| author | wenzelm | 
| Fri, 15 Jul 2005 15:44:18 +0200 | |
| changeset 16863 | 79b9a6481ae4 | 
| parent 16733 | 236dfafbeb63 | 
| child 17084 | fb0a80aef0be | 
| permissions | -rw-r--r-- | 
| 6917 | 1 | (* Title: HOL/IntDiv.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1999 University of Cambridge | |
| 5 | ||
| 15221 | 6 | *) | 
| 7 | ||
| 8 | ||
| 9 | header{*The Division Operators div and mod; the Divides Relation dvd*}
 | |
| 10 | ||
| 11 | theory IntDiv | |
| 12 | imports IntArith Recdef | |
| 16417 | 13 | uses ("IntDiv_setup.ML")
 | 
| 15221 | 14 | begin | 
| 15 | ||
| 16 | declare zless_nat_conj [simp] | |
| 17 | ||
| 18 | constdefs | |
| 19 | quorem :: "(int*int) * (int*int) => bool" | |
| 20 |     --{*definition of quotient and remainder*}
 | |
| 21 | "quorem == %((a,b), (q,r)). | |
| 22 | a = b*q + r & | |
| 23 | (if 0 < b then 0\<le>r & r<b else b<r & r \<le> 0)" | |
| 24 | ||
| 25 | adjust :: "[int, int*int] => int*int" | |
| 26 |     --{*for the division algorithm*}
 | |
| 27 | "adjust b == %(q,r). if 0 \<le> r-b then (2*q + 1, r-b) | |
| 28 | else (2*q, r)" | |
| 29 | ||
| 30 | text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
 | |
| 31 | consts posDivAlg :: "int*int => int*int" | |
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 32 | recdef posDivAlg "measure (%(a,b). nat(a - b + 1))" | 
| 15221 | 33 | "posDivAlg (a,b) = | 
| 34 | (if (a<b | b\<le>0) then (0,a) | |
| 35 | else adjust b (posDivAlg(a, 2*b)))" | |
| 13183 | 36 | |
| 15221 | 37 | text{*algorithm for the case @{text "a<0, b>0"}*}
 | 
| 38 | consts negDivAlg :: "int*int => int*int" | |
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 39 | recdef negDivAlg "measure (%(a,b). nat(- a - b))" | 
| 15221 | 40 | "negDivAlg (a,b) = | 
| 41 | (if (0\<le>a+b | b\<le>0) then (-1,a+b) | |
| 42 | else adjust b (negDivAlg(a, 2*b)))" | |
| 43 | ||
| 44 | text{*algorithm for the general case @{term "b\<noteq>0"}*}
 | |
| 45 | constdefs | |
| 46 | negateSnd :: "int*int => int*int" | |
| 47 | "negateSnd == %(q,r). (q,-r)" | |
| 48 | ||
| 49 | divAlg :: "int*int => int*int" | |
| 50 |     --{*The full division algorithm considers all possible signs for a, b
 | |
| 51 |        including the special case @{text "a=0, b<0"} because 
 | |
| 52 |        @{term negDivAlg} requires @{term "a<0"}.*}
 | |
| 53 | "divAlg == | |
| 54 | %(a,b). if 0\<le>a then | |
| 55 | if 0\<le>b then posDivAlg (a,b) | |
| 56 | else if a=0 then (0,0) | |
| 57 | else negateSnd (negDivAlg (-a,-b)) | |
| 58 | else | |
| 59 | if 0<b then negDivAlg (a,b) | |
| 60 | else negateSnd (posDivAlg (-a,-b))" | |
| 61 | ||
| 62 | instance | |
| 63 |   int :: "Divides.div" ..       --{*avoid clash with 'div' token*}
 | |
| 64 | ||
| 65 | text{*The operators are defined with reference to the algorithm, which is
 | |
| 66 | proved to satisfy the specification.*} | |
| 67 | defs | |
| 68 | div_def: "a div b == fst (divAlg (a,b))" | |
| 69 | mod_def: "a mod b == snd (divAlg (a,b))" | |
| 70 | ||
| 71 | ||
| 72 | text{*
 | |
| 13183 | 73 | Here is the division algorithm in ML: | 
| 74 | ||
| 15221 | 75 | \begin{verbatim}
 | 
| 13183 | 76 | fun posDivAlg (a,b) = | 
| 77 | if a<b then (0,a) | |
| 78 | else let val (q,r) = posDivAlg(a, 2*b) | |
| 14288 | 79 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | 
| 13183 | 80 | end | 
| 81 | ||
| 82 | fun negDivAlg (a,b) = | |
| 14288 | 83 | if 0\<le>a+b then (~1,a+b) | 
| 13183 | 84 | else let val (q,r) = negDivAlg(a, 2*b) | 
| 14288 | 85 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | 
| 13183 | 86 | end; | 
| 87 | ||
| 88 | fun negateSnd (q,r:int) = (q,~r); | |
| 89 | ||
| 14288 | 90 | fun divAlg (a,b) = if 0\<le>a then | 
| 13183 | 91 | if b>0 then posDivAlg (a,b) | 
| 92 | else if a=0 then (0,0) | |
| 93 | else negateSnd (negDivAlg (~a,~b)) | |
| 94 | else | |
| 95 | if 0<b then negDivAlg (a,b) | |
| 96 | else negateSnd (posDivAlg (~a,~b)); | |
| 15221 | 97 | \end{verbatim}
 | 
| 98 | *} | |
| 13183 | 99 | |
| 100 | ||
| 101 | ||
| 14271 | 102 | subsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
 | 
| 13183 | 103 | |
| 104 | lemma unique_quotient_lemma: | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 105 | "[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |] | 
| 14288 | 106 | ==> q' \<le> (q::int)" | 
| 107 | apply (subgoal_tac "r' + b * (q'-q) \<le> r") | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 108 | prefer 2 apply (simp add: right_diff_distrib) | 
| 13183 | 109 | apply (subgoal_tac "0 < b * (1 + q - q') ") | 
| 110 | apply (erule_tac [2] order_le_less_trans) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 111 | prefer 2 apply (simp add: right_diff_distrib right_distrib) | 
| 13183 | 112 | apply (subgoal_tac "b * q' < b * (1 + q) ") | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 113 | prefer 2 apply (simp add: right_diff_distrib right_distrib) | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 114 | apply (simp add: mult_less_cancel_left) | 
| 13183 | 115 | done | 
| 116 | ||
| 117 | lemma unique_quotient_lemma_neg: | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 118 | "[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |] | 
| 14288 | 119 | ==> q \<le> (q'::int)" | 
| 13183 | 120 | by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, | 
| 121 | auto) | |
| 122 | ||
| 123 | lemma unique_quotient: | |
| 15221 | 124 | "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |] | 
| 13183 | 125 | ==> q = q'" | 
| 126 | apply (simp add: quorem_def linorder_neq_iff split: split_if_asm) | |
| 127 | apply (blast intro: order_antisym | |
| 128 | dest: order_eq_refl [THEN unique_quotient_lemma] | |
| 129 | order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ | |
| 130 | done | |
| 131 | ||
| 132 | ||
| 133 | lemma unique_remainder: | |
| 15221 | 134 | "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |] | 
| 13183 | 135 | ==> r = r'" | 
| 136 | apply (subgoal_tac "q = q'") | |
| 137 | apply (simp add: quorem_def) | |
| 138 | apply (blast intro: unique_quotient) | |
| 139 | done | |
| 140 | ||
| 141 | ||
| 15221 | 142 | subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*}
 | 
| 14271 | 143 | |
| 144 | text{*And positive divisors*}
 | |
| 13183 | 145 | |
| 146 | lemma adjust_eq [simp]: | |
| 147 | "adjust b (q,r) = | |
| 148 | (let diff = r-b in | |
| 14288 | 149 | if 0 \<le> diff then (2*q + 1, diff) | 
| 13183 | 150 | else (2*q, r))" | 
| 151 | by (simp add: Let_def adjust_def) | |
| 152 | ||
| 153 | declare posDivAlg.simps [simp del] | |
| 154 | ||
| 15221 | 155 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | 
| 13183 | 156 | lemma posDivAlg_eqn: | 
| 157 | "0 < b ==> | |
| 158 | posDivAlg (a,b) = (if a<b then (0,a) else adjust b (posDivAlg(a, 2*b)))" | |
| 159 | by (rule posDivAlg.simps [THEN trans], simp) | |
| 160 | ||
| 15221 | 161 | text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
 | 
| 162 | theorem posDivAlg_correct [rule_format]: | |
| 14288 | 163 | "0 \<le> a --> 0 < b --> quorem ((a, b), posDivAlg (a, b))" | 
| 13183 | 164 | apply (induct_tac a b rule: posDivAlg.induct, auto) | 
| 165 | apply (simp_all add: quorem_def) | |
| 166 | (*base case: a<b*) | |
| 167 | apply (simp add: posDivAlg_eqn) | |
| 168 | (*main argument*) | |
| 169 | apply (subst posDivAlg_eqn, simp_all) | |
| 170 | apply (erule splitE) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 171 | apply (auto simp add: right_distrib Let_def) | 
| 13183 | 172 | done | 
| 173 | ||
| 174 | ||
| 15221 | 175 | subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*}
 | 
| 14271 | 176 | |
| 177 | text{*And positive divisors*}
 | |
| 13183 | 178 | |
| 179 | declare negDivAlg.simps [simp del] | |
| 180 | ||
| 15221 | 181 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | 
| 13183 | 182 | lemma negDivAlg_eqn: | 
| 183 | "0 < b ==> | |
| 184 | negDivAlg (a,b) = | |
| 14288 | 185 | (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg(a, 2*b)))" | 
| 13183 | 186 | by (rule negDivAlg.simps [THEN trans], simp) | 
| 187 | ||
