| author | huffman | 
| Thu, 23 Feb 2012 14:43:01 +0100 | |
| changeset 46606 | 7a5c05b5f945 | 
| parent 46557 | ae926869a311 | 
| child 46629 | 8d3442b79f9c | 
| permissions | -rw-r--r-- | 
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1 | (* Title: HOL/Big_Operators.thy | 
| 12396 | 2 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 3 | with contributions by Jeremy Avigad | 
| 12396 | 4 | *) | 
| 5 | ||
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 6 | header {* Big operators and finite (non-empty) sets *}
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 7 | |
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 8 | theory Big_Operators | 
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 9 | imports Plain | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 10 | begin | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 11 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 12 | subsection {* Generic monoid operation over a set *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 13 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 14 | no_notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 15 | no_notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 16 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 17 | locale comm_monoid_big = comm_monoid + | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 18 |   fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 19 | assumes F_eq: "F g A = (if finite A then fold_image (op *) g 1 A else 1)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 20 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 21 | sublocale comm_monoid_big < folding_image proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 22 | qed (simp add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 23 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 24 | context comm_monoid_big | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 25 | begin | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 26 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 27 | lemma infinite [simp]: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 28 | "\<not> finite A \<Longrightarrow> F g A = 1" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 29 | by (simp add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 30 | |
| 42986 | 31 | lemma F_cong: | 
| 32 | assumes "A = B" "\<And>x. x \<in> B \<Longrightarrow> h x = g x" | |
| 33 | shows "F h A = F g B" | |
| 34 | proof cases | |
| 35 | assume "finite A" | |
| 36 | with assms show ?thesis unfolding `A = B` by (simp cong: cong) | |
| 37 | next | |
| 38 | assume "\<not> finite A" | |
| 39 | then show ?thesis unfolding `A = B` by simp | |
| 40 | qed | |
| 41 | ||
| 42 | lemma If_cases: | |
| 43 | fixes P :: "'b \<Rightarrow> bool" and g h :: "'b \<Rightarrow> 'a" | |
| 44 | assumes fA: "finite A" | |
| 45 | shows "F (\<lambda>x. if P x then h x else g x) A = | |
| 46 |          F h (A \<inter> {x. P x}) * F g (A \<inter> - {x. P x})"
 | |
| 47 | proof- | |
| 48 |   have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}" 
 | |
| 49 |           "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}" 
 | |
| 50 | by blast+ | |
| 51 | from fA | |
| 52 |   have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
 | |
| 53 | let ?g = "\<lambda>x. if P x then h x else g x" | |
| 54 | from union_disjoint[OF f a(2), of ?g] a(1) | |
| 55 | show ?thesis | |
| 56 | by (subst (1 2) F_cong) simp_all | |
| 57 | qed | |
| 58 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 59 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 60 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 61 | text {* for ad-hoc proofs for @{const fold_image} *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 62 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 63 | lemma (in comm_monoid_add) comm_monoid_mult: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 64 | "class.comm_monoid_mult (op +) 0" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 65 | proof qed (auto intro: add_assoc add_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 66 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 67 | notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 68 | notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 69 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 70 | |
| 15402 | 71 | subsection {* Generalized summation over a set *}
 | 
| 72 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 73 | definition (in comm_monoid_add) setsum :: "('b \<Rightarrow> 'a) => 'b set => 'a" where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 74 | "setsum f A = (if finite A then fold_image (op +) f 0 A else 0)" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 75 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 76 | sublocale comm_monoid_add < setsum!: comm_monoid_big "op +" 0 setsum proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 77 | qed (fact setsum_def) | 
| 15402 | 78 | |
| 19535 | 79 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 80 |   Setsum  ("\<Sum>_" [1000] 999) where
 | 
| 19535 | 81 | "\<Sum>A == setsum (%x. x) A" | 
| 82 | ||
| 15402 | 83 | text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
 | 
| 84 | written @{text"\<Sum>x\<in>A. e"}. *}
 | |
| 85 | ||
| 86 | syntax | |
| 17189 | 87 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 88 | syntax (xsymbols) | 
| 17189 | 89 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 90 | syntax (HTML output) | 
| 17189 | 91 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 92 | |
| 93 | translations -- {* Beware of argument permutation! *}
 | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 94 | "SUM i:A. b" == "CONST setsum (%i. b) A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 95 | "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A" | 
| 15402 | 96 | |
| 97 | text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 98 |  @{text"\<Sum>x|P. e"}. *}
 | |
| 99 | ||
| 100 | syntax | |
| 17189 | 101 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
 | 
| 15402 | 102 | syntax (xsymbols) | 
| 17189 | 103 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 104 | syntax (HTML output) | 
| 17189 | 105 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 106 | |
| 107 | translations | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 108 |   "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 109 |   "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"
 | 
| 15402 | 110 | |
| 111 | print_translation {*
 | |
| 112 | let | |
| 35115 | 113 |   fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
 | 
| 114 | if x <> y then raise Match | |
| 115 | else | |
| 116 | let | |
| 42284 | 117 | val x' = Syntax_Trans.mark_bound x; | 
| 35115 | 118 | val t' = subst_bound (x', t); | 
| 119 | val P' = subst_bound (x', P); | |
| 42284 | 120 |           in Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound x $ P' $ t' end
 | 
| 35115 | 121 | | setsum_tr' _ = raise Match; | 
| 122 | in [(@{const_syntax setsum}, setsum_tr')] end
 | |
| 15402 | 123 | *} | 
| 124 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 125 | lemma setsum_empty: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 126 |   "setsum f {} = 0"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 127 | by (fact setsum.empty) | 
| 15402 | 128 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 129 | lemma setsum_insert: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 130 | "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 131 | by (fact setsum.insert) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 132 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 133 | lemma setsum_infinite: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 134 | "~ finite A ==> setsum f A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 135 | by (fact setsum.infinite) | 
| 15402 | 136 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 137 | lemma (in comm_monoid_add) setsum_reindex: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 138 | assumes "inj_on f B" shows "setsum h (f ` B) = setsum (h \<circ> f) B" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 139 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 140 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 141 | from assms show ?thesis by (auto simp add: setsum_def fold_image_reindex dest!:finite_imageD) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 142 | qed | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 143 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 144 | lemma (in comm_monoid_add) setsum_reindex_id: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 145 | "inj_on f B ==> setsum f B = setsum id (f ` B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 146 | by (simp add: setsum_reindex) | 
| 15402 | 147 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 148 | lemma (in comm_monoid_add) setsum_reindex_nonzero: | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 149 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 150 | and nz: "\<And> x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 151 | shows "setsum h (f ` S) = setsum (h o f) S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 152 | using nz | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 153 | proof(induct rule: finite_induct[OF fS]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 154 | case 1 thus ?case by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 155 | next | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 156 | case (2 x F) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 157 |   {assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 158 | then obtain y where y: "y \<in> F" "f x = f y" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 159 | from "2.hyps" y have xy: "x \<noteq> y" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 160 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 161 | from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 162 | have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 163 | also have "\<dots> = setsum (h o f) (insert x F)" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 164 | unfolding setsum.insert[OF `finite F` `x\<notin>F`] | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 165 | using h0 | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 166 | apply simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 167 | apply (rule "2.hyps"(3)) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 168 | apply (rule_tac y="y" in "2.prems") | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 169 | apply simp_all | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 170 | done | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 171 | finally have ?case .} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 172 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 173 |   {assume fxF: "f x \<notin> f ` F"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 174 | have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 175 | using fxF "2.hyps" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 176 | also have "\<dots> = setsum (h o f) (insert x F)" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 177 | unfolding setsum.insert[OF `finite F` `x\<notin>F`] | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 178 | apply simp | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 179 | apply (rule cong [OF refl [of "op + (h (f x))"]]) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 180 | apply (rule "2.hyps"(3)) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 181 | apply (rule_tac y="y" in "2.prems") | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 182 | apply simp_all | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 183 | done | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 184 | finally have ?case .} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 185 | ultimately show ?case by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 186 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 187 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 188 | lemma (in comm_monoid_add) setsum_cong: | 
| 15402 | 189 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 190 | by (cases "finite A") (auto intro: setsum.cong) | 
| 15402 | 191 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 192 | lemma (in comm_monoid_add) strong_setsum_cong [cong]: | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 193 | "A = B ==> (!!x. x:B =simp=> f x = g x) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 194 | ==> setsum (%x. f x) A = setsum (%x. g x) B" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 195 | by (rule setsum_cong) (simp_all add: simp_implies_def) | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 196 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 197 | lemma (in comm_monoid_add) setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 198 | by (auto intro: setsum_cong) | 
| 15554 | 199 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 200 | lemma (in comm_monoid_add) setsum_reindex_cong: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 201 | "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 202 | ==> setsum h B = setsum g A" | 
| 41550 | 203 | by (simp add: setsum_reindex) | 
| 15402 | 204 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 205 | lemma (in comm_monoid_add) setsum_0[simp]: "setsum (%i. 0) A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 206 | by (cases "finite A") (erule finite_induct, auto) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 207 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 208 | lemma (in comm_monoid_add) setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 209 | by (simp add:setsum_cong) | 
| 15402 | 210 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 211 | lemma (in comm_monoid_add) setsum_Un_Int: "finite A ==> finite B ==> | 
| 15402 | 212 | setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" | 
| 213 |   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 214 | by (fact setsum.union_inter) | 
| 15402 | 215 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 216 | lemma (in comm_monoid_add) setsum_Un_disjoint: "finite A ==> finite B | 
| 15402 | 217 |   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 218 | by (fact setsum.union_disjoint) | 
