inf) Inf | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 646 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 647 | |
| 63575 | 648 | definition "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)" | 
| 41080 | 649 | |
| 63575 | 650 | lemma Inf_apply [simp, code]: "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)" | 
| 41080 | 651 | by (simp add: Inf_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 652 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 653 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 654 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 655 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 656 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 657 | instantiation "fun" :: (type, Sup) Sup | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 658 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 659 | |
| 63575 | 660 | definition "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)" | 
| 41080 | 661 | |
| 63575 | 662 | lemma Sup_apply [simp, code]: "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)" | 
| 41080 | 663 | by (simp add: Sup_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 664 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 665 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 666 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 667 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 668 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 669 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 670 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 671 | |
| 63575 | 672 | instance | 
| 673 | by standard (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 674 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 675 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 676 | |
| 63575 | 677 | lemma INF_apply [simp]: "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 678 | by (simp add: image_comp) | 
| 38705 | 679 | |
| 63575 | 680 | lemma SUP_apply [simp]: "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 681 | by (simp add: image_comp) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 682 | |
| 60758 | 683 | subsection \<open>Complete lattice on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 684 | |
| 63575 | 685 | lemma Inf1_I: "(\<And>P. P \<in> A \<Longrightarrow> P a) \<Longrightarrow> (\<Sqinter>A) a" | 
| 46884 | 686 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 687 | |
| 63575 | 688 | lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 689 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 690 | |
| 63575 | 691 | lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 692 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 693 | |
| 63575 | 694 | lemma Inf2_I: "(\<And>r. r \<in> A \<Longrightarrow> r a b) \<Longrightarrow> (\<Sqinter>A) a b" | 
| 46884 | 695 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 696 | |
| 63575 | 697 | lemma Inf1_D: "(\<Sqinter>A) a \<Longrightarrow> P \<in> A \<Longrightarrow> P a" | 
| 46884 | 698 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 699 | |
| 63575 | 700 | lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 701 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 702 | |
| 63575 | 703 | lemma Inf2_D: "(\<Sqinter>A) a b \<Longrightarrow> r \<in> A \<Longrightarrow> r a b" | 
| 46884 | 704 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 705 | |
| 63575 | 706 | lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 707 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 708 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 709 | lemma Inf1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 710 | assumes "(\<Sqinter>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 711 | obtains "P a" | "P \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 712 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 713 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 714 | lemma INF1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 715 | assumes "(\<Sqinter>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 716 | obtains "B a b" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 717 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 718 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 719 | lemma Inf2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 720 | assumes "(\<Sqinter>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 721 | obtains "r a b" | "r \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 722 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 723 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 724 | lemma INF2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 725 | assumes "(\<Sqinter>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 726 | obtains "B a b c" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 727 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 728 | |
| 63575 | 729 | lemma Sup1_I: "P \<in> A \<Longrightarrow> P a \<Longrightarrow> (\<Squnion>A) a" | 
| 46884 | 730 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 731 | |
| 63575 | 732 | lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 733 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 734 | |
| 63575 | 735 | lemma Sup2_I: "r \<in> A \<Longrightarrow> r a b \<Longrightarrow> (\<Squnion>A) a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 736 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 737 | |
| 63575 | 738 | lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c" | 