| 188 | (*Correctness of negDivAlg: it computes quotients correctly | |
| 189 | It doesn't work if a=0 because the 0/b equals 0, not -1*) | |
| 190 | lemma negDivAlg_correct [rule_format]: | |
| 191 | "a < 0 --> 0 < b --> quorem ((a, b), negDivAlg (a, b))" | |
| 192 | apply (induct_tac a b rule: negDivAlg.induct, auto) | |
| 193 | apply (simp_all add: quorem_def) | |
| 14288 | 194 | (*base case: 0\<le>a+b*) | 
| 13183 | 195 | apply (simp add: negDivAlg_eqn) | 
| 196 | (*main argument*) | |
| 197 | apply (subst negDivAlg_eqn, assumption) | |
| 198 | apply (erule splitE) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 199 | apply (auto simp add: right_distrib Let_def) | 
| 13183 | 200 | done | 
| 201 | ||
| 202 | ||
| 14271 | 203 | subsection{*Existence Shown by Proving the Division Algorithm to be Correct*}
 | 
| 13183 | 204 | |
| 205 | (*the case a=0*) | |
| 15221 | 206 | lemma quorem_0: "b \<noteq> 0 ==> quorem ((0,b), (0,0))" | 
| 13183 | 207 | by (auto simp add: quorem_def linorder_neq_iff) | 
| 208 | ||
| 209 | lemma posDivAlg_0 [simp]: "posDivAlg (0, b) = (0, 0)" | |
| 210 | by (subst posDivAlg.simps, auto) | |
| 211 | ||
| 212 | lemma negDivAlg_minus1 [simp]: "negDivAlg (-1, b) = (-1, b - 1)" | |
| 213 | by (subst negDivAlg.simps, auto) | |
| 214 | ||
| 215 | lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)" | |
| 15221 | 216 | by (simp add: negateSnd_def) | 
| 13183 | 217 | |
| 218 | lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)" | |
| 219 | by (auto simp add: split_ifs quorem_def) | |
| 220 | ||
| 15221 | 221 | lemma divAlg_correct: "b \<noteq> 0 ==> quorem ((a,b), divAlg(a,b))" | 
| 13183 | 222 | by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg | 
| 223 | posDivAlg_correct negDivAlg_correct) | |
| 224 | ||
| 15221 | 225 | text{*Arbitrary definitions for division by zero.  Useful to simplify 
 | 
| 226 | certain equations.*} | |
| 13183 | 227 | |
| 14271 | 228 | lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a" | 
| 229 | by (simp add: div_def mod_def divAlg_def posDivAlg.simps) | |
| 13183 | 230 | |
| 15221 | 231 | |
| 232 | text{*Basic laws about division and remainder*}
 | |
| 13183 | 233 | |
| 234 | lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" | |
| 15013 | 235 | apply (case_tac "b = 0", simp) | 
| 13183 | 236 | apply (cut_tac a = a and b = b in divAlg_correct) | 
| 237 | apply (auto simp add: quorem_def div_def mod_def) | |
| 238 | done | |
| 239 | ||
| 13517 | 240 | lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k" | 
| 241 | by(simp add: zmod_zdiv_equality[symmetric]) | |
| 242 | ||
| 243 | lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 244 | by(simp add: mult_commute zmod_zdiv_equality[symmetric]) | 
| 13517 | 245 | |
| 246 | use "IntDiv_setup.ML" | |
| 247 | ||
| 14288 | 248 | lemma pos_mod_conj : "(0::int) < b ==> 0 \<le> a mod b & a mod b < b" | 
| 13183 | 249 | apply (cut_tac a = a and b = b in divAlg_correct) | 
| 250 | apply (auto simp add: quorem_def mod_def) | |
| 251 | done | |
| 252 | ||
| 13788 | 253 | lemmas pos_mod_sign[simp] = pos_mod_conj [THEN conjunct1, standard] | 
| 254 | and pos_mod_bound[simp] = pos_mod_conj [THEN conjunct2, standard] | |
| 13183 | 255 | |
| 14288 | 256 | lemma neg_mod_conj : "b < (0::int) ==> a mod b \<le> 0 & b < a mod b" | 
| 13183 | 257 | apply (cut_tac a = a and b = b in divAlg_correct) | 
| 258 | apply (auto simp add: quorem_def div_def mod_def) | |
| 259 | done | |
| 260 | ||
| 13788 | 261 | lemmas neg_mod_sign[simp] = neg_mod_conj [THEN conjunct1, standard] | 
| 262 | and neg_mod_bound[simp] = neg_mod_conj [THEN conjunct2, standard] | |
| 13183 | 263 | |
| 264 | ||
| 13260 | 265 | |
| 15221 | 266 | subsection{*General Properties of div and mod*}
 | 
| 13183 | 267 | |
| 15221 | 268 | lemma quorem_div_mod: "b \<noteq> 0 ==> quorem ((a, b), (a div b, a mod b))" | 
| 13183 | 269 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 13788 | 270 | apply (force simp add: quorem_def linorder_neq_iff) | 
| 13183 | 271 | done | 
| 272 | ||
| 15221 | 273 | lemma quorem_div: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a div b = q" | 
| 13183 | 274 | by (simp add: quorem_div_mod [THEN unique_quotient]) | 
| 275 | ||
| 15221 | 276 | lemma quorem_mod: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a mod b = r" | 
| 13183 | 277 | by (simp add: quorem_div_mod [THEN unique_remainder]) | 
| 278 | ||
| 14288 | 279 | lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0" | 
| 13183 | 280 | apply (rule quorem_div) | 
| 281 | apply (auto simp add: quorem_def) | |
| 282 | done | |
| 283 | ||
| 14288 | 284 | lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0" | 
| 13183 | 285 | apply (rule quorem_div) | 
| 286 | apply (auto simp add: quorem_def) | |
| 287 | done | |
| 288 | ||
| 14288 | 289 | lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1" | 
| 13183 | 290 | apply (rule quorem_div) | 
| 291 | apply (auto simp add: quorem_def) | |
| 292 | done | |
| 293 | ||
| 294 | (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) | |
| 295 | ||
| 14288 | 296 | lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a" | 
| 13183 | 297 | apply (rule_tac q = 0 in quorem_mod) | 
| 298 | apply (auto simp add: quorem_def) | |
| 299 | done | |
| 300 | ||
| 14288 | 301 | lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a" | 
| 13183 | 302 | apply (rule_tac q = 0 in quorem_mod) | 
| 303 | apply (auto simp add: quorem_def) | |
| 304 | done | |
| 305 | ||
| 14288 | 306 | lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b" | 
| 13183 | 307 | apply (rule_tac q = "-1" in quorem_mod) | 
| 308 | apply (auto simp add: quorem_def) | |
| 309 | done | |
| 310 | ||
| 15221 | 311 | text{*There is no @{text mod_neg_pos_trivial}.*}
 | 
| 13183 | 312 | |
| 313 | ||
| 314 | (*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*) | |
| 315 | lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)" | |
| 15013 | 316 | apply (case_tac "b = 0", simp) | 
| 13183 | 317 | apply (simp add: quorem_div_mod [THEN quorem_neg, simplified, | 
| 318 | THEN quorem_div, THEN sym]) | |
| 319 | ||
| 320 | done | |
| 321 | ||
| 322 | (*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*) | |
| 323 | lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))" | |
| 15013 | 324 | apply (case_tac "b = 0", simp) | 
| 13183 | 325 | apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod], | 
| 326 | auto) | |
| 327 | done | |
| 328 | ||
| 15221 | 329 | |
| 330 | subsection{*Laws for div and mod with Unary Minus*}
 | |
| 13183 | 331 | |
| 332 | lemma zminus1_lemma: | |
| 333 | "quorem((a,b),(q,r)) | |
| 334 | ==> quorem ((-a,b), (if r=0 then -q else -q - 1), | |
| 335 | (if r=0 then 0 else b-r))" | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 336 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_diff_distrib) | 
| 13183 | 337 | |
| 338 | ||
| 339 | lemma zdiv_zminus1_eq_if: | |
| 15221 | 340 | "b \<noteq> (0::int) | 
| 13183 | 341 | ==> (-a) div b = | 
| 342 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | |
| 343 | by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div]) | |
| 344 | ||
| 345 | lemma zmod_zminus1_eq_if: | |
| 346 | "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" | |
| 15013 | 347 | apply (case_tac "b = 0", simp) | 
| 13183 | 348 | apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod]) | 
| 349 | done | |
| 350 | ||
| 351 | lemma zdiv_zminus2: "a div (-b) = (-a::int) div b" | |
| 352 | by (cut_tac a = "-a" in zdiv_zminus_zminus, auto) | |
| 353 | ||
| 354 | lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)" | |
| 355 | by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto) | |
| 356 | ||
| 357 | lemma zdiv_zminus2_eq_if: | |
| 15221 | 358 | "b \<noteq> (0::int) | 
| 13183 | 359 | ==> a div (-b) = | 
| 360 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | |
| 361 | by (simp add: zdiv_zminus1_eq_if zdiv_zminus2) | |
| 362 | ||
| 363 | lemma zmod_zminus2_eq_if: | |
| 364 | "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" | |
| 365 | by (simp add: zmod_zminus1_eq_if zmod_zminus2) | |
