author | nipkow |
Mon, 07 Feb 2005 18:20:46 +0100 | |
changeset 15504 | 5bc81e50f2c5 |
parent 15502 | 9d012c7fadab |
child 15505 | c929e1cbef88 |
permissions | -rw-r--r-- |
12396 | 1 |
(* Title: HOL/Finite_Set.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
4 |
Additions by Jeremy Avigad in Feb 2004 |
12396 | 5 |
*) |
6 |
||
7 |
header {* Finite sets *} |
|
8 |
||
15131 | 9 |
theory Finite_Set |
15140 | 10 |
imports Divides Power Inductive |
15131 | 11 |
begin |
12396 | 12 |
|
15392 | 13 |
subsection {* Definition and basic properties *} |
12396 | 14 |
|
15 |
consts Finites :: "'a set set" |
|
13737 | 16 |
syntax |
17 |
finite :: "'a set => bool" |
|
18 |
translations |
|
19 |
"finite A" == "A : Finites" |
|
12396 | 20 |
|
21 |
inductive Finites |
|
22 |
intros |
|
23 |
emptyI [simp, intro!]: "{} : Finites" |
|
24 |
insertI [simp, intro!]: "A : Finites ==> insert a A : Finites" |
|
25 |
||
26 |
axclass finite \<subseteq> type |
|
27 |
finite: "finite UNIV" |
|
28 |
||
13737 | 29 |
lemma ex_new_if_finite: -- "does not depend on def of finite at all" |
14661 | 30 |
assumes "\<not> finite (UNIV :: 'a set)" and "finite A" |
31 |
shows "\<exists>a::'a. a \<notin> A" |
|
32 |
proof - |
|
33 |
from prems have "A \<noteq> UNIV" by blast |
|
34 |
thus ?thesis by blast |
|
35 |
qed |
|
12396 | 36 |
|
37 |
lemma finite_induct [case_names empty insert, induct set: Finites]: |
|
38 |
"finite F ==> |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
39 |
P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F" |
12396 | 40 |
-- {* Discharging @{text "x \<notin> F"} entails extra work. *} |
41 |
proof - |
|
13421 | 42 |
assume "P {}" and |
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
43 |
insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" |
12396 | 44 |
assume "finite F" |
45 |
thus "P F" |
|
46 |
proof induct |
|
47 |
show "P {}" . |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
48 |
fix x F assume F: "finite F" and P: "P F" |
12396 | 49 |
show "P (insert x F)" |
50 |
proof cases |
|
51 |
assume "x \<in> F" |
|
52 |
hence "insert x F = F" by (rule insert_absorb) |
|
53 |
with P show ?thesis by (simp only:) |
|
54 |
next |
|
55 |
assume "x \<notin> F" |
|
56 |
from F this P show ?thesis by (rule insert) |
|
57 |
qed |
|
58 |
qed |
|
59 |
qed |
|
60 |
||
15484 | 61 |
lemma finite_ne_induct[case_names singleton insert, consumes 2]: |
62 |
assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow> |
|
63 |
\<lbrakk> \<And>x. P{x}; |
|
64 |
\<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk> |
|
65 |
\<Longrightarrow> P F" |
|
66 |
using fin |
|
67 |
proof induct |
|
68 |
case empty thus ?case by simp |
|
69 |
next |
|
70 |
case (insert x F) |
|
71 |
show ?case |
|
72 |
proof cases |
|
73 |
assume "F = {}" thus ?thesis using insert(4) by simp |
|
74 |
next |
|
75 |
assume "F \<noteq> {}" thus ?thesis using insert by blast |
|
76 |
qed |
|
77 |
qed |
|
78 |
||
12396 | 79 |
lemma finite_subset_induct [consumes 2, case_names empty insert]: |
80 |
"finite F ==> F \<subseteq> A ==> |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
81 |
P {} ==> (!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==> |
12396 | 82 |
P F" |
83 |
proof - |
|
13421 | 84 |
assume "P {}" and insert: |
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
85 |
"!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" |
12396 | 86 |
assume "finite F" |
87 |
thus "F \<subseteq> A ==> P F" |
|
88 |
proof induct |
|
89 |
show "P {}" . |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
90 |
fix x F assume "finite F" and "x \<notin> F" |
12396 | 91 |
and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" |
92 |
show "P (insert x F)" |
|
93 |
proof (rule insert) |
|
94 |
from i show "x \<in> A" by blast |
|
95 |
from i have "F \<subseteq> A" by blast |
|
96 |
with P show "P F" . |
|
97 |
qed |
|
98 |
qed |
|
99 |
qed |
|
100 |
||
15392 | 101 |
text{* Finite sets are the images of initial segments of natural numbers: *} |
102 |
||
103 |
lemma finite_imp_nat_seg_image: |
|
104 |
assumes fin: "finite A" shows "\<exists> (n::nat) f. A = f ` {i::nat. i<n}" |
|
105 |
using fin |
|
106 |
proof induct |
|
107 |
case empty |
|
108 |
show ?case |
|
109 |
proof show "\<exists>f. {} = f ` {i::nat. i < 0}" by(simp add:image_def) qed |