| 46884 | 739 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 740 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 741 | lemma Sup1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 742 | assumes "(\<Squnion>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 743 | obtains P where "P \<in> A" and "P a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 744 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 745 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 746 | lemma SUP1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 747 | assumes "(\<Squnion>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 748 | obtains x where "x \<in> A" and "B x b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 749 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 750 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 751 | lemma Sup2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 752 | assumes "(\<Squnion>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 753 | obtains r where "r \<in> A" "r a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 754 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 755 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 756 | lemma SUP2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 757 | assumes "(\<Squnion>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 758 | obtains x where "x \<in> A" "B x b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 759 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 760 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 761 | |
| 69593 | 762 | subsection \<open>Complete lattice on \<^typ>\<open>_ set\<close>\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 763 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 764 | instantiation "set" :: (type) complete_lattice | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 765 | begin | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 766 | |
| 63575 | 767 | definition "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 768 | |
| 63575 | 769 | definition "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 770 | |
| 63575 | 771 | instance | 
| 772 | by standard (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def) | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 773 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 774 | end | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 775 | |
| 60758 | 776 | subsubsection \<open>Inter\<close> | 
| 41082 | 777 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 778 | abbreviation Inter :: "'a set set \<Rightarrow> 'a set" (\<open>\<Inter>\<close>) | 
| 61952 | 779 | where "\<Inter>S \<equiv> \<Sqinter>S" | 
| 63575 | 780 | |
| 781 | lemma Inter_eq: "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 41082 | 782 | proof (rule set_eqI) | 
| 783 | fix x | |
| 784 |   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
 | |
| 785 | by auto | |
| 786 |   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 787 | by (simp add: Inf_set_def image_def) | 
| 41082 | 788 | qed | 
| 789 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 790 | lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)" | 
| 41082 | 791 | by (unfold Inter_eq) blast | 
| 792 | ||
| 43741 | 793 | lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C" | 
| 41082 | 794 | by (simp add: Inter_eq) | 
| 795 | ||
| 60758 | 796 | text \<open> | 
| 69593 | 797 | \<^medskip> A ``destruct'' rule -- every \<^term>\<open>X\<close> in \<^term>\<open>C\<close> | 
| 798 | contains \<^term>\<open>A\<close> as an element, but \<^prop>\<open>A \<in> X\<close> can hold when | |
| 799 | \<^prop>\<open>X \<in> C\<close> does not! This rule is analogous to \<open>spec\<close>. | |
| 60758 | 800 | \<close> | 
| 41082 | 801 | |
| 43741 | 802 | lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X" | 
| 41082 | 803 | by auto | 
| 804 | ||
| 43741 | 805 | lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R" | 
| 61799 | 806 | \<comment> \<open>``Classical'' elimination rule -- does not require proving | 
| 69593 | 807 | \<^prop>\<open>X \<in> C\<close>.\<close> | 
| 63575 | 808 | unfolding Inter_eq by blast | 
| 41082 | 809 | |
| 43741 | 810 | lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B" | 
| 43740 | 811 | by (fact Inf_lower) | 
| 812 | ||
| 63575 | 813 | lemma Inter_subset: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
 | 
| 43740 | 814 | by (fact Inf_less_eq) | 
| 41082 | 815 | |
| 61952 | 816 | lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> \<Inter>A" | 
| 43740 | 817 | by (fact Inf_greatest) | 
| 41082 | 818 | |
| 44067 | 819 | lemma Inter_empty: "\<Inter>{} = UNIV"
 | 
| 820 | by (fact Inf_empty) (* already simp *) | |
| 41082 | 821 | |
| 44067 | 822 | lemma Inter_UNIV: "\<Inter>UNIV = {}"
 | 
| 823 | by (fact Inf_UNIV) (* already simp *) | |
| 41082 | 824 | |
| 44920 | 825 | lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 826 | by (fact Inf_insert) (* already simp *) | |
| 41082 | 827 | |
| 828 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | |
| 43899 | 829 | by (fact less_eq_Inf_inter) | 
| 41082 | 830 | |
| 831 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | |
| 43756 | 832 | by (fact Inf_union_distrib) | 
| 833 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 834 | lemma Inter_UNIV_conv [simp]: | 
| 43741 | 835 | "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | 
| 836 | "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | |
| 43801 | 837 | by (fact Inf_top_conv)+ | 
| 41082 | 838 | |
| 43741 | 839 | lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B" | 
| 43899 | 840 | by (fact Inf_superset_mono) | 