| 366 | ||
| 367 | ||
| 14271 | 368 | subsection{*Division of a Number by Itself*}
 | 
| 13183 | 369 | |
| 14288 | 370 | lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \<le> q" | 
| 13183 | 371 | apply (subgoal_tac "0 < a*q") | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 372 | apply (simp add: zero_less_mult_iff, arith) | 
| 13183 | 373 | done | 
| 374 | ||
| 14288 | 375 | lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \<le> r |] ==> q \<le> 1" | 
| 376 | apply (subgoal_tac "0 \<le> a* (1-q) ") | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 377 | apply (simp add: zero_le_mult_iff) | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 378 | apply (simp add: right_diff_distrib) | 
| 13183 | 379 | done | 
| 380 | ||
| 15221 | 381 | lemma self_quotient: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> q = 1" | 
| 13183 | 382 | apply (simp add: split_ifs quorem_def linorder_neq_iff) | 
| 15221 | 383 | apply (rule order_antisym, safe, simp_all) | 
| 13524 | 384 | apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1) | 
| 385 | apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2) | |
| 15221 | 386 | apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+ | 
| 13183 | 387 | done | 
| 388 | ||
| 15221 | 389 | lemma self_remainder: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> r = 0" | 
| 13183 | 390 | apply (frule self_quotient, assumption) | 
| 391 | apply (simp add: quorem_def) | |
| 392 | done | |
| 393 | ||
| 15221 | 394 | lemma zdiv_self [simp]: "a \<noteq> 0 ==> a div a = (1::int)" | 
| 13183 | 395 | by (simp add: quorem_div_mod [THEN self_quotient]) | 
| 396 | ||
| 397 | (*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *) | |
| 398 | lemma zmod_self [simp]: "a mod a = (0::int)" | |
| 15013 | 399 | apply (case_tac "a = 0", simp) | 
| 13183 | 400 | apply (simp add: quorem_div_mod [THEN self_remainder]) | 
| 401 | done | |
| 402 | ||
| 403 | ||
| 14271 | 404 | subsection{*Computation of Division and Remainder*}
 | 
| 13183 | 405 | |
| 406 | lemma zdiv_zero [simp]: "(0::int) div b = 0" | |
| 407 | by (simp add: div_def divAlg_def) | |
| 408 | ||
| 409 | lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" | |
| 410 | by (simp add: div_def divAlg_def) | |
| 411 | ||
| 412 | lemma zmod_zero [simp]: "(0::int) mod b = 0" | |
| 413 | by (simp add: mod_def divAlg_def) | |
| 414 | ||
| 415 | lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1" | |
| 416 | by (simp add: div_def divAlg_def) | |
| 417 | ||
| 418 | lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" | |
| 419 | by (simp add: mod_def divAlg_def) | |
| 420 | ||
| 15221 | 421 | text{*a positive, b positive *}
 | 
| 13183 | 422 | |
| 14288 | 423 | lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg(a,b))" | 
| 13183 | 424 | by (simp add: div_def divAlg_def) | 
| 425 | ||
| 14288 | 426 | lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg(a,b))" | 
| 13183 | 427 | by (simp add: mod_def divAlg_def) | 
| 428 | ||
| 15221 | 429 | text{*a negative, b positive *}
 | 
| 13183 | 430 | |
| 431 | lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg(a,b))" | |
| 432 | by (simp add: div_def divAlg_def) | |
| 433 | ||
| 434 | lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg(a,b))" | |
| 435 | by (simp add: mod_def divAlg_def) | |
| 436 | ||
| 15221 | 437 | text{*a positive, b negative *}
 | 
| 13183 | 438 | |
| 439 | lemma div_pos_neg: | |
| 440 | "[| 0 < a; b < 0 |] ==> a div b = fst (negateSnd(negDivAlg(-a,-b)))" | |
| 441 | by (simp add: div_def divAlg_def) | |
| 442 | ||
| 443 | lemma mod_pos_neg: | |
| 444 | "[| 0 < a; b < 0 |] ==> a mod b = snd (negateSnd(negDivAlg(-a,-b)))" | |
| 445 | by (simp add: mod_def divAlg_def) | |
| 446 | ||
| 15221 | 447 | text{*a negative, b negative *}
 | 
| 13183 | 448 | |
| 449 | lemma div_neg_neg: | |
| 14288 | 450 | "[| a < 0; b \<le> 0 |] ==> a div b = fst (negateSnd(posDivAlg(-a,-b)))" | 
| 13183 | 451 | by (simp add: div_def divAlg_def) | 
| 452 | ||
| 453 | lemma mod_neg_neg: | |
| 14288 | 454 | "[| a < 0; b \<le> 0 |] ==> a mod b = snd (negateSnd(posDivAlg(-a,-b)))" | 
| 13183 | 455 | by (simp add: mod_def divAlg_def) | 
| 456 | ||
| 457 | text {*Simplify expresions in which div and mod combine numerical constants*}
 | |
| 458 | ||
| 459 | declare div_pos_pos [of "number_of v" "number_of w", standard, simp] | |
| 460 | declare div_neg_pos [of "number_of v" "number_of w", standard, simp] | |
| 461 | declare div_pos_neg [of "number_of v" "number_of w", standard, simp] | |
| 462 | declare div_neg_neg [of "number_of v" "number_of w", standard, simp] | |
| 463 | ||
| 464 | declare mod_pos_pos [of "number_of v" "number_of w", standard, simp] | |
| 465 | declare mod_neg_pos [of "number_of v" "number_of w", standard, simp] | |
| 466 | declare mod_pos_neg [of "number_of v" "number_of w", standard, simp] | |
| 467 | declare mod_neg_neg [of "number_of v" "number_of w", standard, simp] | |
| 468 | ||
| 469 | declare posDivAlg_eqn [of "number_of v" "number_of w", standard, simp] | |
| 470 | declare negDivAlg_eqn [of "number_of v" "number_of w", standard, simp] | |
| 471 | ||
| 472 | ||
| 15221 | 473 | text{*Special-case simplification *}
 | 
| 13183 | 474 | |
| 475 | lemma zmod_1 [simp]: "a mod (1::int) = 0" | |
| 476 | apply (cut_tac a = a and b = 1 in pos_mod_sign) | |
| 13788 | 477 | apply (cut_tac [2] a = a and b = 1 in pos_mod_bound) | 
| 478 | apply (auto simp del:pos_mod_bound pos_mod_sign) | |
| 479 | done | |
| 13183 | 480 | |
| 481 | lemma zdiv_1 [simp]: "a div (1::int) = a" | |
| 482 | by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto) | |
| 483 | ||
| 484 | lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0" | |
| 485 | apply (cut_tac a = a and b = "-1" in neg_mod_sign) | |
| 13788 | 486 | apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound) | 
| 487 | apply (auto simp del: neg_mod_sign neg_mod_bound) | |
| 13183 | 488 | done | 
| 489 | ||
| 490 | lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a" | |
| 491 | by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto) | |
| 492 | ||
| 493 | (** The last remaining special cases for constant arithmetic: | |
| 494 | 1 div z and 1 mod z **) | |
| 495 | ||
| 496 | declare div_pos_pos [OF int_0_less_1, of "number_of w", standard, simp] | |
| 497 | declare div_pos_neg [OF int_0_less_1, of "number_of w", standard, simp] | |
| 498 | declare mod_pos_pos [OF int_0_less_1, of "number_of w", standard, simp] | |
| 499 | declare mod_pos_neg [OF int_0_less_1, of "number_of w", standard, simp] | |
| 500 | ||
| 501 | declare posDivAlg_eqn [of concl: 1 "number_of w", standard, simp] | |
| 502 | declare negDivAlg_eqn [of concl: 1 "number_of w", standard, simp] | |
| 503 | ||
| 504 | ||
| 14271 | 505 | subsection{*Monotonicity in the First Argument (Dividend)*}
 | 
| 13183 | 506 | |
| 14288 | 507 | lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b" | 
| 13183 | 508 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 509 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | |
| 510 | apply (rule unique_quotient_lemma) | |
| 511 | apply (erule subst) | |
| 15221 | 512 | apply (erule subst, simp_all) | 
| 13183 | 513 | done | 
| 514 | ||
| 14288 | 515 | lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b" | 
| 13183 | 516 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 517 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | |
| 518 | apply (rule unique_quotient_lemma_neg) | |
| 519 | apply (erule subst) | |
| 15221 | 520 | apply (erule subst, simp_all) | 
| 13183 | 521 | done | 
| 6917 | 522 | |
| 523 | ||
| 14271 | 524 | subsection{*Monotonicity in the Second Argument (Divisor)*}
 | 
| 13183 | 525 | |
| 526 | lemma q_pos_lemma: | |
| 14288 | 527 | "[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)" | 
| 13183 | 528 | apply (subgoal_tac "0 < b'* (q' + 1) ") | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 529 | apply (simp add: zero_less_mult_iff) | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 530 | apply (simp add: right_distrib) | 
