1300
|
1 |
(* Title: HOL/MiniML/Type.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Dieter Nazareth and Tobias Nipkow
|
|
4 |
Copyright 1995 TU Muenchen
|
|
5 |
|
|
6 |
MiniML-types and type substitutions.
|
|
7 |
*)
|
|
8 |
|
|
9 |
Type = Maybe +
|
|
10 |
|
|
11 |
(* new class for structures containing type variables *)
|
|
12 |
classes
|
1476
|
13 |
type_struct < term
|
1300
|
14 |
|
|
15 |
(* type expressions *)
|
|
16 |
datatype
|
1476
|
17 |
typ = TVar nat | "->" typ typ (infixr 70)
|
1300
|
18 |
|
|
19 |
(* type variable substitution *)
|
|
20 |
types
|
1476
|
21 |
subst = nat => typ
|
1300
|
22 |
|
|
23 |
arities
|
1476
|
24 |
typ::type_struct
|
|
25 |
list::(type_struct)type_struct
|
|
26 |
fun::(term,type_struct)type_struct
|
1300
|
27 |
|
|
28 |
(* substitutions *)
|
|
29 |
|
|
30 |
(* identity *)
|
1557
|
31 |
constdefs
|
1476
|
32 |
id_subst :: subst
|
1557
|
33 |
"id_subst == (%n.TVar n)"
|
1300
|
34 |
|
|
35 |
(* extension of substitution to type structures *)
|
|
36 |
consts
|
1476
|
37 |
app_subst :: [subst, 'a::type_struct] => 'a::type_struct ("$")
|
1300
|
38 |
|
1604
|
39 |
primrec app_subst typ
|
|
40 |
app_subst_TVar "$ s (TVar n) = s n"
|
|
41 |
app_subst_Fun "$ s (t1 -> t2) = ($ s t1) -> ($ s t2)"
|
|
42 |
|
1300
|
43 |
defs
|
1476
|
44 |
app_subst_list "$ s == map ($ s)"
|
1300
|
45 |
|
|
46 |
(* free_tv s: the type variables occuring freely in the type structure s *)
|
|
47 |
consts
|
1476
|
48 |
free_tv :: ['a::type_struct] => nat set
|
1300
|
49 |
|
1575
|
50 |
primrec free_tv typ
|
1900
|
51 |
"free_tv (TVar m) = {m}"
|
|
52 |
"free_tv (t1 -> t2) = (free_tv t1) Un (free_tv t2)"
|
1575
|
53 |
|
|
54 |
primrec free_tv List.list
|
1900
|
55 |
"free_tv [] = {}"
|
|
56 |
"free_tv (x#l) = (free_tv x) Un (free_tv l)"
|
1300
|
57 |
|
|
58 |
(* domain of a substitution *)
|
1557
|
59 |
constdefs
|
1476
|
60 |
dom :: subst => nat set
|
1557
|
61 |
"dom s == {n. s n ~= TVar n}"
|
1300
|
62 |
|
|
63 |
(* codomain of a substitutions: the introduced variables *)
|
1557
|
64 |
constdefs
|
1575
|
65 |
cod :: subst => nat set
|
|
66 |
"cod s == (UN m:dom s. free_tv (s m))"
|
1300
|
67 |
|
|
68 |
defs
|
1476
|
69 |
free_tv_subst "free_tv s == (dom s) Un (cod s)"
|
1300
|
70 |
|
|
71 |
(* new_tv s n computes whether n is a new type variable w.r.t. a type
|
|
72 |
structure s, i.e. whether n is greater than any type variable
|
|
73 |
occuring in the type structure *)
|
1557
|
74 |
constdefs
|
1476
|
75 |
new_tv :: [nat,'a::type_struct] => bool
|
1557
|
76 |
"new_tv n ts == ! m. m:free_tv ts --> m<n"
|
1300
|
77 |
|
|
78 |
(* unification algorithm mgu *)
|
|
79 |
consts
|
1476
|
80 |
mgu :: [typ,typ] => subst maybe
|
1300
|
81 |
rules
|
1476
|
82 |
mgu_eq "mgu t1 t2 = Ok u ==> $u t1 = $u t2"
|
|
83 |
mgu_mg "[| (mgu t1 t2) = Ok u; $s t1 = $s t2 |] ==>
|
|
84 |
? r. s = $r o u"
|
|
85 |
mgu_Ok "$s t1 = $s t2 ==> ? u. mgu t1 t2 = Ok u"
|
|
86 |
mgu_free "mgu t1 t2 = Ok u ==> free_tv u <= free_tv t1 Un free_tv t2"
|
1300
|
87 |
|
|
88 |
end
|
|
89 |
|