| 41082 | 841 | |
| 842 | ||
| 60758 | 843 | subsubsection \<open>Intersections of families\<close> | 
| 41082 | 844 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 845 | syntax (ASCII) | 
| 80934 | 846 | "_INTER1" :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(\<open>indent=3 notation=\<open>binder INT\<close>\<close>INT _./ _)\<close> [0, 10] 10) | 
| 847 | "_INTER" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(\<open>indent=3 notation=\<open>binder INT\<close>\<close>INT _:_./ _)\<close> [0, 0, 10] 10) | |
| 41082 | 848 | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 849 | syntax | 
| 80934 | 850 | "_INTER1" :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(\<open>indent=3 notation=\<open>binder \<Inter>\<close>\<close>\<Inter>_./ _)\<close> [0, 10] 10) | 
| 851 | "_INTER" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(\<open>indent=3 notation=\<open>binder \<Inter>\<close>\<close>\<Inter>_\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 852 | |
| 41082 | 853 | syntax (latex output) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 854 | "_INTER1" :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)\<close> [0, 10] 10) | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 855 | "_INTER" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set" (\<open>(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)\<close> [0, 0, 10] 10) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 856 | |
| 80760 | 857 | syntax_consts | 
| 858 | "_INTER1" "_INTER" \<rightleftharpoons> Inter | |
| 859 | ||
| 41082 | 860 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 861 | "\<Inter>x y. f" \<rightleftharpoons> "\<Inter>x. \<Inter>y. f" | 
| 69745 | 862 | "\<Inter>x. f" \<rightleftharpoons> "\<Inter>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 863 | "\<Inter>x\<in>A. f" \<rightleftharpoons> "CONST Inter ((\<lambda>x. f) ` A)" | 
| 41082 | 864 | |
| 63575 | 865 | lemma INTER_eq: "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
 | 
| 56166 | 866 | by (auto intro!: INF_eqI) | 
| 41082 | 867 | |
| 43817 | 868 | lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)" | 
| 56166 | 869 | using Inter_iff [of _ "B ` A"] by simp | 
| 41082 | 870 | |
| 43817 | 871 | lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 872 | by auto | 
| 41082 | 873 | |
| 43852 | 874 | lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a" | 
| 41082 | 875 | by auto | 
| 876 | ||
| 43852 | 877 | lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 69593 | 878 | \<comment> \<open>"Classical" elimination -- by the Excluded Middle on \<^prop>\<open>a\<in>A\<close>.\<close> | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 879 | by auto | 
| 41082 | 880 | |
| 881 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | |
| 882 | by blast | |
| 883 | ||
| 884 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | |
| 885 | by blast | |
| 886 | ||
| 43817 | 887 | lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 888 | by (fact INF_lower) | 
| 41082 | 889 | |
| 43817 | 890 | lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 891 | by (fact INF_greatest) | 
| 41082 | 892 | |
| 44067 | 893 | lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 894 | by (fact INF_empty) | 
| 43854 | 895 | |
| 43817 | 896 | lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 43872 | 897 | by (fact INF_absorb) | 
| 41082 | 898 | |
| 43854 | 899 | lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 41082 | 900 | by (fact le_INF_iff) | 
| 901 | ||
| 69275 | 902 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> \<Inter> (B ` A)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 903 | by (fact INF_insert) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 904 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 905 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 906 | by (fact INF_union) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 907 | |
| 63575 | 908 | lemma INT_insert_distrib: "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 909 | by blast | 
| 43854 | 910 | |
| 41082 | 911 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 912 | by (fact INF_constant) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 913 | |
| 44920 | 914 | lemma INTER_UNIV_conv: | 
| 63575 | 915 | "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 916 | "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 44920 | 917 | by (fact INF_top_conv)+ (* already simp *) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 918 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 919 | lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False" | 
| 43873 | 920 | by (fact INF_UNIV_bool_expand) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 921 | |
| 63575 | 922 | lemma INT_anti_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 61799 | 923 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 43940 | 924 | by (fact INF_superset_mono) | 
| 41082 | 925 | |
| 926 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | |
| 927 | by blast | |
| 928 | ||
| 43817 | 929 | lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)" | 
| 41082 | 930 | by blast | 
| 931 | ||
| 932 | ||
| 60758 | 933 | subsubsection \<open>Union\<close> | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 934 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 935 | abbreviation Union :: "'a set set \<Rightarrow> 'a set" (\<open>\<Union>\<close>) | 
| 61952 | 936 | where "\<Union>S \<equiv> \<Squnion>S" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 937 | |
| 63575 | 938 | lemma Union_eq: "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38705diff