| 13183 | 531 | done | 
| 532 | ||
| 533 | lemma zdiv_mono2_lemma: | |
| 14288 | 534 | "[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r'; | 
| 535 | r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |] | |
| 536 | ==> q \<le> (q'::int)" | |
| 13183 | 537 | apply (frule q_pos_lemma, assumption+) | 
| 538 | apply (subgoal_tac "b*q < b* (q' + 1) ") | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 539 | apply (simp add: mult_less_cancel_left) | 
| 13183 | 540 | apply (subgoal_tac "b*q = r' - r + b'*q'") | 
| 541 | prefer 2 apply simp | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 542 | apply (simp (no_asm_simp) add: right_distrib) | 
| 15221 | 543 | apply (subst add_commute, rule zadd_zless_mono, arith) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 544 | apply (rule mult_right_mono, auto) | 
| 13183 | 545 | done | 
| 546 | ||
| 547 | lemma zdiv_mono2: | |
| 14288 | 548 | "[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'" | 
| 15221 | 549 | apply (subgoal_tac "b \<noteq> 0") | 
| 13183 | 550 | prefer 2 apply arith | 
| 551 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | |
| 552 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | |
| 553 | apply (rule zdiv_mono2_lemma) | |
| 554 | apply (erule subst) | |
| 15221 | 555 | apply (erule subst, simp_all) | 
| 13183 | 556 | done | 
| 557 | ||
| 558 | lemma q_neg_lemma: | |
| 14288 | 559 | "[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)" | 
| 13183 | 560 | apply (subgoal_tac "b'*q' < 0") | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 561 | apply (simp add: mult_less_0_iff, arith) | 
| 13183 | 562 | done | 
| 563 | ||
| 564 | lemma zdiv_mono2_neg_lemma: | |
| 565 | "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; | |
| 14288 | 566 | r < b; 0 \<le> r'; 0 < b'; b' \<le> b |] | 
| 567 | ==> q' \<le> (q::int)" | |
| 13183 | 568 | apply (frule q_neg_lemma, assumption+) | 
| 569 | apply (subgoal_tac "b*q' < b* (q + 1) ") | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 570 | apply (simp add: mult_less_cancel_left) | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 571 | apply (simp add: right_distrib) | 
| 14288 | 572 | apply (subgoal_tac "b*q' \<le> b'*q'") | 
| 15221 | 573 | prefer 2 apply (simp add: mult_right_mono_neg, arith) | 
| 13183 | 574 | done | 
| 575 | ||
| 576 | lemma zdiv_mono2_neg: | |
| 14288 | 577 | "[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b" | 
| 13183 | 578 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 579 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | |
| 580 | apply (rule zdiv_mono2_neg_lemma) | |
| 581 | apply (erule subst) | |
| 15221 | 582 | apply (erule subst, simp_all) | 
| 13183 | 583 | done | 
| 584 | ||
| 14271 | 585 | subsection{*More Algebraic Laws for div and mod*}
 | 
| 13183 | 586 | |
| 15221 | 587 | text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
 | 
| 13183 | 588 | |
| 589 | lemma zmult1_lemma: | |
| 15221 | 590 | "[| quorem((b,c),(q,r)); c \<noteq> 0 |] | 
| 13183 | 591 | ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))" | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 592 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) | 
| 13183 | 593 | |
| 594 | lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" | |
| 15013 | 595 | apply (case_tac "c = 0", simp) | 
| 13183 | 596 | apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div]) | 
| 597 | done | |
| 598 | ||
| 599 | lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)" | |
| 15013 | 600 | apply (case_tac "c = 0", simp) | 
| 13183 | 601 | apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod]) | 
| 602 | done | |
| 603 | ||
| 604 | lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c" | |
| 605 | apply (rule trans) | |
| 606 | apply (rule_tac s = "b*a mod c" in trans) | |
| 607 | apply (rule_tac [2] zmod_zmult1_eq) | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 608 | apply (simp_all add: mult_commute) | 
| 13183 | 609 | done | 
| 610 | ||
| 611 | lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c" | |
| 612 | apply (rule zmod_zmult1_eq' [THEN trans]) | |
| 613 | apply (rule zmod_zmult1_eq) | |
| 614 | done | |
| 615 | ||
| 15221 | 616 | lemma zdiv_zmult_self1 [simp]: "b \<noteq> (0::int) ==> (a*b) div b = a" | 
| 13183 | 617 | by (simp add: zdiv_zmult1_eq) | 
| 618 | ||
| 15221 | 619 | lemma zdiv_zmult_self2 [simp]: "b \<noteq> (0::int) ==> (b*a) div b = a" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 620 | by (subst mult_commute, erule zdiv_zmult_self1) | 
| 13183 | 621 | |
| 622 | lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)" | |
| 623 | by (simp add: zmod_zmult1_eq) | |
| 624 | ||
| 625 | lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 626 | by (simp add: mult_commute zmod_zmult1_eq) | 
| 13183 | 627 | |
| 628 | lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" | |
| 13517 | 629 | proof | 
| 630 | assume "m mod d = 0" | |
| 14473 | 631 | with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto | 
| 13517 | 632 | next | 
| 633 | assume "EX q::int. m = d*q" | |
| 634 | thus "m mod d = 0" by auto | |
| 635 | qed | |
| 13183 | 636 | |
| 637 | declare zmod_eq_0_iff [THEN iffD1, dest!] | |
| 638 | ||
| 15221 | 639 | text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
 | 
| 13183 | 640 | |
| 641 | lemma zadd1_lemma: | |
| 15221 | 642 | "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c \<noteq> 0 |] | 
| 13183 | 643 | ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))" | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 644 | by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) | 
| 13183 | 645 | |
| 646 | (*NOT suitable for rewriting: the RHS has an instance of the LHS*) | |
| 647 | lemma zdiv_zadd1_eq: | |
| 648 | "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" | |
| 15013 | 649 | apply (case_tac "c = 0", simp) | 
| 13183 | 650 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div) | 
| 651 | done | |
| 652 | ||
| 653 | lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c" | |
| 15013 | 654 | apply (case_tac "c = 0", simp) | 
| 13183 | 655 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod) | 
| 656 | done | |
| 657 | ||
| 658 | lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)" | |
| 15013 | 659 | apply (case_tac "b = 0", simp) | 
| 13788 | 660 | apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial) | 
| 13183 | 661 | done | 
| 662 | ||
| 663 | lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)" | |
| 15013 | 664 | apply (case_tac "b = 0", simp) | 
| 13788 | 665 | apply (force simp add: linorder_neq_iff mod_pos_pos_trivial mod_neg_neg_trivial) | 
| 13183 | 666 | done | 
| 667 | ||
| 668 | lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c" | |
| 669 | apply (rule trans [symmetric]) | |
| 670 | apply (rule zmod_zadd1_eq, simp) | |
| 671 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 672 | done | |
| 673 | ||
| 674 | lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c" | |
| 675 | apply (rule trans [symmetric]) | |
| 676 | apply (rule zmod_zadd1_eq, simp) | |
| 677 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 678 | done | |
| 679 | ||
| 15221 | 680 | lemma zdiv_zadd_self1[simp]: "a \<noteq> (0::int) ==> (a+b) div a = b div a + 1" | 
| 13183 | 681 | by (simp add: zdiv_zadd1_eq) | 
| 682 | ||
| 15221 | 683 | lemma zdiv_zadd_self2[simp]: "a \<noteq> (0::int) ==> (b+a) div a = b div a + 1" | 
| 13183 | 684 | by (simp add: zdiv_zadd1_eq) | 
| 685 | ||
| 686 | lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)" | |
| 15013 | 687 | apply (case_tac "a = 0", simp) | 
| 13183 | 688 | apply (simp add: zmod_zadd1_eq) | 
| 689 | done | |
| 690 | ||
| 691 | lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)" | |
| 15013 | 692 | apply (case_tac "a = 0", simp) | 
| 13183 | 693 | apply (simp add: zmod_zadd1_eq) | 
| 694 | done | |
| 695 | ||
| 696 | ||
| 14271 | 697 | subsection{*Proving  @{term "a div (b*c) = (a div b) div c"} *}
 | 
| 13183 | 698 | |
| 699 | (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but | |