| 15402 | 219 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 220 | lemma setsum_mono_zero_left: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 221 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 222 | and z: "\<forall>i \<in> T - S. f i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 223 | shows "setsum f S = setsum f T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 224 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 225 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 226 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 227 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 228 | show ?thesis | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 229 | by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 230 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 231 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 232 | lemma setsum_mono_zero_right: | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 233 | "finite T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> \<forall>i \<in> T - S. f i = 0 \<Longrightarrow> setsum f T = setsum f S" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 234 | by(blast intro!: setsum_mono_zero_left[symmetric]) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 235 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 236 | lemma setsum_mono_zero_cong_left: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 237 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 238 | and z: "\<forall>i \<in> T - S. g i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 239 | and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 240 | shows "setsum f S = setsum g T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 241 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 242 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 243 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 244 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 245 | show ?thesis | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 246 | using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 247 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 248 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 249 | lemma setsum_mono_zero_cong_right: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 250 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 251 | and z: "\<forall>i \<in> T - S. f i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 252 | and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 253 | shows "setsum f T = setsum g S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 254 | using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 255 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 256 | lemma setsum_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 257 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 258 | shows "setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 259 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 260 | let ?f = "(\<lambda>k. if k=a then b k else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 261 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 262 | hence "\<forall> k\<in> S. ?f k = 0" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 263 | hence ?thesis using a by simp} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 264 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 265 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 266 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 267 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 268 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 269 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 270 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 271 | have "setsum ?f S = setsum ?f ?A + setsum ?f ?B" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 272 | using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 273 | by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 274 | then have ?thesis using a by simp} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 275 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 276 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 277 | lemma setsum_delta': | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 278 | assumes fS: "finite S" shows | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 279 | "setsum (\<lambda>k. if a = k then b k else 0) S = | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 280 | (if a\<in> S then b a else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 281 | using setsum_delta[OF fS, of a b, symmetric] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 282 | by (auto intro: setsum_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 283 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 284 | lemma setsum_restrict_set: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 285 | assumes fA: "finite A" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 286 | shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 287 | proof- | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 288 | from fA have fab: "finite (A \<inter> B)" by auto | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 289 | have aba: "A \<inter> B \<subseteq> A" by blast | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 290 | let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 291 | from setsum_mono_zero_left[OF fA aba, of ?g] | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 292 | show ?thesis by simp | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 293 | qed | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 294 | |
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 295 | lemma setsum_cases: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 296 | assumes fA: "finite A" | 
| 35577 | 297 | shows "setsum (\<lambda>x. if P x then f x else g x) A = | 
| 298 |          setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})"
 | |
| 42986 | 299 | using setsum.If_cases[OF fA] . | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 300 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 301 | (*But we can't get rid of finite I. If infinite, although the rhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 302 | the lhs need not be, since UNION I A could still be finite.*) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 303 | lemma (in comm_monoid_add) setsum_UN_disjoint: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 304 | assumes "finite I" and "ALL i:I. finite (A i)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 305 |     and "ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 306 | shows "setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 307 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 308 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 41550 | 309 | from assms show ?thesis by (simp add: setsum_def fold_image_UN_disjoint) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 310 | qed | 
| 15402 | 311 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 312 | text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 313 | directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
 | 
| 15402 | 314 | lemma setsum_Union_disjoint: | 
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 315 |   assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}"
 | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 316 | shows "setsum f (Union C) = setsum (setsum f) C" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 317 | proof cases | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 318 | assume "finite C" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 319 | from setsum_UN_disjoint[OF this assms] | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 320 | show ?thesis | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 321 | by (simp add: SUP_def) | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 322 | qed (force dest: finite_UnionD simp add: setsum_def) | 
| 15402 | 323 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 324 | (*But we can't get rid of finite A. If infinite, although the lhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 325 | the rhs need not be, since SIGMA A B could still be finite.*) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 326 | lemma (in comm_monoid_add) setsum_Sigma: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 327 | assumes "finite A" and "ALL x:A. finite (B x)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 328 | shows "(\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 329 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 330 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 41550 | 331 | from assms show ?thesis by (simp add: setsum_def fold_image_Sigma split_def) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 332 | qed | 
| 15402 | 333 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 334 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 335 | lemma setsum_cartesian_product: | 
| 17189 | 336 | "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 337 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 338 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 339 | apply (simp add: setsum_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 340 |  apply (cases "A={}", simp)
 | 
| 15543 | 341 | apply (simp) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 342 | apply (auto simp add: setsum_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 343 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 344 | done | 
| 15402 | 345 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 346 | lemma (in comm_monoid_add) setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 347 | by (cases "finite A") (simp_all add: setsum.distrib) | 
| 15402 | 348 | |
| 349 | ||
| 350 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 351 | ||
| 352 | lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 353 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 354 | prefer 2 apply (simp add: setsum_def) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 355 | apply (erule rev_mp) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 356 | apply (erule finite_induct, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 357 | done | 
| 15402 | 358 | |
| 359 | lemma setsum_eq_0_iff [simp]: | |
| 360 | "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 361 | by (induct set: finite) auto | 
| 15402 | 362 | |
| 30859 | 363 | lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow> | 
| 364 | (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))" | |
| 365 | apply(erule finite_induct) | |
| 366 | apply (auto simp add:add_is_1) | |
| 367 | done | |
| 368 | ||
| 369 | lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]] | |
| 370 | ||
| 15402 | 371 | lemma setsum_Un_nat: "finite A ==> finite B ==> | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 372 | (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" | 
| 15402 | 373 |   -- {* For the natural numbers, we have subtraction. *}
 | 
| 29667 | 374 | by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) | 
| 15402 | 375 | |
| 376 | lemma setsum_Un: "finite A ==> finite B ==> | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 377 | (setsum f (A Un B) :: 'a :: ab_group_add) = | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 378 | setsum f A + setsum f B - setsum f (A Int B)" | 
| 29667 | 379 | by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) | 
| 15402 | 380 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 381 | lemma (in comm_monoid_add) setsum_eq_general_reverses: | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 382 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 383 | and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 384 | and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 385 | shows "setsum f S = setsum g T" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 386 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 387 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 388 | show ?thesis | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 389 | apply (simp add: setsum_def fS fT) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 390 | apply (rule fold_image_eq_general_inverses) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 391 | apply (rule fS) | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 392 | apply (erule kh) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 393 | apply (erule hk) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 394 | done | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 395 | qed | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 396 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 397 | lemma (in comm_monoid_add) setsum_Un_zero: | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 398 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 399 | and I0: "\<forall>x \<in> S\<inter>T. f x = 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 400 | shows "setsum f (S \<union> T) = setsum f S + setsum f T" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 401 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 402 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 403 | show ?thesis | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 404 | using fS fT | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 405 | apply (simp add: setsum_def) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 406 | apply (rule fold_image_Un_one) | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 407 | using I0 by auto | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 408 | qed | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 409 | |
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 410 | lemma setsum_UNION_zero: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 411 | assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 412 | and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 413 | shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 414 | using fSS f0 | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 415 | proof(induct rule: finite_induct[OF fS]) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 416 | case 1 thus ?case by simp | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 417 | next | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 418 | case (2 T F) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 419 | then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F" | 
| 35216 | 420 | and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto | 
| 421 | from fTF have fUF: "finite (\<Union>F)" by auto | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 422 | from "2.prems" TF fTF | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 423 | show ?case | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 424 | by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f]) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 425 | qed | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 426 | |
| 15402 | 427 | lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
 | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 428 | (if a:A then setsum f A - f a else setsum f A)" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 429 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 430 | prefer 2 apply (simp add: setsum_def) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 431 | apply (erule finite_induct) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 432 | apply (auto simp add: insert_Diff_if) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 433 | apply (drule_tac a = a in mk_disjoint_insert, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 434 | done | 
| 15402 | 435 | |
| 436 | lemma setsum_diff1: "finite A \<Longrightarrow> | |
| 437 |   (setsum f (A - {a}) :: ('a::ab_group_add)) =
 | |
| 438 | (if a:A then setsum f A - f a else setsum f A)" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 439 | by (erule finite_induct) (auto simp add: insert_Diff_if) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 440 | |
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 441 | lemma setsum_diff1'[rule_format]: | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 442 |   "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 443 | apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 444 | apply (auto simp add: insert_Diff_if add_ac) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 445 | done | 
| 15552 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 446 | |
| 31438 | 447 | lemma setsum_diff1_ring: assumes "finite A" "a \<in> A" | 
| 448 |   shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
 | |
| 449 | unfolding setsum_diff1'[OF assms] by auto | |
| 450 | ||
| 15402 | 451 | (* By Jeremy Siek: *) | 
| 452 | ||
| 453 | lemma setsum_diff_nat: | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 454 | assumes "finite B" and "B \<subseteq> A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 455 | shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 456 | using assms | 
| 19535 | 457 | proof induct | 
| 15402 | 458 |   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
 | 
| 459 | next | |
| 460 | fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" | |
| 461 | and xFinA: "insert x F \<subseteq> A" | |
| 462 | and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" | |
| 463 | from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp | |
| 464 |   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
 | |
| 465 | by (simp add: setsum_diff1_nat) | |
| 466 | from xFinA have "F \<subseteq> A" by simp | |
| 467 | with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp | |
| 468 |   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
 | |
| 469 | by simp | |
| 470 |   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
 | |
| 471 | with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" | |
| 472 | by simp | |
| 473 | from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp | |
| 474 | with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" | |
| 475 | by simp | |
| 476 | thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp | |
| 477 | qed | |
| 478 | ||
| 479 | lemma setsum_diff: | |
| 480 | assumes le: "finite A" "B \<subseteq> A" | |
| 481 |   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
 | |
| 482 | proof - | |
| 483 | from le have finiteB: "finite B" using finite_subset by auto | |
| 484 | show ?thesis using finiteB le | |
| 21575 | 485 | proof induct | 
| 19535 | 486 | case empty | 
| 487 | thus ?case by auto | |
| 488 | next | |
| 489 | case (insert x F) | |
| 490 | thus ?case using le finiteB | |
| 491 | by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) | |
| 15402 | 492 | qed | 
| 19535 | 493 | qed | 
| 15402 | 494 | |
| 495 | lemma setsum_mono: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 496 |   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
 | 
| 15402 | 497 | shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" | 
| 498 | proof (cases "finite K") | |
| 499 | case True | |
| 500 | thus ?thesis using le | |
| 19535 | 501 | proof induct | 
| 15402 | 502 | case empty | 
| 503 | thus ?case by simp | |
| 504 | next | |
| 505 | case insert | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 506 | thus ?case using add_mono by fastforce | 
| 15402 | 507 | qed | 
| 508 | next | |
| 509 | case False | |
| 510 | thus ?thesis | |
| 511 | by (simp add: setsum_def) | |
| 512 | qed | |
| 513 | ||
| 15554 | 514 | lemma setsum_strict_mono: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 515 |   fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
 | 
| 19535 | 516 |   assumes "finite A"  "A \<noteq> {}"
 | 
| 517 | and "!!x. x:A \<Longrightarrow> f x < g x" | |
| 518 | shows "setsum f A < setsum g A" | |
| 41550 | 519 | using assms | 
| 15554 | 520 | proof (induct rule: finite_ne_induct) | 
| 521 | case singleton thus ?case by simp | |
| 522 | next | |
| 523 | case insert thus ?case by (auto simp: add_strict_mono) | |
| 524 | qed | |
| 525 | ||
| 15535 | 526 | lemma setsum_negf: | 
| 19535 | 527 | "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" | 
| 15535 | 528 | proof (cases "finite A") | 
| 22262 | 529 | case True thus ?thesis by (induct set: finite) auto | 
| 15535 | 530 | next | 
| 531 | case False thus ?thesis by (simp add: setsum_def) | |
| 532 | qed | |
| 15402 | 533 | |
| 15535 | 534 | lemma setsum_subtractf: | 
| 19535 | 535 | "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = | 
| 536 | setsum f A - setsum g A" | |
| 15535 | 537 | proof (cases "finite A") | 
| 538 | case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) | |
| 539 | next | |
| 540 | case False thus ?thesis by (simp add: setsum_def) | |
| 541 | qed | |
| 15402 | 542 | |
| 15535 | 543 | lemma setsum_nonneg: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 544 |   assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
 | 
| 19535 | 545 | shows "0 \<le> setsum f A" | 
| 15535 | 546 | proof (cases "finite A") | 
| 547 | case True thus ?thesis using nn | |
| 21575 | 548 | proof induct | 
| 19535 | 549 | case empty then show ?case by simp | 
| 550 | next | |
| 551 | case (insert x F) | |
| 552 | then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono) | |
| 553 | with insert show ?case by simp | |
| 554 | qed | |
| 15535 | 555 | next | 
| 556 | case False thus ?thesis by (simp add: setsum_def) | |
| 557 | qed | |
| 15402 | 558 | |
| 15535 | 559 | lemma setsum_nonpos: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 560 |   assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
 | 
| 19535 | 561 | shows "setsum f A \<le> 0" | 
| 15535 | 562 | proof (cases "finite A") | 
| 563 | case True thus ?thesis using np | |
| 21575 | 564 | proof induct | 
| 19535 | 565 | case empty then show ?case by simp | 
| 566 | next | |
| 567 | case (insert x F) | |
| 568 | then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono) | |
| 569 | with insert show ?case by simp | |
| 570 | qed | |
| 15535 | 571 | next | 
| 572 | case False thus ?thesis by (simp add: setsum_def) | |
| 573 | qed | |
| 15402 | 574 | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 575 | lemma setsum_nonneg_leq_bound: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 576 |   fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
 | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 577 | assumes "finite s" "\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0" "(\<Sum>i \<in> s. f i) = B" "i \<in> s" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 578 | shows "f i \<le> B" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 579 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 580 |   have "0 \<le> (\<Sum> i \<in> s - {i}. f i)" and "0 \<le> f i"
 | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 581 | using assms by (auto intro!: setsum_nonneg) | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 582 | moreover | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 583 |   have "(\<Sum> i \<in> s - {i}. f i) + f i = B"
 | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 584 | using assms by (simp add: setsum_diff1) | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 585 | ultimately show ?thesis by auto | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 586 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 587 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 588 | lemma setsum_nonneg_0: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 589 |   fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
 | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 590 | assumes "finite s" and pos: "\<And> i. i \<in> s \<Longrightarrow> f i \<ge> 0" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 591 | and "(\<Sum> i \<in> s. f i) = 0" and i: "i \<in> s" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 592 | shows "f i = 0" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 593 | using setsum_nonneg_leq_bound[OF assms] pos[OF i] by auto | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36409diff
changeset | 594 | |
| 15539 | 595 | lemma setsum_mono2: | 
| 36303 | 596 | fixes f :: "'a \<Rightarrow> 'b :: ordered_comm_monoid_add" | 
| 15539 | 597 | assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" | 
| 598 | shows "setsum f A \<le> setsum f B" | |
| 599 | proof - | |
| 600 | have "setsum f A \<le> setsum f A + setsum f (B-A)" | |
| 601 | by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) | |
| 602 | also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] | |
| 603 | by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) | |
| 604 | also have "A \<union> (B-A) = B" using sub by blast | |
| 605 | finally show ?thesis . | |
| 606 | qed | |
| 15542 | 607 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 608 | lemma setsum_mono3: "finite B ==> A <= B ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 609 | ALL x: B - A. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 610 |       0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 611 | setsum f A <= setsum f B" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 612 | apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 613 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 614 | apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 615 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 616 | apply (rule add_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 617 | apply (erule setsum_nonneg) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 618 | apply (subst setsum_Un_disjoint [THEN sym]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 619 | apply (erule finite_subset, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 620 | apply (rule finite_subset) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 621 | prefer 2 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 622 | apply assumption | 
| 32698 
be4b248616c0
inf/sup_absorb are no default simp rules any longer
 haftmann parents: 
32697diff
changeset | 623 | apply (auto simp add: sup_absorb2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 624 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 625 | |
| 19279 | 626 | lemma setsum_right_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 627 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 15402 | 628 | shows "r * setsum f A = setsum (%n. r * f n) A" | 
| 629 | proof (cases "finite A") | |
| 630 | case True | |
| 631 | thus ?thesis | |
| 21575 | 632 | proof induct | 
| 15402 | 633 | case empty thus ?case by simp | 
| 634 | next | |
| 635 | case (insert x A) thus ?case by (simp add: right_distrib) | |
| 636 | qed | |
| 637 | next | |
| 638 | case False thus ?thesis by (simp add: setsum_def) | |
| 639 | qed | |
| 640 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 641 | lemma setsum_left_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 642 | "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 643 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 644 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 645 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 646 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 647 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 648 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 649 | case (insert x A) thus ?case by (simp add: left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 650 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 651 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 652 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 653 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 654 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 655 | lemma setsum_divide_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 656 | "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 657 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 658 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 659 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 660 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 661 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 662 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 663 | case (insert x A) thus ?case by (simp add: add_divide_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 664 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 665 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 666 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 667 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 668 | |
| 15535 | 669 | lemma setsum_abs[iff]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 670 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15402 | 671 | shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" | 
| 15535 | 672 | proof (cases "finite A") | 
| 673 | case True | |
| 674 | thus ?thesis | |
| 21575 | 675 | proof induct | 
| 15535 | 676 | case empty thus ?case by simp | 
| 677 | next | |
| 678 | case (insert x A) | |
| 679 | thus ?case by (auto intro: abs_triangle_ineq order_trans) | |
| 680 | qed | |
| 15402 | 681 | next | 
| 15535 | 682 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 683 | qed | 
| 684 | ||
| 15535 | 685 | lemma setsum_abs_ge_zero[iff]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 686 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15402 | 687 | shows "0 \<le> setsum (%i. abs(f i)) A" | 
| 15535 | 688 | proof (cases "finite A") | 
| 689 | case True | |
| 690 | thus ?thesis | |
| 21575 | 691 | proof induct | 
| 15535 | 692 | case empty thus ?case by simp | 
| 693 | next | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36635diff
changeset | 694 | case (insert x A) thus ?case by auto | 
| 15535 | 695 | qed | 
| 15402 | 696 | next | 
| 15535 | 697 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 698 | qed | 
| 699 | ||
| 15539 | 700 | lemma abs_setsum_abs[simp]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 701 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15539 | 702 | shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" | 
| 703 | proof (cases "finite A") | |