changeset | 939 | proof (rule set_eqI) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 940 | fix x | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 941 |   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 942 | by auto | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 943 |   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 944 | by (simp add: Sup_set_def image_def) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 945 | qed | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 946 | |
| 63575 | 947 | lemma Union_iff [simp]: "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 948 | by (unfold Union_eq) blast | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 949 | |
| 63575 | 950 | lemma UnionI [intro]: "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C" | 
| 69593 | 951 | \<comment> \<open>The order of the premises presupposes that \<^term>\<open>C\<close> is rigid; | 
| 952 | \<^term>\<open>A\<close> may be flexible.\<close> | |
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 953 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 954 | |
| 63575 | 955 | lemma UnionE [elim!]: "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 956 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 957 | |
| 43817 | 958 | lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A" | 
| 43901 | 959 | by (fact Sup_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 960 | |
| 43817 | 961 | lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C" | 
| 43901 | 962 | by (fact Sup_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 963 | |
| 44920 | 964 | lemma Union_empty: "\<Union>{} = {}"
 | 
| 965 | by (fact Sup_empty) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 966 | |
| 44920 | 967 | lemma Union_UNIV: "\<Union>UNIV = UNIV" | 
| 968 | by (fact Sup_UNIV) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 969 | |
| 69745 | 970 | lemma Union_insert: "\<Union>(insert a B) = a \<union> \<Union>B" | 
| 44920 | 971 | by (fact Sup_insert) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 972 | |
| 43817 | 973 | lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B" | 
| 43901 | 974 | by (fact Sup_union_distrib) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 975 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 976 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 43901 | 977 | by (fact Sup_inter_less_eq) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 978 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 979 | lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 980 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 981 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 982 | lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 983 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 984 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 985 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 986 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 987 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 988 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 989 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 990 | |
| 43817 | 991 | lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 43901 | 992 | by (fact Sup_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 993 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 994 | lemma Union_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> x \<subseteq> y) \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 995 | by blast | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 996 | |
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 997 | lemma disjnt_inj_on_iff: | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74337diff
changeset | 998 | "\<lbrakk>inj_on f (\<Union>\<A>); X \<in> \<A>; Y \<in> \<A>\<rbrakk> \<Longrightarrow> disjnt (f ` X) (f ` Y) \<longleftrightarrow> disjnt X Y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74337diff
changeset | 999 | unfolding disjnt_def | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74337diff
changeset | 1000 | by safe (use inj_on_eq_iff in \<open>fastforce+\<close>) | 
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 1001 | |
| 69986 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1002 | lemma disjnt_Union1 [simp]: "disjnt (\<Union>\<A>) B \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt A B)" | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1003 | by (auto simp: disjnt_def) | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1004 | |
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1005 | lemma disjnt_Union2 [simp]: "disjnt B (\<Union>\<A>) \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt B A)" | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1006 | by (auto simp: disjnt_def) | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1007 | |
| 63575 | 1008 | |
| 60758 | 1009 | subsubsection \<open>Unions of families\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1010 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1011 | syntax (ASCII) | 
| 80934 | 1012 | "_UNION1" :: "pttrns => 'b set => 'b set" (\<open>(\<open>indent=3 notation=\<open>binder UN\<close>\<close>UN _./ _)\<close> [0, 10] 10) | 
| 1013 | "_UNION" :: "pttrn => 'a set => 'b set => 'b set" (\<open>(\<open>indent=3 notation=\<open>binder UN\<close>\<close>UN _:_./ _)\<close> [0, 0, 10] 10) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1014 | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1015 | syntax | 