| 700 | 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems | |
| 701 | to cause particular problems.*) | |
| 702 | ||
| 15221 | 703 | text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
 | 
| 13183 | 704 | |
| 14288 | 705 | lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r" | 
| 13183 | 706 | apply (subgoal_tac "b * (c - q mod c) < r * 1") | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 707 | apply (simp add: right_diff_distrib) | 
| 13183 | 708 | apply (rule order_le_less_trans) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 709 | apply (erule_tac [2] mult_strict_right_mono) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 710 | apply (rule mult_left_mono_neg) | 
| 15221 | 711 | apply (auto simp add: compare_rls add_commute [of 1] | 
| 13183 | 712 | add1_zle_eq pos_mod_bound) | 
| 713 | done | |
| 714 | ||
| 15221 | 715 | lemma zmult2_lemma_aux2: | 
| 716 | "[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0" | |
| 14288 | 717 | apply (subgoal_tac "b * (q mod c) \<le> 0") | 
| 13183 | 718 | apply arith | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 719 | apply (simp add: mult_le_0_iff) | 
| 13183 | 720 | done | 
| 721 | ||
| 14288 | 722 | lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r" | 
| 723 | apply (subgoal_tac "0 \<le> b * (q mod c) ") | |
| 13183 | 724 | apply arith | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 725 | apply (simp add: zero_le_mult_iff) | 
| 13183 | 726 | done | 
| 727 | ||
| 14288 | 728 | lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c" | 
| 13183 | 729 | apply (subgoal_tac "r * 1 < b * (c - q mod c) ") | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 730 | apply (simp add: right_diff_distrib) | 
| 13183 | 731 | apply (rule order_less_le_trans) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 732 | apply (erule mult_strict_right_mono) | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 733 | apply (rule_tac [2] mult_left_mono) | 
| 15221 | 734 | apply (auto simp add: compare_rls add_commute [of 1] | 
| 13183 | 735 | add1_zle_eq pos_mod_bound) | 
| 736 | done | |
| 737 | ||
| 15221 | 738 | lemma zmult2_lemma: "[| quorem ((a,b), (q,r)); b \<noteq> 0; 0 < c |] | 
| 13183 | 739 | ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))" | 
| 14271 | 740 | by (auto simp add: mult_ac quorem_def linorder_neq_iff | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 741 | zero_less_mult_iff right_distrib [symmetric] | 
| 13524 | 742 | zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4) | 
| 13183 | 743 | |
| 744 | lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c" | |
| 15013 | 745 | apply (case_tac "b = 0", simp) | 
| 13183 | 746 | apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div]) | 
| 747 | done | |
| 748 | ||
| 749 | lemma zmod_zmult2_eq: | |
| 750 | "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b" | |
| 15013 | 751 | apply (case_tac "b = 0", simp) | 
| 13183 | 752 | apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod]) | 
| 753 | done | |
| 754 | ||
| 755 | ||
| 14271 | 756 | subsection{*Cancellation of Common Factors in div*}
 | 
| 13183 | 757 | |
| 15221 | 758 | lemma zdiv_zmult_zmult1_aux1: | 
| 759 | "[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b" | |
| 13183 | 760 | by (subst zdiv_zmult2_eq, auto) | 
| 761 | ||
| 15221 | 762 | lemma zdiv_zmult_zmult1_aux2: | 
| 763 | "[| b < (0::int); c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b" | |
| 13183 | 764 | apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ") | 
| 13524 | 765 | apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto) | 
| 13183 | 766 | done | 
| 767 | ||
| 15221 | 768 | lemma zdiv_zmult_zmult1: "c \<noteq> (0::int) ==> (c*a) div (c*b) = a div b" | 
| 15013 | 769 | apply (case_tac "b = 0", simp) | 
| 13524 | 770 | apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2) | 
| 13183 | 771 | done | 
| 772 | ||
| 15221 | 773 | lemma zdiv_zmult_zmult2: "c \<noteq> (0::int) ==> (a*c) div (b*c) = a div b" | 
| 13183 | 774 | apply (drule zdiv_zmult_zmult1) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 775 | apply (auto simp add: mult_commute) | 
| 13183 | 776 | done | 
| 777 | ||
| 778 | ||
| 779 | ||
| 14271 | 780 | subsection{*Distribution of Factors over mod*}
 | 
| 13183 | 781 | |
| 15221 | 782 | lemma zmod_zmult_zmult1_aux1: | 
| 783 | "[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" | |
| 13183 | 784 | by (subst zmod_zmult2_eq, auto) | 
| 785 | ||
| 15221 | 786 | lemma zmod_zmult_zmult1_aux2: | 
| 787 | "[| b < (0::int); c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" | |
| 13183 | 788 | apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))") | 
| 13524 | 789 | apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto) | 
| 13183 | 790 | done | 
| 791 | ||
| 792 | lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)" | |
| 15013 | 793 | apply (case_tac "b = 0", simp) | 
| 794 | apply (case_tac "c = 0", simp) | |
| 13524 | 795 | apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2) | 
| 13183 | 796 | done | 
| 797 | ||
| 798 | lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)" | |
| 799 | apply (cut_tac c = c in zmod_zmult_zmult1) | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 800 | apply (auto simp add: mult_commute) | 
| 13183 | 801 | done | 
| 802 | ||
| 803 | ||
| 14271 | 804 | subsection {*Splitting Rules for div and mod*}
 | 
| 13260 | 805 | |
| 806 | text{*The proofs of the two lemmas below are essentially identical*}
 | |
| 807 | ||
| 808 | lemma split_pos_lemma: | |
| 809 | "0<k ==> | |
| 14288 | 810 | P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)" | 
| 15221 | 811 | apply (rule iffI, clarify) | 
| 13260 | 812 | apply (erule_tac P="P ?x ?y" in rev_mp) | 
| 813 | apply (subst zmod_zadd1_eq) | |
| 814 | apply (subst zdiv_zadd1_eq) | |
| 815 | apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) | |
| 816 | txt{*converse direction*}
 | |
| 817 | apply (drule_tac x = "n div k" in spec) | |
| 15221 | 818 | apply (drule_tac x = "n mod k" in spec, simp) | 
| 13260 | 819 | done | 
| 820 | ||
| 821 | lemma split_neg_lemma: | |
| 822 | "k<0 ==> | |
| 14288 | 823 | P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)" | 
| 15221 | 824 | apply (rule iffI, clarify) | 
| 13260 | 825 | apply (erule_tac P="P ?x ?y" in rev_mp) | 
| 826 | apply (subst zmod_zadd1_eq) | |
| 827 | apply (subst zdiv_zadd1_eq) | |
| 828 | apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) | |
| 829 | txt{*converse direction*}
 | |
| 830 | apply (drule_tac x = "n div k" in spec) | |
| 15221 | 831 | apply (drule_tac x = "n mod k" in spec, simp) | 
| 13260 | 832 | done | 
| 833 | ||
| 834 | lemma split_zdiv: | |
| 835 | "P(n div k :: int) = | |
| 836 | ((k = 0 --> P 0) & | |
| 14288 | 837 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & | 
| 838 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))" | |
| 15221 | 839 | apply (case_tac "k=0", simp) | 
| 13260 | 840 | apply (simp only: linorder_neq_iff) | 
| 841 | apply (erule disjE) | |
| 842 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] | |
| 843 | split_neg_lemma [of concl: "%x y. P x"]) | |
| 844 | done | |
| 845 | ||
| 846 | lemma split_zmod: | |
| 847 | "P(n mod k :: int) = | |
| 848 | ((k = 0 --> P n) & | |
| 14288 | 849 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & | 
| 850 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))" | |
| 15221 | 851 | apply (case_tac "k=0", simp) | 
| 13260 | 852 | apply (simp only: linorder_neq_iff) | 
| 853 | apply (erule disjE) | |
| 854 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] | |
| 855 | split_neg_lemma [of concl: "%x y. P y"]) | |
| 856 | done | |
| 857 | ||
| 858 | (* Enable arith to deal with div 2 and mod 2: *) | |
| 13266 
2a6ad4357d72
modified Larry's changes to make div/mod a numeral work in arith.
 nipkow parents: 
13260diff
changeset | 859 | declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split] | 
| 
2a6ad4357d72
modified Larry's changes to make div/mod a numeral work in arith.