| 704 | case True | |
| 705 | thus ?thesis | |
| 21575 | 706 | proof induct | 
| 15539 | 707 | case empty thus ?case by simp | 
| 708 | next | |
| 709 | case (insert a A) | |
| 710 | hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp | |
| 711 | also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 712 | also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 713 | by (simp del: abs_of_nonneg) | 
| 15539 | 714 | also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp | 
| 715 | finally show ?case . | |
| 716 | qed | |
| 717 | next | |
| 718 | case False thus ?thesis by (simp add: setsum_def) | |
| 719 | qed | |
| 720 | ||
| 31080 | 721 | lemma setsum_Plus: | 
| 722 | fixes A :: "'a set" and B :: "'b set" | |
| 723 | assumes fin: "finite A" "finite B" | |
| 724 | shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B" | |
| 725 | proof - | |
| 726 | have "A <+> B = Inl ` A \<union> Inr ` B" by auto | |
| 727 |   moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
 | |
| 40786 
0a54cfc9add3
gave more standard finite set rules simp and intro attribute
 nipkow parents: 
39302diff
changeset | 728 | by auto | 
| 31080 | 729 |   moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto
 | 
| 730 | moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI) | |
| 731 | ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex) | |
| 732 | qed | |
| 733 | ||
| 734 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 735 | text {* Commuting outer and inner summation *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 736 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 737 | lemma setsum_commute: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 738 | "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 739 | proof (simp add: setsum_cartesian_product) | 
| 17189 | 740 | have "(\<Sum>(x,y) \<in> A <*> B. f x y) = | 
| 741 | (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 742 | (is "?s = _") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 743 | apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 744 | apply (simp add: split_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 745 | done | 
| 17189 | 746 | also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 747 | (is "_ = ?t") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 748 | apply (simp add: swap_product) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 749 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 750 | finally show "?s = ?t" . | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 751 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 752 | |
| 19279 | 753 | lemma setsum_product: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 754 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 19279 | 755 | shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" | 
| 756 | by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) | |
| 757 | ||
| 34223 | 758 | lemma setsum_mult_setsum_if_inj: | 
| 759 | fixes f :: "'a => ('b::semiring_0)"
 | |
| 760 | shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==> | |
| 761 |   setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
 | |
| 762 | by(auto simp: setsum_product setsum_cartesian_product | |
| 763 | intro!: setsum_reindex_cong[symmetric]) | |
| 764 | ||
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 765 | lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 766 | apply (cases "finite A") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 767 | apply (erule finite_induct) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 768 | apply (auto simp add: algebra_simps) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 769 | done | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 770 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 771 | lemma setsum_bounded: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 772 |   assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 773 | shows "setsum f A \<le> of_nat(card A) * K" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 774 | proof (cases "finite A") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 775 | case True | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 776 | thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 777 | next | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 778 | case False thus ?thesis by (simp add: setsum_def) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 779 | qed | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 780 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 781 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 782 | subsubsection {* Cardinality as special case of @{const setsum} *}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 783 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 784 | lemma card_eq_setsum: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 785 | "card A = setsum (\<lambda>x. 1) A" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 786 | by (simp only: card_def setsum_def) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 787 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 788 | lemma card_UN_disjoint: | 
| 46557 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 789 | "finite I ==> (ALL i:I. finite (A i)) ==> | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 790 |    (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {})
 | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 791 | ==> card (UNION I A) = (\<Sum>i\<in>I. card(A i))" | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 792 | apply (simp add: card_eq_setsum del: setsum_constant) | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 793 | apply (subgoal_tac | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 794 | "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 795 | apply (simp add: setsum_UN_disjoint del: setsum_constant) | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 796 | apply simp | 
| 
ae926869a311
reverting changesets from 5d33a3269029 on: change of order of declaration of classical rules makes serious problems
 haftmann parents: 
46554diff
changeset | 797 | done | 
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 798 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 799 | lemma card_Union_disjoint: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 800 | "finite C ==> (ALL A:C. finite A) ==> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 801 |    (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 802 | ==> card (Union C) = setsum card C" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 803 | apply (frule card_UN_disjoint [of C id]) | 
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 804 | apply (simp_all add: SUP_def id_def) | 
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 805 | done | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 806 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 807 | text{*The image of a finite set can be expressed using @{term fold_image}.*}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 808 | lemma image_eq_fold_image: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 809 |   "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 810 | proof (induct rule: finite_induct) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 811 | case empty then show ?case by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 812 | next | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 813 | interpret ab_semigroup_mult "op Un" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 814 | proof qed auto | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 815 | case insert | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 816 | then show ?case by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 817 | qed | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 818 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 819 | subsubsection {* Cardinality of products *}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 820 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 821 | lemma card_SigmaI [simp]: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 822 | "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 823 | \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 824 | by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 825 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 826 | (* | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 827 | lemma SigmaI_insert: "y \<notin> A ==> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 828 |   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 829 | by auto | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 830 | *) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 831 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 832 | lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 833 | by (cases "finite A \<and> finite B") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 834 | (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 835 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 836 | lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 837 | by (simp add: card_cartesian_product) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 838 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 839 | |
| 15402 | 840 | subsection {* Generalized product over a set *}
 | 
| 841 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 842 | definition (in comm_monoid_mult) setprod :: "('b \<Rightarrow> 'a) => 'b set => 'a" where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 843 | "setprod f A = (if finite A then fold_image (op *) f 1 A else 1)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 844 | |
| 35938 
93faaa15c3d5
sublocale comm_monoid_add < setprod --> sublocale comm_monoid_mult < setprod
 huffman parents: 
35831diff
changeset | 845 | sublocale comm_monoid_mult < setprod!: comm_monoid_big "op *" 1 setprod proof | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 846 | qed (fact setprod_def) | 
| 15402 | 847 | |
| 19535 | 848 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 849 |   Setprod  ("\<Prod>_" [1000] 999) where
 | 
| 19535 | 850 | "\<Prod>A == setprod (%x. x) A" | 
| 851 | ||
| 15402 | 852 | syntax | 
| 17189 | 853 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3PROD _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 854 | syntax (xsymbols) | 
| 17189 | 855 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 856 | syntax (HTML output) | 
| 17189 | 857 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 16550 | 858 | |
| 859 | translations -- {* Beware of argument permutation! *}
 | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 860 | "PROD i:A. b" == "CONST setprod (%i. b) A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 861 | "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A" | 
| 16550 | 862 | |
| 863 | text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 864 |  @{text"\<Prod>x|P. e"}. *}
 | |
| 865 | ||
| 866 | syntax | |
| 17189 | 867 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
 | 
| 16550 | 868 | syntax (xsymbols) | 
| 17189 | 869 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 870 | syntax (HTML output) | 
| 17189 | 871 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 872 | |
| 15402 | 873 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 874 |   "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 875 |   "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"
 | 
| 16550 | 876 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 877 | lemma setprod_empty: "setprod f {} = 1"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 878 | by (fact setprod.empty) | 
| 15402 | 879 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 880 | lemma setprod_insert: "[| finite A; a \<notin> A |] ==> | 
| 15402 | 881 | setprod f (insert a A) = f a * setprod f A" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 882 | by (fact setprod.insert) | 
| 15402 | 883 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 884 | lemma setprod_infinite: "~ finite A ==> setprod f A = 1" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 885 | by (fact setprod.infinite) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 886 | |
| 15402 | 887 | lemma setprod_reindex: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 888 | "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 889 | by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD) | 
| 15402 | 890 | |
| 891 | lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" | |
| 892 | by (auto simp add: setprod_reindex) | |
| 893 | ||
| 894 | lemma setprod_cong: | |
| 895 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 896 | by(fastforce simp: setprod_def intro: fold_image_cong) | 
| 15402 | 897 | |
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 898 | lemma strong_setprod_cong[cong]: | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 899 | "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 900 | by(fastforce simp: simp_implies_def setprod_def intro: fold_image_cong) | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 901 | |
| 15402 | 902 | lemma setprod_reindex_cong: "inj_on f A ==> | 
| 903 | B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 904 | by (frule setprod_reindex, simp) | 
| 15402 | 905 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 906 | lemma strong_setprod_reindex_cong: assumes i: "inj_on f A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 907 | and B: "B = f ` A" and eq: "\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 908 | shows "setprod h B = setprod g A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 909 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 910 | have "setprod h B = setprod (h o f) A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 911 | by (simp add: B setprod_reindex[OF i, of h]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 912 | then show ?thesis apply simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 913 | apply (rule setprod_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 914 | apply simp | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 915 | by (simp add: eq) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 916 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 917 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 918 | lemma setprod_Un_one: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 919 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 920 | and I0: "\<forall>x \<in> S\<inter>T. f x = 1" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 921 | shows "setprod f (S \<union> T) = setprod f S * setprod f T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 922 | using fS fT | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 923 | apply (simp add: setprod_def) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 924 | apply (rule fold_image_Un_one) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 925 | using I0 by auto | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 926 | |