| 80934 | 1016 | "_UNION1" :: "pttrns => 'b set => 'b set" (\<open>(\<open>indent=3 notation=\<open>binder \<Union>\<close>\<close>\<Union>_./ _)\<close> [0, 10] 10) | 
| 1017 | "_UNION" :: "pttrn => 'a set => 'b set => 'b set" (\<open>(\<open>indent=3 notation=\<open>binder \<Union>\<close>\<close>\<Union>_\<in>_./ _)\<close> [0, 0, 10] 10) | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1018 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1019 | syntax (latex output) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1020 | "_UNION1" :: "pttrns => 'b set => 'b set" (\<open>(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)\<close> [0, 10] 10) | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1021 | "_UNION" :: "pttrn => 'a set => 'b set => 'b set" (\<open>(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)\<close> [0, 0, 10] 10) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1022 | |
| 80760 | 1023 | syntax_consts | 
| 1024 | "_UNION1" "_UNION" \<rightleftharpoons> Union | |
| 1025 | ||
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1026 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 1027 | "\<Union>x y. f" \<rightleftharpoons> "\<Union>x. \<Union>y. f" | 
| 69745 | 1028 | "\<Union>x. f" \<rightleftharpoons> "\<Union>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 1029 | "\<Union>x\<in>A. f" \<rightleftharpoons> "CONST Union ((\<lambda>x. f) ` A)" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1030 | |
| 60758 | 1031 | text \<open> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1032 | Note the difference between ordinary syntax of indexed | 
| 61799 | 1033 | unions and intersections (e.g.\ \<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>) | 
| 69593 | 1034 | and their \LaTeX\ rendition: \<^term>\<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>. | 
| 60758 | 1035 | \<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1036 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1037 | lemma disjoint_UN_iff: "disjnt A (\<Union>i\<in>I. B i) \<longleftrightarrow> (\<forall>i\<in>I. disjnt A (B i))" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1038 | by (auto simp: disjnt_def) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1039 | |
| 63575 | 1040 | lemma UNION_eq: "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
 | 
| 56166 | 1041 | by (auto intro!: SUP_eqI) | 
| 44920 | 1042 | |
| 69275 | 1043 | lemma bind_UNION [code]: "Set.bind A f = \<Union>(f ` A)" | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1044 | by (simp add: bind_def UNION_eq) | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1045 | |
| 69275 | 1046 | lemma member_bind [simp]: "x \<in> Set.bind A f \<longleftrightarrow> x \<in> \<Union>(f ` A)" | 
| 46036 | 1047 | by (simp add: bind_UNION) | 
| 1048 | ||
| 60585 | 1049 | lemma Union_SetCompr_eq: "\<Union>{f x| x. P x} = {a. \<exists>x. P x \<and> a \<in> f x}"
 | 
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1050 | by blast | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1051 | |
| 46036 | 1052 | lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)" | 
| 56166 | 1053 | using Union_iff [of _ "B ` A"] by simp | 
| 11979 | 1054 | |
| 43852 | 1055 | lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)" | 
| 69593 | 1056 | \<comment> \<open>The order of the premises presupposes that \<^term>\<open>A\<close> is rigid; | 
| 1057 | \<^term>\<open>b\<close> may be flexible.\<close> | |
| 11979 | 1058 | by auto | 
| 1059 | ||
| 43852 | 1060 | lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1061 | by auto | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1062 | |
| 43817 | 1063 | lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1064 | by (fact SUP_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1065 | |
| 43817 | 1066 | lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1067 | by (fact SUP_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1068 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1069 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1070 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1071 | |
| 43817 | 1072 | lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1073 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1074 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1075 | lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1076 | by (fact SUP_empty) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1077 | |
| 44920 | 1078 | lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
 | 
| 1079 | by (fact SUP_bot) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1080 | |
| 43817 | 1081 | lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1082 | by (fact SUP_absorb) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1083 | |
| 69275 | 1084 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> \<Union>(B ` A)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1085 | by (fact SUP_insert) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1086 | |
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1087 | lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1088 | by (fact SUP_union) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1089 | |
| 43967 | 1090 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1091 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1092 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1093 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 35629 | 1094 | by (fact SUP_le_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1095 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1096 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1097 | by (fact SUP_constant) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1098 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1099 | lemma UNION_singleton_eq_range: "(\<Union>x\<in>A. {f x}) = f ` A"