 nipkow parents: 
13260diff
changeset | 860 | declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split] | 
| 13260 | 861 | |
| 862 | ||
| 14271 | 863 | subsection{*Speeding up the Division Algorithm with Shifting*}
 | 
| 13183 | 864 | |
| 15221 | 865 | text{*computing div by shifting *}
 | 
| 13183 | 866 | |
| 14288 | 867 | lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a" | 
| 868 | proof cases | |
| 869 | assume "a=0" | |
| 870 | thus ?thesis by simp | |
| 871 | next | |
| 872 | assume "a\<noteq>0" and le_a: "0\<le>a" | |
| 873 | hence a_pos: "1 \<le> a" by arith | |
| 874 | hence one_less_a2: "1 < 2*a" by arith | |
| 875 | hence le_2a: "2 * (1 + b mod a) \<le> 2 * a" | |
| 15221 | 876 | by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq) | 
| 14288 | 877 | with a_pos have "0 \<le> b mod a" by simp | 
| 878 | hence le_addm: "0 \<le> 1 mod (2*a) + 2*(b mod a)" | |
| 879 | by (simp add: mod_pos_pos_trivial one_less_a2) | |
| 880 | with le_2a | |
| 881 | have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0" | |
| 882 | by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2 | |
| 883 | right_distrib) | |
| 884 | thus ?thesis | |
| 885 | by (subst zdiv_zadd1_eq, | |
| 886 | simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2 | |
| 887 | div_pos_pos_trivial) | |
| 888 | qed | |
| 13183 | 889 | |
| 14288 | 890 | lemma neg_zdiv_mult_2: "a \<le> (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a" | 
| 13183 | 891 | apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ") | 
| 892 | apply (rule_tac [2] pos_zdiv_mult_2) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 893 | apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) | 
| 13183 | 894 | apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 895 | apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric], | 
| 13183 | 896 | simp) | 
| 897 | done | |
| 898 | ||
| 899 | ||
| 900 | (*Not clear why this must be proved separately; probably number_of causes | |
| 901 | simplification problems*) | |
| 14288 | 902 | lemma not_0_le_lemma: "~ 0 \<le> x ==> x \<le> (0::int)" | 
| 13183 | 903 | by auto | 
| 904 | ||
| 905 | lemma zdiv_number_of_BIT[simp]: | |
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 906 | "number_of (v BIT b) div number_of (w BIT bit.B0) = | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 907 | (if b=bit.B0 | (0::int) \<le> number_of w | 
| 13183 | 908 | then number_of v div (number_of w) | 
| 909 | else (number_of v + (1::int)) div (number_of w))" | |
| 15013 | 910 | apply (simp only: number_of_eq Bin_simps UNIV_I split: split_if) | 
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 911 | apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 912 | split: bit.split) | 
| 13183 | 913 | done | 
| 914 | ||
| 915 | ||
| 15013 | 916 | subsection{*Computing mod by Shifting (proofs resemble those for div)*}
 | 
| 13183 | 917 | |
| 918 | lemma pos_zmod_mult_2: | |
| 14288 | 919 | "(0::int) \<le> a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)" | 
| 15013 | 920 | apply (case_tac "a = 0", simp) | 
| 13183 | 921 | apply (subgoal_tac "1 < a * 2") | 
| 922 | prefer 2 apply arith | |
| 14288 | 923 | apply (subgoal_tac "2* (1 + b mod a) \<le> 2*a") | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 924 | apply (rule_tac [2] mult_left_mono) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 925 | apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq | 
| 13183 | 926 | pos_mod_bound) | 
| 927 | apply (subst zmod_zadd1_eq) | |
| 928 | apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial) | |
| 929 | apply (rule mod_pos_pos_trivial) | |
| 14288 | 930 | apply (auto simp add: mod_pos_pos_trivial left_distrib) | 
| 15221 | 931 | apply (subgoal_tac "0 \<le> b mod a", arith, simp) | 
| 13183 | 932 | done | 
| 933 | ||
| 934 | lemma neg_zmod_mult_2: | |
| 14288 | 935 | "a \<le> (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1" | 
| 13183 | 936 | apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) = | 
| 937 | 1 + 2* ((-b - 1) mod (-a))") | |
| 938 | apply (rule_tac [2] pos_zmod_mult_2) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 939 | apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) | 
| 13183 | 940 | apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") | 
| 941 | prefer 2 apply simp | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 942 | apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric]) | 
| 13183 | 943 | done | 
| 944 | ||
| 945 | lemma zmod_number_of_BIT [simp]: | |
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 946 | "number_of (v BIT b) mod number_of (w BIT bit.B0) = | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 947 | (case b of | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 948 | bit.B0 => 2 * (number_of v mod number_of w) | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 949 | | bit.B1 => if (0::int) \<le> number_of w | 
| 13183 | 950 | then 2 * (number_of v mod number_of w) + 1 | 
| 15620 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 951 | else 2 * ((number_of v + (1::int)) mod number_of w) - 1)" | 
| 
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
 paulson parents: 
15320diff
changeset | 952 | apply (simp only: number_of_eq Bin_simps UNIV_I split: bit.split) | 
| 15013 | 953 | apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 | 
| 954 | not_0_le_lemma neg_zmod_mult_2 add_ac) | |
| 13183 | 955 | done | 
| 956 | ||
| 957 | ||
| 15013 | 958 | subsection{*Quotients of Signs*}
 | 
| 13183 | 959 | |
| 960 | lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" | |
| 14288 | 961 | apply (subgoal_tac "a div b \<le> -1", force) | 
| 13183 | 962 | apply (rule order_trans) | 
| 963 | apply (rule_tac a' = "-1" in zdiv_mono1) | |
| 964 | apply (auto simp add: zdiv_minus1) | |
| 965 | done | |
| 966 | ||
| 14288 | 967 | lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0" | 
| 13183 | 968 | by (drule zdiv_mono1_neg, auto) | 
| 969 | ||
| 14288 | 970 | lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)" | 
| 13183 | 971 | apply auto | 
| 972 | apply (drule_tac [2] zdiv_mono1) | |
| 973 | apply (auto simp add: linorder_neq_iff) | |
| 974 | apply (simp (no_asm_use) add: linorder_not_less [symmetric]) | |
| 975 | apply (blast intro: div_neg_pos_less0) | |
| 976 | done | |
| 977 | ||
| 978 | lemma neg_imp_zdiv_nonneg_iff: | |
| 14288 | 979 | "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))" | 
| 13183 | 980 | apply (subst zdiv_zminus_zminus [symmetric]) | 
| 981 | apply (subst pos_imp_zdiv_nonneg_iff, auto) | |
| 982 | done | |
| 983 | ||
| 14288 | 984 | (*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*) | 
| 13183 | 985 | lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" | 
| 986 | by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) | |
| 987 | ||
| 14288 | 988 | (*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*) | 
| 13183 | 989 | lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" | 
| 990 | by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) | |
| 991 | ||
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 992 | |
| 14271 | 993 | subsection {* The Divides Relation *}
 | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 994 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 995 | lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 996 | by(simp add:dvd_def zmod_eq_0_iff) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 997 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 998 | lemma zdvd_0_right [iff]: "(m::int) dvd 0" | 
| 15221 | 999 | by (simp add: dvd_def) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1000 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1001 | lemma zdvd_0_left [iff]: "(0 dvd (m::int)) = (m = 0)" | 
| 15221 | 1002 | by (simp add: dvd_def) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1003 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1004 | lemma zdvd_1_left [iff]: "1 dvd (m::int)" | 
| 15221 | 1005 | by (simp add: dvd_def) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1006 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1007 | lemma zdvd_refl [simp]: "m dvd (m::int)" | 
| 15221 | 1008 | by (auto simp add: dvd_def intro: zmult_1_right [symmetric]) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1009 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1010 | lemma zdvd_trans: "m dvd n ==> n dvd k ==> m dvd (k::int)" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 1011 | by (auto simp add: dvd_def intro: mult_assoc) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1012 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1013 | lemma zdvd_zminus_iff: "(m dvd -n) = (m dvd (n::int))" | 
| 15221 | 1014 | apply (simp add: dvd_def, auto) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1015 | apply (rule_tac [!] x = "-k" in exI, auto) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1016 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1017 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1018 | lemma zdvd_zminus2_iff: "(-m dvd n) = (m dvd (n::int))" | 
| 15221 | 1019 | apply (simp add: dvd_def, auto) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1020 | apply (rule_tac [!] x = "-k" in exI, auto) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1021 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1022 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1023 | lemma zdvd_anti_sym: | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1024 | "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)" | 
| 15221 | 1025 | apply (simp add: dvd_def, auto) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 1026 | apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1027 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1028 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1029 | lemma zdvd_zadd: "k dvd m ==> k dvd n ==> k dvd (m + n :: int)" | 
| 15221 | 1030 | apply (simp add: dvd_def) | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 1031 | apply (blast intro: right_distrib [symmetric]) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1032 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1033 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1034 | lemma zdvd_zdiff: "k dvd m ==> k dvd n ==> k dvd (m - n :: int)" | 
| 15221 | 1035 | apply (simp add: dvd_def) | 