| 15402 | 927 | |
| 928 | lemma setprod_1: "setprod (%i. 1) A = 1" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 929 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 930 | apply (erule finite_induct, auto simp add: mult_ac) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 931 | done | 
| 15402 | 932 | |
| 933 | lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 934 | apply (subgoal_tac "setprod f F = setprod (%x. 1) F") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 935 | apply (erule ssubst, rule setprod_1) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 936 | apply (rule setprod_cong, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 937 | done | 
| 15402 | 938 | |
| 939 | lemma setprod_Un_Int: "finite A ==> finite B | |
| 940 | ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 941 | by(simp add: setprod_def fold_image_Un_Int[symmetric]) | 
| 15402 | 942 | |
| 943 | lemma setprod_Un_disjoint: "finite A ==> finite B | |
| 944 |   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
 | |
| 945 | by (subst setprod_Un_Int [symmetric], auto) | |
| 946 | ||
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 947 | lemma setprod_mono_one_left: | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 948 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 949 | and z: "\<forall>i \<in> T - S. f i = 1" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 950 | shows "setprod f S = setprod f T" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 951 | proof- | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 952 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 953 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 954 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 955 | show ?thesis | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 956 | by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z]) | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 957 | qed | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 958 | |
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 959 | lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym] | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 960 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 961 | lemma setprod_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 962 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 963 | shows "setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 964 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 965 | let ?f = "(\<lambda>k. if k=a then b k else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 966 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 967 | hence "\<forall> k\<in> S. ?f k = 1" by simp | 
| 41550 | 968 | hence ?thesis using a by (simp add: setprod_1) } | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 969 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 970 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 971 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 972 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 973 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 974 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 975 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 976 | have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 977 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 978 | using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 979 | by simp | 
| 41550 | 980 | then have ?thesis using a by (simp add: fA1 cong: setprod_cong cong del: if_weak_cong)} | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 981 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 982 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 983 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 984 | lemma setprod_delta': | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 985 | assumes fS: "finite S" shows | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 986 | "setprod (\<lambda>k. if a = k then b k else 1) S = | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 987 | (if a\<in> S then b a else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 988 | using setprod_delta[OF fS, of a b, symmetric] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 989 | by (auto intro: setprod_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 990 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 991 | |
| 15402 | 992 | lemma setprod_UN_disjoint: | 
| 993 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 994 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 995 | setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" | |
| 41550 | 996 | by (simp add: setprod_def fold_image_UN_disjoint) | 
| 15402 | 997 | |
| 998 | lemma setprod_Union_disjoint: | |
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 999 |   assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}" 
 | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1000 | shows "setprod f (Union C) = setprod (setprod f) C" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1001 | proof cases | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1002 | assume "finite C" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1003 | from setprod_UN_disjoint[OF this assms] | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1004 | show ?thesis | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1005 | by (simp add: SUP_def) | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44921diff
changeset | 1006 | qed (force dest: finite_UnionD simp add: setprod_def) | 
| 15402 | 1007 | |
| 1008 | lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 16550 | 1009 | (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = | 
| 17189 | 1010 | (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 41550 | 1011 | by(simp add:setprod_def fold_image_Sigma split_def) | 
| 15402 | 1012 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1013 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1014 | lemma setprod_cartesian_product: | 
| 17189 | 1015 | "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1016 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1017 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1018 | apply (simp add: setprod_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1019 |  apply (cases "A={}", simp)
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1020 | apply (simp add: setprod_1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1021 | apply (auto simp add: setprod_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1022 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1023 | done | 
| 15402 | 1024 | |
| 1025 | lemma setprod_timesf: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1026 | "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1027 | by(simp add:setprod_def fold_image_distrib) | 
| 15402 | 1028 | |
| 1029 | ||
| 1030 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 1031 | ||
| 1032 | lemma setprod_eq_1_iff [simp]: | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1033 | "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1034 | by (induct set: finite) auto | 
| 15402 | 1035 | |
| 1036 | lemma setprod_zero: | |
| 23277 | 1037 | "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1038 | apply (induct set: finite, force, clarsimp) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1039 | apply (erule disjE, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1040 | done | 
| 15402 | 1041 | |
| 1042 | lemma setprod_nonneg [rule_format]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1043 | "(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A" | 
| 30841 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1044 | by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg) | 
| 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1045 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1046 | lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x) | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1047 | --> 0 < setprod f A" | 
| 30841 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1048 | by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos) | 
| 15402 | 1049 | |
| 30843 | 1050 | lemma setprod_zero_iff[simp]: "finite A ==> | 
| 1051 |   (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
 | |
| 1052 | (EX x: A. f x = 0)" | |
| 1053 | by (erule finite_induct, auto simp:no_zero_divisors) | |
| 1054 | ||
| 1055 | lemma setprod_pos_nat: | |
| 1056 | "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" | |
| 1057 | using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) | |
| 15402 | 1058 | |
| 30863 | 1059 | lemma setprod_pos_nat_iff[simp]: | 
| 1060 | "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))" | |
| 1061 | using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) | |
| 1062 | ||
| 15402 | 1063 | lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1064 |   (setprod f (A Un B) :: 'a ::{field})
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1065 | = setprod f A * setprod f B / setprod f (A Int B)" | 
| 30843 | 1066 | by (subst setprod_Un_Int [symmetric], auto) | 
| 15402 | 1067 | |
| 1068 | lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1069 |   (setprod f (A - {a}) :: 'a :: {field}) =
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1070 | (if a:A then setprod f A / f a else setprod f A)" | 
| 36303 | 1071 | by (erule finite_induct) (auto simp add: insert_Diff_if) | 
| 15402 | 1072 | |
| 31906 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1073 | lemma setprod_inversef: | 
| 36409 | 1074 | fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero" | 
| 31906 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1075 | shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1076 | by (erule finite_induct) auto | 
| 15402 | 1077 | |
| 1078 | lemma setprod_dividef: | |
| 36409 | 1079 | fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero" | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1080 | shows "finite A | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1081 | ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1082 | apply (subgoal_tac | 
| 15402 | 1083 | "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1084 | apply (erule ssubst) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1085 | apply (subst divide_inverse) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1086 | apply (subst setprod_timesf) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1087 | apply (subst setprod_inversef, assumption+, rule refl) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1088 | apply (rule setprod_cong, rule refl) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1089 | apply (subst divide_inverse, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1090 | done | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1091 | |
| 29925 | 1092 | lemma setprod_dvd_setprod [rule_format]: | 
| 1093 | "(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A" | |
| 1094 | apply (cases "finite A") | |
| 1095 | apply (induct set: finite) | |
| 1096 | apply (auto simp add: dvd_def) | |
| 1097 | apply (rule_tac x = "k * ka" in exI) | |
| 1098 | apply (simp add: algebra_simps) | |
| 1099 | done | |
| 1100 | ||
| 1101 | lemma setprod_dvd_setprod_subset: | |
| 1102 | "finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B" | |
| 1103 | apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)") | |
| 1104 | apply (unfold dvd_def, blast) | |
| 1105 | apply (subst setprod_Un_disjoint [symmetric]) | |
| 1106 | apply (auto elim: finite_subset intro: setprod_cong) | |
| 1107 | done | |
| 1108 | ||
| 1109 | lemma setprod_dvd_setprod_subset2: | |
| 1110 | "finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow> | |
| 1111 | setprod f A dvd setprod g B" | |
| 1112 | apply (rule dvd_trans) | |
| 1113 | apply (rule setprod_dvd_setprod, erule (1) bspec) | |
| 1114 | apply (erule (1) setprod_dvd_setprod_subset) | |
| 1115 | done | |
| 1116 | ||
| 1117 | lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow> | |
| 1118 | (f i ::'a::comm_semiring_1) dvd setprod f A" | |
| 1119 | by (induct set: finite) (auto intro: dvd_mult) | |
| 1120 | ||
| 1121 | lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow> | |
| 1122 | (d::'a::comm_semiring_1) dvd (SUM x : A. f x)" | |
| 1123 | apply (cases "finite A") | |
| 1124 | apply (induct set: finite) | |
| 1125 | apply auto | |
| 1126 | done | |
| 1127 | ||
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1128 | lemma setprod_mono: | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1129 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1130 | assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1131 | shows "setprod f A \<le> setprod g A" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1132 | proof (cases "finite A") | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1133 | case True | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1134 | hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A] | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1135 | proof (induct A rule: finite_subset_induct) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1136 | case (insert a F) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1137 | thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1138 | unfolding setprod_insert[OF insert(1,3)] | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1139 | using assms[rule_format,OF insert(2)] insert | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1140 | by (auto intro: mult_mono mult_nonneg_nonneg) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1141 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1142 | thus ?thesis by simp | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1143 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1144 | |
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1145 | lemma abs_setprod: | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1146 |   fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1147 | shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1148 | proof (cases "finite A") | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1149 | case True thus ?thesis | 
| 35216 | 1150 | by induct (auto simp add: field_simps abs_mult) | 
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1151 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1152 | |
| 31017 | 1153 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
 | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1154 | apply (erule finite_induct) | 
| 35216 | 1155 | apply auto | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1156 | done | 