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1100 | by blast | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1101 | |
| 43944 | 1102 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1103 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1104 | |
| 44920 | 1105 | lemma UNION_empty_conv: | 
| 43817 | 1106 |   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | 
| 1107 |   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | |
| 44920 | 1108 | by (fact SUP_bot_conv)+ (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1109 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1110 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1111 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1112 | |
| 69275 | 1113 | lemma ball_UN: "(\<forall>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1114 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1115 | |
| 69275 | 1116 | lemma bex_UN: "(\<exists>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1117 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1118 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1119 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 62390 | 1120 | by safe (auto simp add: if_split_mem2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1121 | |
| 43817 | 1122 | lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1123 | by (fact SUP_UNIV_bool_expand) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1124 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1125 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1126 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1127 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1128 | lemma UN_mono: | 
| 43817 | 1129 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1130 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 43940 | 1131 | by (fact SUP_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1132 | |
| 43817 | 1133 | lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1134 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1135 | |
| 43817 | 1136 | lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1137 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1138 | |
| 43817 | 1139 | lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
 | 
| 61799 | 1140 | \<comment> \<open>NOT suitable for rewriting\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1141 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1142 | |
| 69275 | 1143 | lemma image_UN: "f ` \<Union>(B ` A) = (\<Union>x\<in>A. f ` B x)" | 
| 43817 | 1144 | by blast | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1145 | |
| 45013 | 1146 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 1147 | by blast | |
| 1148 | ||
| 67399 | 1149 | lemma inj_on_image: "inj_on f (\<Union>A) \<Longrightarrow> inj_on ((`) f) A" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
62789diff
changeset | 1150 | unfolding inj_on_def by blast | 
| 11979 | 1151 | |
| 63575 | 1152 | |
| 60758 | 1153 | subsubsection \<open>Distributive laws\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1154 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1155 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1156 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1157 | |
| 44039 | 1158 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1159 | by blast | 
| 44039 | 1160 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1161 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1162 | by blast | 
| 44039 | 1163 | |
| 1164 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | |
| 1165 | by (rule sym) (rule INF_inf_distrib) | |
| 1166 | ||
| 1167 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | |
| 1168 | by (rule sym) (rule SUP_sup_distrib) | |
| 1169 | ||
| 63575 | 1170 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)" (* FIXME drop *) | 
| 56166 | 1171 | by (simp add: INT_Int_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1172 | |
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1173 | lemma Int_Inter_eq: "A \<inter> \<Inter>\<B> = (if \<B>={} then A else (\<Inter>B\<in>\<B>. A \<inter> B))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1174 |                     "\<Inter>\<B> \<inter> A = (if \<B>={} then A else (\<Inter>B\<in>\<B>. B \<inter> A))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1175 | by auto | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1176 | |
| 63575 | 1177 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)" (* FIXME drop *) | 
| 61799 | 1178 | \<comment> \<open>Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:\<close> | 
| 1179 | \<comment> \<open>Union of a family of unions\<close> | |
| 56166 | 1180 | by (simp add: UN_Un_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1181 | |
| 44039 | 1182 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1183 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1184 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1185 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 61799 | 1186 | \<comment> \<open>Halmos, Naive Set Theory, page 35.\<close> | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1187 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1188 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1189 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1190 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1191 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1192 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1193 | by blast | 