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14473diff
changeset | 1036 | apply (blast intro: right_diff_distrib [symmetric]) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1037 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1038 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1039 | lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1040 | apply (subgoal_tac "m = n + (m - n)") | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1041 | apply (erule ssubst) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1042 | apply (blast intro: zdvd_zadd, simp) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1043 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1044 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1045 | lemma zdvd_zmult: "k dvd (n::int) ==> k dvd m * n" | 
| 15221 | 1046 | apply (simp add: dvd_def) | 
| 14271 | 1047 | apply (blast intro: mult_left_commute) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1048 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1049 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1050 | lemma zdvd_zmult2: "k dvd (m::int) ==> k dvd m * n" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 1051 | apply (subst mult_commute) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1052 | apply (erule zdvd_zmult) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1053 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1054 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1055 | lemma [iff]: "(k::int) dvd m * k" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1056 | apply (rule zdvd_zmult) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1057 | apply (rule zdvd_refl) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1058 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1059 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1060 | lemma [iff]: "(k::int) dvd k * m" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1061 | apply (rule zdvd_zmult2) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1062 | apply (rule zdvd_refl) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1063 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1064 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1065 | lemma zdvd_zmultD2: "j * k dvd n ==> j dvd (n::int)" | 
| 15221 | 1066 | apply (simp add: dvd_def) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 1067 | apply (simp add: mult_assoc, blast) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1068 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1069 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1070 | lemma zdvd_zmultD: "j * k dvd n ==> k dvd (n::int)" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1071 | apply (rule zdvd_zmultD2) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15221diff
changeset | 1072 | apply (subst mult_commute, assumption) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1073 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1074 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1075 | lemma zdvd_zmult_mono: "i dvd m ==> j dvd (n::int) ==> i * j dvd m * n" | 
| 15221 | 1076 | apply (simp add: dvd_def, clarify) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1077 | apply (rule_tac x = "k * ka" in exI) | 
| 14271 | 1078 | apply (simp add: mult_ac) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1079 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1080 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1081 | lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1082 | apply (rule iffI) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1083 | apply (erule_tac [2] zdvd_zadd) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1084 | apply (subgoal_tac "n = (n + k * m) - k * m") | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1085 | apply (erule ssubst) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1086 | apply (erule zdvd_zdiff, simp_all) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1087 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1088 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1089 | lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n" | 
| 15221 | 1090 | apply (simp add: dvd_def) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1091 | apply (auto simp add: zmod_zmult_zmult1) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1092 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1093 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1094 | lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1095 | apply (subgoal_tac "k dvd n * (m div n) + m mod n") | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1096 | apply (simp add: zmod_zdiv_equality [symmetric]) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1097 | apply (simp only: zdvd_zadd zdvd_zmult2) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1098 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1099 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1100 | lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)" | 
| 15221 | 1101 | apply (simp add: dvd_def, auto) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1102 | apply (subgoal_tac "0 < n") | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1103 | prefer 2 | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 1104 | apply (blast intro: order_less_trans) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1105 | apply (simp add: zero_less_mult_iff) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1106 | apply (subgoal_tac "n * k < n * 1") | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1107 | apply (drule mult_less_cancel_left [THEN iffD1], auto) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1108 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1109 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1110 | lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1111 | apply (auto simp add: dvd_def nat_abs_mult_distrib) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1112 | apply (auto simp add: nat_eq_iff abs_if split add: split_if_asm) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1113 | apply (rule_tac x = "-(int k)" in exI) | 
| 16413 | 1114 | apply (auto simp add: int_mult) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1115 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1116 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1117 | lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)" | 
| 16413 | 1118 | apply (auto simp add: dvd_def abs_if int_mult) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1119 | apply (rule_tac [3] x = "nat k" in exI) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1120 | apply (rule_tac [2] x = "-(int k)" in exI) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1121 | apply (rule_tac x = "nat (-k)" in exI) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1122 | apply (cut_tac [3] k = m in int_less_0_conv) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1123 | apply (cut_tac k = m in int_less_0_conv) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1124 | apply (auto simp add: zero_le_mult_iff mult_less_0_iff | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1125 | nat_mult_distrib [symmetric] nat_eq_iff2) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1126 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1127 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1128 | lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)" | 
| 16413 | 1129 | apply (auto simp add: dvd_def int_mult) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1130 | apply (rule_tac x = "nat k" in exI) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1131 | apply (cut_tac k = m in int_less_0_conv) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1132 | apply (auto simp add: zero_le_mult_iff mult_less_0_iff | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1133 | nat_mult_distrib [symmetric] nat_eq_iff2) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1134 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1135 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1136 | lemma zminus_dvd_iff [iff]: "(-z dvd w) = (z dvd (w::int))" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1137 | apply (auto simp add: dvd_def) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1138 | apply (rule_tac [!] x = "-k" in exI, auto) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1139 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1140 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1141 | lemma dvd_zminus_iff [iff]: "(z dvd -w) = (z dvd (w::int))" | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1142 | apply (auto simp add: dvd_def) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14353diff
changeset | 1143 | apply (drule minus_equation_iff [THEN iffD1]) | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1144 | apply (rule_tac [!] x = "-k" in exI, auto) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1145 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1146 | |
| 14288 | 1147 | lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)" | 
| 13837 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1148 | apply (rule_tac z=n in int_cases) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1149 | apply (auto simp add: dvd_int_iff) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1150 | apply (rule_tac z=z in int_cases) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1151 | apply (auto simp add: dvd_imp_le) | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1152 | done | 
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1153 | |
| 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 paulson parents: 
13788diff
changeset | 1154 | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1155 | subsection{*Integer Powers*} 
 | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1156 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1157 | instance int :: power .. | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1158 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1159 | primrec | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1160 | "p ^ 0 = 1" | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1161 | "p ^ (Suc n) = (p::int) * (p ^ n)" | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1162 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1163 | |