| 15402 | 1157 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1158 | lemma setprod_gen_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1159 | assumes fS: "finite S" | 
| 31017 | 1160 |   shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)"
 | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1161 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1162 | let ?f = "(\<lambda>k. if k=a then b k else c)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1163 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1164 | hence "\<forall> k\<in> S. ?f k = c" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1165 | hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) } | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1166 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1167 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1168 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1169 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1170 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1171 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1172 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1173 | have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1174 | apply (rule setprod_cong) by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1175 | have cA: "card ?A = card S - 1" using fS a by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1176 | have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1177 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1178 | using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1179 | by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1180 | then have ?thesis using a cA | 
| 36349 | 1181 | by (simp add: fA1 field_simps cong add: setprod_cong cong del: if_weak_cong)} | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1182 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1183 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1184 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1185 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1186 | subsection {* Versions of @{const inf} and @{const sup} on non-empty sets *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1187 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1188 | no_notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1189 | no_notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1190 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1191 | locale semilattice_big = semilattice + | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1192 | fixes F :: "'a set \<Rightarrow> 'a" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1193 | assumes F_eq: "finite A \<Longrightarrow> F A = fold1 (op *) A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1194 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1195 | sublocale semilattice_big < folding_one_idem proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1196 | qed (simp_all add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1197 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1198 | notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1199 | notation Groups.one ("1")
 | 
| 22917 | 1200 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1201 | context lattice | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1202 | begin | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1203 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1204 | definition Inf_fin :: "'a set \<Rightarrow> 'a" ("\<Sqinter>\<^bsub>fin\<^esub>_" [900] 900) where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1205 | "Inf_fin = fold1 inf" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1206 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1207 | definition Sup_fin :: "'a set \<Rightarrow> 'a" ("\<Squnion>\<^bsub>fin\<^esub>_" [900] 900) where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1208 | "Sup_fin = fold1 sup" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1209 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1210 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1211 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1212 | sublocale lattice < Inf_fin!: semilattice_big inf Inf_fin proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1213 | qed (simp add: Inf_fin_def) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1214 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1215 | sublocale lattice < Sup_fin!: semilattice_big sup Sup_fin proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1216 | qed (simp add: Sup_fin_def) | 
| 22917 | 1217 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1218 | context semilattice_inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1219 | begin | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1220 | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 1221 | lemma ab_semigroup_idem_mult_inf: | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 1222 | "class.ab_semigroup_idem_mult inf" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1223 | proof qed (rule inf_assoc inf_commute inf_idem)+ | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1224 | |
| 46033 | 1225 | lemma fold_inf_insert[simp]: "finite A \<Longrightarrow> Finite_Set.fold inf b (insert a A) = inf a (Finite_Set.fold inf b A)" | 
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42284diff
changeset | 1226 | by(rule comp_fun_idem.fold_insert_idem[OF ab_semigroup_idem_mult.comp_fun_idem[OF ab_semigroup_idem_mult_inf]]) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1227 | |
| 46033 | 1228 | lemma inf_le_fold_inf: "finite A \<Longrightarrow> ALL a:A. b \<le> a \<Longrightarrow> inf b c \<le> Finite_Set.fold inf c A" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1229 | by (induct pred: finite) (auto intro: le_infI1) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1230 | |
| 46033 | 1231 | lemma fold_inf_le_inf: "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> Finite_Set.fold inf b A \<le> inf a b" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1232 | proof(induct arbitrary: a pred:finite) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1233 | case empty thus ?case by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1234 | next | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1235 | case (insert x A) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1236 | show ?case | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1237 | proof cases | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1238 |     assume "A = {}" thus ?thesis using insert by simp
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1239 | next | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1240 |     assume "A \<noteq> {}" thus ?thesis using insert by (auto intro: le_infI2)
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1241 | qed | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1242 | qed | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1243 | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1244 | lemma below_fold1_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1245 |   assumes "finite A" "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1246 | shows "x \<le> fold1 inf A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1247 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1248 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1249 | by (rule ab_semigroup_idem_mult_inf) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1250 | show ?thesis using assms by (induct rule: finite_ne_induct) simp_all | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1251 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1252 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1253 | lemma fold1_belowI: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1254 | assumes "finite A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1255 | and "a \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1256 | shows "fold1 inf A \<le> a" | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1257 | proof - | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1258 |   from assms have "A \<noteq> {}" by auto
 | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1259 |   from `finite A` `A \<noteq> {}` `a \<in> A` show ?thesis
 | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1260 | proof (induct rule: finite_ne_induct) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1261 | case singleton thus ?case by simp | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1262 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1263 | interpret ab_semigroup_idem_mult inf | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1264 | by (rule ab_semigroup_idem_mult_inf) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1265 | case (insert x F) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1266 | from insert(5) have "a = x \<or> a \<in> F" by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1267 | thus ?case | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1268 | proof | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1269 | assume "a = x" thus ?thesis using insert | 
| 29667 | 1270 | by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1271 | next | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1272 | assume "a \<in> F" | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1273 | hence bel: "fold1 inf F \<le> a" by (rule insert) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1274 | have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)" | 
| 29667 | 1275 | using insert by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1276 | also have "inf (fold1 inf F) a = fold1 inf F" | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1277 | using bel by (auto intro: antisym) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1278 | also have "inf x \<dots> = fold1 inf (insert x F)" | 
| 29667 | 1279 | using insert by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1280 | finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" . | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1281 | moreover have "inf (fold1 inf (insert x F)) a \<le> a" by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1282 | ultimately show ?thesis by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1283 | qed | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1284 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1285 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1286 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1287 | end | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1288 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1289 | context semilattice_sup | 
| 22917 | 1290 | begin | 
| 1291 | ||
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 1292 | lemma ab_semigroup_idem_mult_sup: "class.ab_semigroup_idem_mult sup" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1293 | by (rule semilattice_inf.ab_semigroup_idem_mult_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1294 | |
| 46033 | 1295 | lemma fold_sup_insert[simp]: "finite A \<Longrightarrow> Finite_Set.fold sup b (insert a A) = sup a (Finite_Set.fold sup b A)" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1296 | by(rule semilattice_inf.fold_inf_insert)(rule dual_semilattice) | 
| 22917 | 1297 | |
| 46033 | 1298 | lemma fold_sup_le_sup: "finite A \<Longrightarrow> ALL a:A. a \<le> b \<Longrightarrow> Finite_Set.fold sup c A \<le> sup b c" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1299 | by(rule semilattice_inf.inf_le_fold_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1300 | |
| 46033 | 1301 | lemma sup_le_fold_sup: "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a b \<le> Finite_Set.fold sup b A" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1302 | by(rule semilattice_inf.fold_inf_le_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1303 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1304 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1305 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1306 | context lattice | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1307 | begin | 
| 25062 | 1308 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1309 | lemma Inf_le_Sup [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>\<^bsub>fin\<^esub>A \<le> \<Squnion>\<^bsub>fin\<^esub>A"
 | 
| 24342 | 1310 | apply(unfold Sup_fin_def Inf_fin_def) | 
| 15500 | 1311 | apply(subgoal_tac "EX a. a:A") | 
| 1312 | prefer 2 apply blast | |
| 1313 | apply(erule exE) | |
| 22388 | 1314 | apply(rule order_trans) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1315 | apply(erule (1) fold1_belowI) | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1316 | apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice]) | 
| 15500 | 1317 | done | 
| 1318 | ||
| 24342 | 1319 | lemma sup_Inf_absorb [simp]: | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1320 | "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a (\<Sqinter>\<^bsub>fin\<^esub>A) = a" | 
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 1321 | apply(subst sup_commute) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1322 | apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI) | 
| 15504 | 1323 | done | 
| 1324 | ||
| 24342 | 1325 | lemma inf_Sup_absorb [simp]: | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1326 | "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> inf a (\<Squnion>\<^bsub>fin\<^esub>A) = a" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1327 | by (simp add: Sup_fin_def inf_absorb1 | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1328 | semilattice_inf.fold1_belowI [OF dual_semilattice]) | 
| 24342 | 1329 | |
| 1330 | end | |
| 1331 | ||
| 1332 | context distrib_lattice | |
| 1333 | begin | |
| 1334 | ||
| 1335 | lemma sup_Inf1_distrib: | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1336 | assumes "finite A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1337 |     and "A \<noteq> {}"
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1338 |   shows "sup x (\<Sqinter>\<^bsub>fin\<^esub>A) = \<Sqinter>\<^bsub>fin\<^esub>{sup x a|a. a \<in> A}"
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1339 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1340 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1341 | by (rule ab_semigroup_idem_mult_inf) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1342 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1343 | by (simp add: Inf_fin_def image_def | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1344 | hom_fold1_commute [where h="sup x", OF sup_inf_distrib1]) | 
| 26792 | 1345 | (rule arg_cong [where f="fold1 inf"], blast) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1346 | qed | 
| 18423 | 1347 | |
| 24342 | 1348 | lemma sup_Inf2_distrib: | 