| 44039 | 1194 | |
| 1195 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1196 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1197 | |
| 67613 | 1198 | lemma SUP_UNION: "(\<Squnion>x\<in>(\<Union>y\<in>A. g y). f x) = (\<Squnion>y\<in>A. \<Squnion>x\<in>g y. f x :: _ :: complete_lattice)" | 
| 63575 | 1199 | by (rule order_antisym) (blast intro: SUP_least SUP_upper2)+ | 
| 1200 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1201 | |
| 60758 | 1202 | subsection \<open>Injections and bijections\<close> | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1203 | |
| 63575 | 1204 | lemma inj_on_Inter: "S \<noteq> {} \<Longrightarrow> (\<And>A. A \<in> S \<Longrightarrow> inj_on f A) \<Longrightarrow> inj_on f (\<Inter>S)"
 | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1205 | unfolding inj_on_def by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1206 | |
| 63575 | 1207 | lemma inj_on_INTER: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)) \<Longrightarrow> inj_on f (\<Inter>i \<in> I. A i)"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1208 | unfolding inj_on_def by safe simp | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1209 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1210 | lemma inj_on_UNION_chain: | 
| 63575 | 1211 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1212 | and inj: "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | |
| 60585 | 1213 | shows "inj_on f (\<Union>i \<in> I. A i)" | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1214 | proof - | 
| 63575 | 1215 | have "x = y" | 
| 1216 | if *: "i \<in> I" "j \<in> I" | |
| 1217 | and **: "x \<in> A i" "y \<in> A j" | |
| 1218 | and ***: "f x = f y" | |
| 1219 | for i j x y | |
| 1220 | using chain [OF *] | |
| 1221 | proof | |
| 1222 | assume "A i \<le> A j" | |
| 1223 | with ** have "x \<in> A j" by auto | |
| 1224 | with inj * ** *** show ?thesis | |
| 1225 | by (auto simp add: inj_on_def) | |
| 1226 | next | |
| 1227 | assume "A j \<le> A i" | |
| 1228 | with ** have "y \<in> A i" by auto | |
| 1229 | with inj * ** *** show ?thesis | |
| 1230 | by (auto simp add: inj_on_def) | |
| 1231 | qed | |
| 1232 | then show ?thesis | |
| 1233 | by (unfold inj_on_def UNION_eq) auto | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1234 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1235 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1236 | lemma bij_betw_UNION_chain: | 
| 63575 | 1237 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1238 | and bij: "\<And>i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | |
| 60585 | 1239 | shows "bij_betw f (\<Union>i \<in> I. A i) (\<Union>i \<in> I. A' i)" | 
| 63575 | 1240 | unfolding bij_betw_def | 
| 63576 | 1241 | proof safe | 
| 63575 | 1242 | have "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 1243 | using bij bij_betw_def[of f] by auto | |
| 69275 | 1244 | then show "inj_on f (\<Union>(A ` I))" | 
| 63575 | 1245 | using chain inj_on_UNION_chain[of I A f] by auto | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1246 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1247 | fix i x | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1248 | assume *: "i \<in> I" "x \<in> A i" | 
| 63576 | 1249 | with bij have "f x \<in> A' i" | 
| 1250 | by (auto simp: bij_betw_def) | |
| 69275 | 1251 | with * show "f x \<in> \<Union>(A' ` I)" by blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1252 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1253 | fix i x' | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1254 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 63576 | 1255 | with bij have "\<exists>x \<in> A i. x' = f x" | 
| 1256 | unfolding bij_betw_def by blast | |
| 63575 | 1257 | with * have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 1258 | by blast | |
| 69275 | 1259 | then show "x' \<in> f ` \<Union>(A ` I)" | 
| 63575 | 1260 | by blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1261 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1262 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1263 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | 
| 69275 | 1264 | lemma image_INT: "inj_on f C \<Longrightarrow> \<forall>x\<in>A. B x \<subseteq> C \<Longrightarrow> j \<in> A \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)" | 
| 63575 | 1265 | by (auto simp add: inj_on_def) blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1266 | |
| 69275 | 1267 | lemma bij_image_INT: "bij f \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
63879diff
changeset | 1268 | by (auto simp: bij_def inj_def surj_def) blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1269 | |
| 69275 | 1270 | lemma UNION_fun_upd: "\<Union>(A(i := B) ` J) = \<Union>(A ` (J - {i})) \<union> (if i \<in> J then B else {})"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1271 | by (auto simp add: set_eq_iff) | 
| 63365 | 1272 | |
| 1273 | lemma bij_betw_Pow: | |
| 1274 | assumes "bij_betw f A B" | |
| 1275 | shows "bij_betw (image f) (Pow A) (Pow B)" | |
| 1276 | proof - | |
| 1277 | from assms have "inj_on f A" | |
| 1278 | by (rule bij_betw_imp_inj_on) | |
| 69745 | 1279 | then have "inj_on f (\<Union>(Pow A))" | 
| 63365 | 1280 | by simp | 
| 1281 | then have "inj_on (image f) (Pow A)" | |
| 1282 | by (rule inj_on_image) | |
| 1283 | then have "bij_betw (image f) (Pow A) (image f ` Pow A)" | |
| 1284 | by (rule inj_on_imp_bij_betw) | |
| 1285 | moreover from assms have "f ` A = B" | |