| 15003 | 1164 | instance int :: recpower | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1165 | proof | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1166 | fix z :: int | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1167 | fix n :: nat | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1168 | show "z^0 = 1" by simp | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1169 | show "z^(Suc n) = z * (z^n)" by simp | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1170 | qed | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1171 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1172 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1173 | lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m" | 
| 15251 | 1174 | apply (induct "y", auto) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1175 | apply (rule zmod_zmult1_eq [THEN trans]) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1176 | apply (simp (no_asm_simp)) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1177 | apply (rule zmod_zmult_distrib [symmetric]) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1178 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1179 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1180 | lemma zpower_zadd_distrib: "x^(y+z) = ((x^y)*(x^z)::int)" | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1181 | by (rule Power.power_add) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1182 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1183 | lemma zpower_zpower: "(x^y)^z = (x^(y*z)::int)" | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1184 | by (rule Power.power_mult [symmetric]) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1185 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1186 | lemma zero_less_zpower_abs_iff [simp]: | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1187 | "(0 < (abs x)^n) = (x \<noteq> (0::int) | n=0)" | 
| 15251 | 1188 | apply (induct "n") | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1189 | apply (auto simp add: zero_less_mult_iff) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1190 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1191 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1192 | lemma zero_le_zpower_abs [simp]: "(0::int) <= (abs x)^n" | 
| 15251 | 1193 | apply (induct "n") | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1194 | apply (auto simp add: zero_le_mult_iff) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1195 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1196 | |
| 16413 | 1197 | lemma int_power: "int (m^n) = (int m) ^ n" | 
| 1198 | by (induct n, simp_all add: int_mult) | |
| 1199 | ||
| 1200 | text{*Compatibility binding*}
 | |
| 1201 | lemmas zpower_int = int_power [symmetric] | |
| 15320 | 1202 | |
| 15101 | 1203 | lemma zdiv_int: "int (a div b) = (int a) div (int b)" | 
| 1204 | apply (subst split_div, auto) | |
| 1205 | apply (subst split_zdiv, auto) | |
| 1206 | apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient) | |
| 1207 | apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) | |
| 1208 | done | |
| 1209 | ||
| 1210 | lemma zmod_int: "int (a mod b) = (int a) mod (int b)" | |
| 1211 | apply (subst split_mod, auto) | |
| 1212 | apply (subst split_zmod, auto) | |
| 16413 | 1213 | apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia | 
| 1214 | in unique_remainder) | |
| 15101 | 1215 | apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) | 
| 1216 | done | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1217 | |
| 16413 | 1218 | text{*Suggested by Matthias Daum*}
 | 
| 1219 | lemma int_power_div_base: | |
| 1220 | "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)" | |
| 1221 | apply (subgoal_tac "k ^ m = k ^ ((m - 1) + 1)") | |
| 1222 | apply (erule ssubst) | |
| 1223 | apply (simp only: power_add) | |
| 1224 | apply simp_all | |
| 1225 | done | |
| 1226 | ||
| 13183 | 1227 | ML | 
| 1228 | {*
 | |
| 1229 | val quorem_def = thm "quorem_def"; | |
| 1230 | ||
| 1231 | val unique_quotient = thm "unique_quotient"; | |
| 1232 | val unique_remainder = thm "unique_remainder"; | |
| 1233 | val adjust_eq = thm "adjust_eq"; | |
| 1234 | val posDivAlg_eqn = thm "posDivAlg_eqn"; | |
| 1235 | val posDivAlg_correct = thm "posDivAlg_correct"; | |
| 1236 | val negDivAlg_eqn = thm "negDivAlg_eqn"; | |
| 1237 | val negDivAlg_correct = thm "negDivAlg_correct"; | |
| 1238 | val quorem_0 = thm "quorem_0"; | |
| 1239 | val posDivAlg_0 = thm "posDivAlg_0"; | |
| 1240 | val negDivAlg_minus1 = thm "negDivAlg_minus1"; | |
| 1241 | val negateSnd_eq = thm "negateSnd_eq"; | |
| 1242 | val quorem_neg = thm "quorem_neg"; | |
| 1243 | val divAlg_correct = thm "divAlg_correct"; | |
| 1244 | val DIVISION_BY_ZERO = thm "DIVISION_BY_ZERO"; | |
| 1245 | val zmod_zdiv_equality = thm "zmod_zdiv_equality"; | |
| 1246 | val pos_mod_conj = thm "pos_mod_conj"; | |
| 1247 | val pos_mod_sign = thm "pos_mod_sign"; | |
| 1248 | val neg_mod_conj = thm "neg_mod_conj"; | |
| 1249 | val neg_mod_sign = thm "neg_mod_sign"; | |
| 1250 | val quorem_div_mod = thm "quorem_div_mod"; | |
| 1251 | val quorem_div = thm "quorem_div"; | |
| 1252 | val quorem_mod = thm "quorem_mod"; | |
| 1253 | val div_pos_pos_trivial = thm "div_pos_pos_trivial"; | |
| 1254 | val div_neg_neg_trivial = thm "div_neg_neg_trivial"; | |
| 1255 | val div_pos_neg_trivial = thm "div_pos_neg_trivial"; | |
| 1256 | val mod_pos_pos_trivial = thm "mod_pos_pos_trivial"; | |
| 1257 | val mod_neg_neg_trivial = thm "mod_neg_neg_trivial"; | |
| 1258 | val mod_pos_neg_trivial = thm "mod_pos_neg_trivial"; | |
| 1259 | val zdiv_zminus_zminus = thm "zdiv_zminus_zminus"; | |
| 1260 | val zmod_zminus_zminus = thm "zmod_zminus_zminus"; | |
| 1261 | val zdiv_zminus1_eq_if = thm "zdiv_zminus1_eq_if"; | |
| 1262 | val zmod_zminus1_eq_if = thm "zmod_zminus1_eq_if"; | |
| 1263 | val zdiv_zminus2 = thm "zdiv_zminus2"; | |
| 1264 | val zmod_zminus2 = thm "zmod_zminus2"; | |
| 1265 | val zdiv_zminus2_eq_if = thm "zdiv_zminus2_eq_if"; | |
| 1266 | val zmod_zminus2_eq_if = thm "zmod_zminus2_eq_if"; | |
| 1267 | val self_quotient = thm "self_quotient"; | |
| 1268 | val self_remainder = thm "self_remainder"; | |
| 1269 | val zdiv_self = thm "zdiv_self"; | |
| 1270 | val zmod_self = thm "zmod_self"; | |
| 1271 | val zdiv_zero = thm "zdiv_zero"; | |
| 1272 | val div_eq_minus1 = thm "div_eq_minus1"; | |
| 1273 | val zmod_zero = thm "zmod_zero"; | |
| 1274 | val zdiv_minus1 = thm "zdiv_minus1"; | |
| 1275 | val zmod_minus1 = thm "zmod_minus1"; | |
| 1276 | val div_pos_pos = thm "div_pos_pos"; | |
| 1277 | val mod_pos_pos = thm "mod_pos_pos"; | |
| 1278 | val div_neg_pos = thm "div_neg_pos"; | |
| 1279 | val mod_neg_pos = thm "mod_neg_pos"; | |
| 1280 | val div_pos_neg = thm "div_pos_neg"; | |
| 1281 | val mod_pos_neg = thm "mod_pos_neg"; | |
| 1282 | val div_neg_neg = thm "div_neg_neg"; | |
| 1283 | val mod_neg_neg = thm "mod_neg_neg"; | |
| 1284 | val zmod_1 = thm "zmod_1"; | |
| 1285 | val zdiv_1 = thm "zdiv_1"; | |
| 1286 | val zmod_minus1_right = thm "zmod_minus1_right"; | |
| 1287 | val zdiv_minus1_right = thm "zdiv_minus1_right"; | |
| 1288 | val zdiv_mono1 = thm "zdiv_mono1"; | |
| 1289 | val zdiv_mono1_neg = thm "zdiv_mono1_neg"; | |
| 1290 | val zdiv_mono2 = thm "zdiv_mono2"; | |
| 1291 | val zdiv_mono2_neg = thm "zdiv_mono2_neg"; | |
| 1292 | val zdiv_zmult1_eq = thm "zdiv_zmult1_eq"; | |
| 1293 | val zmod_zmult1_eq = thm "zmod_zmult1_eq"; | |
| 1294 | val zmod_zmult1_eq' = thm "zmod_zmult1_eq'"; | |
| 1295 | val zmod_zmult_distrib = thm "zmod_zmult_distrib"; | |
| 1296 | val zdiv_zmult_self1 = thm "zdiv_zmult_self1"; | |
| 1297 | val zdiv_zmult_self2 = thm "zdiv_zmult_self2"; | |
| 1298 | val zmod_zmult_self1 = thm "zmod_zmult_self1"; | |
| 1299 | val zmod_zmult_self2 = thm "zmod_zmult_self2"; | |
| 1300 | val zmod_eq_0_iff = thm "zmod_eq_0_iff"; | |
| 1301 | val zdiv_zadd1_eq = thm "zdiv_zadd1_eq"; | |
| 1302 | val zmod_zadd1_eq = thm "zmod_zadd1_eq"; | |
| 1303 | val mod_div_trivial = thm "mod_div_trivial"; | |
| 1304 | val mod_mod_trivial = thm "mod_mod_trivial"; | |
| 1305 | val zmod_zadd_left_eq = thm "zmod_zadd_left_eq"; | |
| 1306 | val zmod_zadd_right_eq = thm "zmod_zadd_right_eq"; | |
| 1307 | val zdiv_zadd_self1 = thm "zdiv_zadd_self1"; | |
| 1308 | val zdiv_zadd_self2 = thm "zdiv_zadd_self2"; | |
| 1309 | val zmod_zadd_self1 = thm "zmod_zadd_self1"; | |
| 1310 | val zmod_zadd_self2 = thm "zmod_zadd_self2"; | |
| 1311 | val zdiv_zmult2_eq = thm "zdiv_zmult2_eq"; | |
| 1312 | val zmod_zmult2_eq = thm "zmod_zmult2_eq"; | |
| 1313 | val zdiv_zmult_zmult1 = thm "zdiv_zmult_zmult1"; | |
| 1314 | val zdiv_zmult_zmult2 = thm "zdiv_zmult_zmult2"; | |
| 1315 | val zmod_zmult_zmult1 = thm "zmod_zmult_zmult1"; | |
| 1316 | val zmod_zmult_zmult2 = thm "zmod_zmult_zmult2"; | |
| 1317 | val pos_zdiv_mult_2 = thm "pos_zdiv_mult_2"; | |
| 1318 | val neg_zdiv_mult_2 = thm "neg_zdiv_mult_2"; | |
| 1319 | val zdiv_number_of_BIT = thm "zdiv_number_of_BIT"; | |
| 1320 | val pos_zmod_mult_2 = thm "pos_zmod_mult_2"; | |
| 1321 | val neg_zmod_mult_2 = thm "neg_zmod_mult_2"; | |
| 1322 | val zmod_number_of_BIT = thm "zmod_number_of_BIT"; | |
| 1323 | val div_neg_pos_less0 = thm "div_neg_pos_less0"; | |
| 1324 | val div_nonneg_neg_le0 = thm "div_nonneg_neg_le0"; | |
| 1325 | val pos_imp_zdiv_nonneg_iff = thm "pos_imp_zdiv_nonneg_iff"; | |
| 1326 | val neg_imp_zdiv_nonneg_iff = thm "neg_imp_zdiv_nonneg_iff"; | |
| 1327 | val pos_imp_zdiv_neg_iff = thm "pos_imp_zdiv_neg_iff"; | |
| 1328 | val neg_imp_zdiv_neg_iff = thm "neg_imp_zdiv_neg_iff"; | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1329 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1330 | val zpower_zmod = thm "zpower_zmod"; | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1331 | val zpower_zadd_distrib = thm "zpower_zadd_distrib"; | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1332 | val zpower_zpower = thm "zpower_zpower"; | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1333 | val zero_less_zpower_abs_iff = thm "zero_less_zpower_abs_iff"; | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14288diff
changeset | 1334 | val zero_le_zpower_abs = thm "zero_le_zpower_abs"; | 
| 15320 | 1335 | val zpower_int = thm "zpower_int"; | 
| 13183 | 1336 | *} | 
| 1337 | ||
| 6917 | 1338 | end |