| 1349 |   assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1350 |   shows "sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B) = \<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B}"
 | 
| 24342 | 1351 | using A proof (induct rule: finite_ne_induct) | 
| 15500 | 1352 | case singleton thus ?case | 
| 41550 | 1353 | by (simp add: sup_Inf1_distrib [OF B]) | 
| 15500 | 1354 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1355 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1356 | by (rule ab_semigroup_idem_mult_inf) | 
| 15500 | 1357 | case (insert x A) | 
| 25062 | 1358 |   have finB: "finite {sup x b |b. b \<in> B}"
 | 
| 1359 | by(rule finite_surj[where f = "sup x", OF B(1)], auto) | |
| 1360 |   have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
 | |
| 15500 | 1361 | proof - | 
| 25062 | 1362 |     have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {sup a b})"
 | 
| 15500 | 1363 | by blast | 
| 15517 | 1364 | thus ?thesis by(simp add: insert(1) B(1)) | 
| 15500 | 1365 | qed | 
| 25062 | 1366 |   have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1367 | have "sup (\<Sqinter>\<^bsub>fin\<^esub>(insert x A)) (\<Sqinter>\<^bsub>fin\<^esub>B) = sup (inf x (\<Sqinter>\<^bsub>fin\<^esub>A)) (\<Sqinter>\<^bsub>fin\<^esub>B)" | 
| 41550 | 1368 | using insert by simp | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1369 | also have "\<dots> = inf (sup x (\<Sqinter>\<^bsub>fin\<^esub>B)) (sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2) | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1370 |   also have "\<dots> = inf (\<Sqinter>\<^bsub>fin\<^esub>{sup x b|b. b \<in> B}) (\<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B})"
 | 
| 15500 | 1371 | using insert by(simp add:sup_Inf1_distrib[OF B]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1372 |   also have "\<dots> = \<Sqinter>\<^bsub>fin\<^esub>({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
 | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1373 | (is "_ = \<Sqinter>\<^bsub>fin\<^esub>?M") | 
| 15500 | 1374 | using B insert | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1375 | by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne]) | 
| 25062 | 1376 |   also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
 | 
| 15500 | 1377 | by blast | 
| 1378 | finally show ?case . | |
| 1379 | qed | |
| 1380 | ||
| 24342 | 1381 | lemma inf_Sup1_distrib: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1382 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1383 |   shows "inf x (\<Squnion>\<^bsub>fin\<^esub>A) = \<Squnion>\<^bsub>fin\<^esub>{inf x a|a. a \<in> A}"
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1384 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1385 | interpret ab_semigroup_idem_mult sup | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1386 | by (rule ab_semigroup_idem_mult_sup) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1387 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1388 | by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1]) | 
| 26792 | 1389 | (rule arg_cong [where f="fold1 sup"], blast) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1390 | qed | 
| 18423 | 1391 | |
| 24342 | 1392 | lemma inf_Sup2_distrib: | 
| 1393 |   assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1394 |   shows "inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B) = \<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B}"
 | 
| 24342 | 1395 | using A proof (induct rule: finite_ne_induct) | 
| 18423 | 1396 | case singleton thus ?case | 
| 44921 | 1397 | by(simp add: inf_Sup1_distrib [OF B]) | 
| 18423 | 1398 | next | 
| 1399 | case (insert x A) | |
| 25062 | 1400 |   have finB: "finite {inf x b |b. b \<in> B}"
 | 
| 1401 | by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) | |
| 1402 |   have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
 | |
| 18423 | 1403 | proof - | 
| 25062 | 1404 |     have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {inf a b})"
 | 
| 18423 | 1405 | by blast | 
| 1406 | thus ?thesis by(simp add: insert(1) B(1)) | |
| 1407 | qed | |
| 25062 | 1408 |   have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1409 | interpret ab_semigroup_idem_mult sup | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1410 | by (rule ab_semigroup_idem_mult_sup) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1411 | have "inf (\<Squnion>\<^bsub>fin\<^esub>(insert x A)) (\<Squnion>\<^bsub>fin\<^esub>B) = inf (sup x (\<Squnion>\<^bsub>fin\<^esub>A)) (\<Squnion>\<^bsub>fin\<^esub>B)" | 
| 41550 | 1412 | using insert by simp | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1413 | also have "\<dots> = sup (inf x (\<Squnion>\<^bsub>fin\<^esub>B)) (inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2) | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1414 |   also have "\<dots> = sup (\<Squnion>\<^bsub>fin\<^esub>{inf x b|b. b \<in> B}) (\<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B})"
 | 
| 18423 | 1415 | using insert by(simp add:inf_Sup1_distrib[OF B]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1416 |   also have "\<dots> = \<Squnion>\<^bsub>fin\<^esub>({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
 | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1417 | (is "_ = \<Squnion>\<^bsub>fin\<^esub>?M") | 
| 18423 | 1418 | using B insert | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1419 | by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne]) | 
| 25062 | 1420 |   also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
 | 
| 18423 | 1421 | by blast | 
| 1422 | finally show ?case . | |
| 1423 | qed | |
| 1424 | ||
| 24342 | 1425 | end | 
| 1426 | ||
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1427 | context complete_lattice | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1428 | begin | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1429 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1430 | lemma Inf_fin_Inf: | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1431 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1432 | shows "\<Sqinter>\<^bsub>fin\<^esub>A = Inf A" | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1433 | proof - | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1434 | interpret ab_semigroup_idem_mult inf | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1435 | by (rule ab_semigroup_idem_mult_inf) | 
| 44918 | 1436 |   from `A \<noteq> {}` obtain b B where "A = {b} \<union> B" by auto
 | 
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1437 | moreover with `finite A` have "finite B" by simp | 
| 44918 | 1438 | ultimately show ?thesis | 
| 1439 | by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric]) | |
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1440 | qed | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1441 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1442 | lemma Sup_fin_Sup: | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1443 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1444 | shows "\<Squnion>\<^bsub>fin\<^esub>A = Sup A" | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1445 | proof - | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1446 | interpret ab_semigroup_idem_mult sup | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1447 | by (rule ab_semigroup_idem_mult_sup) | 
| 44918 | 1448 |   from `A \<noteq> {}` obtain b B where "A = {b} \<union> B" by auto
 | 
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1449 | moreover with `finite A` have "finite B" by simp | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1450 | ultimately show ?thesis | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1451 | by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric]) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1452 | qed | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1453 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1454 | end | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1455 | |
| 22917 | 1456 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1457 | subsection {* Versions of @{const min} and @{const max} on non-empty sets *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1458 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1459 | definition (in linorder) Min :: "'a set \<Rightarrow> 'a" where | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1460 | "Min = fold1 min" | 
| 22917 | 1461 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1462 | definition (in linorder) Max :: "'a set \<Rightarrow> 'a" where | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1463 | "Max = fold1 max" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1464 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1465 | sublocale linorder < Min!: semilattice_big min Min proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1466 | qed (simp add: Min_def) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1467 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1468 | sublocale linorder < Max!: semilattice_big max Max proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1469 | qed (simp add: Max_def) | 
| 22917 | 1470 | |
| 24342 | 1471 | context linorder | 
| 22917 | 1472 | begin | 
| 1473 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1474 | lemmas Min_singleton = Min.singleton | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1475 | lemmas Max_singleton = Max.singleton | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1476 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1477 | lemma Min_insert: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1478 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1479 | shows "Min (insert x A) = min x (Min A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1480 | using assms by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1481 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1482 | lemma Max_insert: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1483 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1484 | shows "Max (insert x A) = max x (Max A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1485 | using assms by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1486 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1487 | lemma Min_Un: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1488 |   assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1489 | shows "Min (A \<union> B) = min (Min A) (Min B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1490 | using assms by (rule Min.union_idem) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1491 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1492 | lemma Max_Un: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1493 |   assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1494 | shows "Max (A \<union> B) = max (Max A) (Max B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1495 | using assms by (rule Max.union_idem) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1496 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1497 | lemma hom_Min_commute: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1498 | assumes "\<And>x y. h (min x y) = min (h x) (h y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1499 |     and "finite N" and "N \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1500 | shows "h (Min N) = Min (h ` N)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1501 | using assms by (rule Min.hom_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1502 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1503 | lemma hom_Max_commute: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1504 | assumes "\<And>x y. h (max x y) = max (h x) (h y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1505 |     and "finite N" and "N \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1506 | shows "h (Max N) = Max (h ` N)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1507 | using assms by (rule Max.hom_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1508 | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1509 | lemma ab_semigroup_idem_mult_min: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 1510 | "class.ab_semigroup_idem_mult min" | 
| 28823 | 1511 | proof qed (auto simp add: min_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1512 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1513 | lemma ab_semigroup_idem_mult_max: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36622diff
changeset | 1514 | "class.ab_semigroup_idem_mult max" | 
| 28823 | 1515 | proof qed (auto simp add: max_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1516 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1517 | lemma max_lattice: | 
| 44845 | 1518 | "class.semilattice_inf max (op \<ge>) (op >)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1519 | by (fact min_max.dual_semilattice) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1520 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1521 | lemma dual_max: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1522 | "ord.max (op \<ge>) = min" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1523 | by (auto simp add: ord.max_def_raw min_def fun_eq_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1524 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1525 | lemma dual_min: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1526 | "ord.min (op \<ge>) = max" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1527 | by (auto simp add: ord.min_def_raw max_def fun_eq_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1528 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1529 | lemma strict_below_fold1_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1530 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1531 | shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1532 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1533 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1534 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1535 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1536 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1537 | (simp_all add: fold1_insert) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1538 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1539 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1540 | lemma fold1_below_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1541 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1542 | shows "fold1 min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1543 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1544 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1545 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1546 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1547 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1548 | (simp_all add: fold1_insert min_le_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1549 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1550 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1551 | lemma fold1_strict_below_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1552 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1553 | shows "fold1 min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1554 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1555 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1556 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1557 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1558 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1559 | (simp_all add: fold1_insert min_less_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1560 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1561 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1562 | lemma fold1_antimono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1563 |   assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1564 | shows "fold1 min B \<le> fold1 min A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1565 | proof cases | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1566 | assume "A = B" thus ?thesis by simp | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1567 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1568 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1569 | by (rule ab_semigroup_idem_mult_min) | 