| 1286 | by (rule bij_betw_imp_surj_on) | |
| 1287 | then have "image f ` Pow A = Pow B" | |
| 1288 | by (rule image_Pow_surj) | |
| 1289 | ultimately show ?thesis by simp | |
| 1290 | qed | |
| 1291 | ||
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1292 | |
| 60758 | 1293 | subsubsection \<open>Complement\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1294 | |
| 43873 | 1295 | lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1296 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1297 | |
| 43873 | 1298 | lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1299 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1300 | |
| 60758 | 1301 | subsubsection \<open>Miniscoping and maxiscoping\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1302 | |
| 63575 | 1303 | text \<open>\<^medskip> Miniscoping: pushing in quantifiers and big Unions and Intersections.\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1304 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1305 | lemma UN_simps [simp]: | 
| 43817 | 1306 |   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1307 |   "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
 | 
| 43852 | 1308 |   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1309 | "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)" | 
| 43852 | 1310 | "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))" | 
| 1311 | "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)" | |
| 1312 | "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))" | |
| 1313 | "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)" | |
| 69275 | 1314 | "\<And>A B C. (\<Union>z\<in>(\<Union>(B ` A)). C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)" | 
| 43831 | 1315 | "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1316 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1317 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1318 | lemma INT_simps [simp]: | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1319 |   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
 | 
| 43831 | 1320 |   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
 | 
| 43852 | 1321 |   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
 | 
| 1322 |   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
 | |
| 43817 | 1323 | "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)" | 
| 43852 | 1324 | "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)" | 
| 1325 | "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))" | |
| 1326 | "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)" | |
| 69275 | 1327 | "\<And>A B C. (\<Inter>z\<in>(\<Union>(B ` A)). C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)" | 
| 43852 | 1328 | "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1329 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1330 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1331 | lemma UN_ball_bex_simps [simp]: | 
| 43852 | 1332 | "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)" | 
| 69275 | 1333 | "\<And>A B P. (\<forall>x\<in>(\<Union>(B ` A)). P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)" | 
| 43852 | 1334 | "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)" | 
| 69275 | 1335 | "\<And>A B P. (\<exists>x\<in>(\<Union>(B ` A)). P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1336 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1337 | |
| 43943 | 1338 | |
| 63575 | 1339 | text \<open>\<^medskip> Maxiscoping: pulling out big Unions and Intersections.\<close> | 
| 13860 | 1340 | |
| 1341 | lemma UN_extend_simps: | |
| 43817 | 1342 |   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1343 |   "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
 | 
| 43852 | 1344 |   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
 | 
| 1345 | "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)" | |
| 1346 | "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)" | |
| 43817 | 1347 | "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)" | 
| 1348 | "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)" | |
| 43852 | 1349 | "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)" | 
| 69275 | 1350 | "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>(\<Union>(B ` A)). C z)" | 
| 43831 | 1351 | "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)" | 
| 13860 | 1352 | by auto | 
| 1353 | ||
| 1354 | lemma INT_extend_simps: | |
| 43852 | 1355 |   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
 | 
| 1356 |   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
 | |
| 1357 |   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
 | |
| 1358 |   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
 | |
| 43817 | 1359 | "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))" | 
| 43852 | 1360 | "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)" | 
| 1361 | "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)" | |
| 1362 | "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)" | |
| 69275 | 1363 | "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>(\<Union>(B ` A)). C z)" | 
| 43852 | 1364 | "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)" | 
| 13860 | 1365 | by auto | 
| 1366 | ||
| 60758 | 1367 | text \<open>Finally\<close> | 
| 43872 | 1368 | |
| 30596 | 1369 | lemmas mem_simps = | 
| 1370 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 1371 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 61799 | 1372 | \<comment> \<open>Each of these has ALREADY been added \<open>[simp]\<close> above.\<close> | 
| 21669 | 1373 | |
| 11979 | 1374 | end |