| 41550 | 1570 | assume neq: "A \<noteq> B" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1571 | have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1572 | have "fold1 min B = fold1 min (A \<union> (B-A))" by(subst B)(rule refl) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1573 | also have "\<dots> = min (fold1 min A) (fold1 min (B-A))" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1574 | proof - | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1575 | have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`]) | 
| 41550 | 1576 | moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) | 
| 1577 |     moreover have "(B-A) \<noteq> {}" using assms neq by blast
 | |
| 1578 |     moreover have "A Int (B-A) = {}" using assms by blast
 | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1579 |     ultimately show ?thesis using `A \<noteq> {}` by (rule_tac fold1_Un)
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1580 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1581 | also have "\<dots> \<le> fold1 min A" by (simp add: min_le_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1582 | finally show ?thesis . | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1583 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1584 | |
| 24427 | 1585 | lemma Min_in [simp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1586 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1587 | shows "Min A \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1588 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1589 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1590 | by (rule ab_semigroup_idem_mult_min) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1591 | from assms fold1_in show ?thesis by (fastforce simp: Min_def min_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1592 | qed | 
| 15392 | 1593 | |
| 24427 | 1594 | lemma Max_in [simp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1595 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1596 | shows "Max A \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1597 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1598 | interpret ab_semigroup_idem_mult max | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1599 | by (rule ab_semigroup_idem_mult_max) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1600 | from assms fold1_in [of A] show ?thesis by (fastforce simp: Max_def max_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1601 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1602 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1603 | lemma Min_le [simp]: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1604 | assumes "finite A" and "x \<in> A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1605 | shows "Min A \<le> x" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1606 | using assms by (simp add: Min_def min_max.fold1_belowI) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1607 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1608 | lemma Max_ge [simp]: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1609 | assumes "finite A" and "x \<in> A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1610 | shows "x \<le> Max A" | 
| 44921 | 1611 | by (simp add: Max_def semilattice_inf.fold1_belowI [OF max_lattice] assms) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1612 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1613 | lemma Min_ge_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1614 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1615 | shows "x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1616 | using assms by (simp add: Min_def min_max.below_fold1_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1617 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1618 | lemma Max_le_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1619 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1620 | shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)" | 
| 44921 | 1621 | by (simp add: Max_def semilattice_inf.below_fold1_iff [OF max_lattice] assms) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1622 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1623 | lemma Min_gr_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1624 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1625 | shows "x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1626 | using assms by (simp add: Min_def strict_below_fold1_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1627 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1628 | lemma Max_less_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1629 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1630 | shows "Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)" | 
| 44921 | 1631 | by (simp add: Max_def linorder.dual_max [OF dual_linorder] | 
| 1632 | linorder.strict_below_fold1_iff [OF dual_linorder] assms) | |
| 18493 | 1633 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1634 | lemma Min_le_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1635 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1636 | shows "Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1637 | using assms by (simp add: Min_def fold1_below_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1638 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1639 | lemma Max_ge_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1640 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1641 | shows "x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)" | 
| 44921 | 1642 | by (simp add: Max_def linorder.dual_max [OF dual_linorder] | 
| 1643 | linorder.fold1_below_iff [OF dual_linorder] assms) | |
| 22917 | 1644 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1645 | lemma Min_less_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1646 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1647 | shows "Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1648 | using assms by (simp add: Min_def fold1_strict_below_iff) | 
| 22917 | 1649 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1650 | lemma Max_gr_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1651 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1652 | shows "x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)" | 
| 44921 | 1653 | by (simp add: Max_def linorder.dual_max [OF dual_linorder] | 
| 1654 | linorder.fold1_strict_below_iff [OF dual_linorder] assms) | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1655 | |
| 30325 | 1656 | lemma Min_eqI: | 
| 1657 | assumes "finite A" | |
| 1658 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x" | |
| 1659 | and "x \<in> A" | |
| 1660 | shows "Min A = x" | |
| 1661 | proof (rule antisym) | |
| 1662 |   from `x \<in> A` have "A \<noteq> {}" by auto
 | |
| 1663 | with assms show "Min A \<ge> x" by simp | |
| 1664 | next | |
| 1665 | from assms show "x \<ge> Min A" by simp | |
| 1666 | qed | |
| 1667 | ||
| 1668 | lemma Max_eqI: | |
| 1669 | assumes "finite A" | |
| 1670 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" | |
| 1671 | and "x \<in> A" | |
| 1672 | shows "Max A = x" | |
| 1673 | proof (rule antisym) | |
| 1674 |   from `x \<in> A` have "A \<noteq> {}" by auto
 | |
| 1675 | with assms show "Max A \<le> x" by simp | |
| 1676 | next | |
| 1677 | from assms show "x \<le> Max A" by simp | |
| 1678 | qed | |
| 1679 | ||
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1680 | lemma Min_antimono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1681 |   assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1682 | shows "Min N \<le> Min M" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1683 | using assms by (simp add: Min_def fold1_antimono) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1684 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1685 | lemma Max_mono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1686 |   assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1687 | shows "Max M \<le> Max N" | 
| 44921 | 1688 | by (simp add: Max_def linorder.dual_max [OF dual_linorder] | 
| 1689 | linorder.fold1_antimono [OF dual_linorder] assms) | |
| 22917 | 1690 | |
| 32006 | 1691 | lemma finite_linorder_max_induct[consumes 1, case_names empty insert]: | 
| 36079 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1692 | assumes fin: "finite A" | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1693 |  and   empty: "P {}" 
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1694 | and insert: "(!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A))" | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1695 | shows "P A" | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1696 | using fin empty insert | 
| 32006 | 1697 | proof (induct rule: finite_psubset_induct) | 
| 36079 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1698 | case (psubset A) | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1699 |   have IH: "\<And>B. \<lbrakk>B < A; P {}; (\<And>A b. \<lbrakk>finite A; \<forall>a\<in>A. a<b; P A\<rbrakk> \<Longrightarrow> P (insert b A))\<rbrakk> \<Longrightarrow> P B" by fact 
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1700 | have fin: "finite A" by fact | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1701 |   have empty: "P {}" by fact
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1702 | have step: "\<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)" by fact | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1703 | show "P A" | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1704 |   proof (cases "A = {}")
 | 
| 36079 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1705 |     assume "A = {}" 
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1706 |     then show "P A" using `P {}` by simp
 | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1707 | next | 
| 36079 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1708 |     let ?B = "A - {Max A}" 
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1709 | let ?A = "insert (Max A) ?B" | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1710 | have "finite ?B" using `finite A` by simp | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1711 |     assume "A \<noteq> {}"
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1712 | with `finite A` have "Max A : A" by auto | 
| 36079 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1713 | then have A: "?A = A" using insert_Diff_single insert_absorb by auto | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1714 |     then have "P ?B" using `P {}` step IH[of ?B] by blast
 | 
| 
fa0e354e6a39
simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
 Christian Urban <urbanc@in.tum.de> parents: 
35938diff
changeset | 1715 | moreover | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1716 | have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastforce | 
| 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1717 | ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastforce | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1718 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1719 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1720 | |
| 32006 | 1721 | lemma finite_linorder_min_induct[consumes 1, case_names empty insert]: | 
| 33434 | 1722 |  "\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
 | 
| 32006 | 1723 | by(rule linorder.finite_linorder_max_induct[OF dual_linorder]) | 
| 1724 | ||
| 22917 | 1725 | end | 
| 1726 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1727 | context linordered_ab_semigroup_add | 
| 22917 | 1728 | begin | 
| 1729 | ||
| 1730 | lemma add_Min_commute: | |
| 1731 | fixes k | |
| 25062 | 1732 |   assumes "finite N" and "N \<noteq> {}"
 | 
| 1733 |   shows "k + Min N = Min {k + m | m. m \<in> N}"
 | |
| 1734 | proof - | |
| 1735 | have "\<And>x y. k + min x y = min (k + x) (k + y)" | |
| 1736 | by (simp add: min_def not_le) | |
| 1737 | (blast intro: antisym less_imp_le add_left_mono) | |
| 1738 | with assms show ?thesis | |
| 1739 | using hom_Min_commute [of "plus k" N] | |
| 1740 | by simp (blast intro: arg_cong [where f = Min]) | |
| 1741 | qed | |
| 22917 | 1742 | |
| 1743 | lemma add_Max_commute: | |
| 1744 | fixes k | |
| 25062 | 1745 |   assumes "finite N" and "N \<noteq> {}"
 | 
| 1746 |   shows "k + Max N = Max {k + m | m. m \<in> N}"
 | |
| 1747 | proof - | |
| 1748 | have "\<And>x y. k + max x y = max (k + x) (k + y)" | |
| 1749 | by (simp add: max_def not_le) | |
| 1750 | (blast intro: antisym less_imp_le add_left_mono) | |
| 1751 | with assms show ?thesis | |
| 1752 | using hom_Max_commute [of "plus k" N] | |
| 1753 | by simp (blast intro: arg_cong [where f = Max]) | |
| 1754 | qed | |
| 22917 | 1755 | |
| 1756 | end | |
| 1757 | ||
| 35034 | 1758 | context linordered_ab_group_add | 
| 1759 | begin | |
| 1760 | ||
| 1761 | lemma minus_Max_eq_Min [simp]: | |
| 1762 |   "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
 | |
| 1763 | by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min) | |
| 1764 | ||
| 1765 | lemma minus_Min_eq_Max [simp]: | |
| 1766 |   "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
 | |
| 1767 | by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max) | |
| 1768 | ||
| 1769 | end | |
| 1770 | ||
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 1771 | end |