|
110 |
next |
|
111 |
case (insert a A) |
|
112 |
from insert.hyps obtain n f where "A = f ` {i::nat. i < n}" by blast |
|
113 |
hence "insert a A = (%i. if i<n then f i else a) ` {i. i < n+1}" |
|
114 |
by (auto simp add:image_def Ball_def) |
|
115 |
thus ?case by blast |
|
116 |
qed |
|
117 |
||
118 |
lemma nat_seg_image_imp_finite: |
|
119 |
"!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A" |
|
120 |
proof (induct n) |
|
121 |
case 0 thus ?case by simp |
|
122 |
next |
|
123 |
case (Suc n) |
|
124 |
let ?B = "f ` {i. i < n}" |
|
125 |
have finB: "finite ?B" by(rule Suc.hyps[OF refl]) |
|
126 |
show ?case |
|
127 |
proof cases |
|
128 |
assume "\<exists>k<n. f n = f k" |
|
129 |
hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq) |
|
130 |
thus ?thesis using finB by simp |
|
131 |
next |
|
132 |
assume "\<not>(\<exists> k<n. f n = f k)" |
|
133 |
hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq) |
|
134 |
thus ?thesis using finB by simp |
|
135 |
qed |
|
136 |
qed |
|
137 |
||
138 |
lemma finite_conv_nat_seg_image: |
|
139 |
"finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})" |
|
140 |
by(blast intro: finite_imp_nat_seg_image nat_seg_image_imp_finite) |
|
141 |
||
142 |
subsubsection{* Finiteness and set theoretic constructions *} |
|
143 |
||
12396 | 144 |
lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" |
145 |
-- {* The union of two finite sets is finite. *} |
|
146 |
by (induct set: Finites) simp_all |
|
147 |
||
148 |
lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" |
|
149 |
-- {* Every subset of a finite set is finite. *} |
|
150 |
proof - |
|
151 |
assume "finite B" |
|
152 |
thus "!!A. A \<subseteq> B ==> finite A" |
|
153 |
proof induct |
|
154 |
case empty |
|
155 |
thus ?case by simp |
|
156 |
next |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
157 |
case (insert x F A) |
12396 | 158 |
have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" . |
159 |
show "finite A" |
|
160 |
proof cases |
|
161 |
assume x: "x \<in> A" |
|
162 |
with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff) |
|
163 |
with r have "finite (A - {x})" . |
|
164 |
hence "finite (insert x (A - {x}))" .. |
|
165 |
also have "insert x (A - {x}) = A" by (rule insert_Diff) |
|
166 |
finally show ?thesis . |
|
167 |
next |
|
168 |
show "A \<subseteq> F ==> ?thesis" . |
|
169 |
assume "x \<notin> A" |
|
170 |
with A show "A \<subseteq> F" by (simp add: subset_insert_iff) |
|
171 |
qed |
|
172 |
qed |
|
173 |
qed |
|
174 |
||
175 |
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" |
|
176 |
by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) |
|
177 |
||
178 |
lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" |
|
179 |
-- {* The converse obviously fails. *} |
|
180 |
by (blast intro: finite_subset) |
|
181 |
||
182 |
lemma finite_insert [simp]: "finite (insert a A) = finite A" |
|
183 |
apply (subst insert_is_Un) |
|
14208 | 184 |
apply (simp only: finite_Un, blast) |
12396 | 185 |
done |
186 |
||
15281 | 187 |
lemma finite_Union[simp, intro]: |
188 |
"\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)" |
|
189 |
by (induct rule:finite_induct) simp_all |
|
190 |
||
12396 | 191 |
lemma finite_empty_induct: |
192 |
"finite A ==> |
|
193 |
P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}" |
|
194 |
proof - |
|
195 |
assume "finite A" |
|
196 |
and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})" |
|
197 |
have "P (A - A)" |
|
198 |
proof - |
|
199 |
fix c b :: "'a set" |
|
200 |
presume c: "finite c" and b: "finite b" |
|
201 |
and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})" |
|
202 |
from c show "c \<subseteq> b ==> P (b - c)" |
|
203 |
proof induct |
|
204 |
case empty |
|
205 |
from P1 show ?case by simp |
|
206 |
next |
|
15327
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
nipkow
parents:
15318
diff
changeset
|
207 |
case (insert x F) |
12396 | 208 |
have "P (b - F - {x})" |
209 |
proof (rule P2) |
|
210 |
from _ b show "finite (b - F)" by (rule finite_subset) blast |
|
211 |
from insert show "x \<in> b - F" by simp |
|
212 |
from insert show "P (b - F)" by simp |
|
213 |
qed |
|
214 |
also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric]) |
|
215 |
finally show ?case . |
|
216 |
qed |
|
217 |
next |
|
218 |
show "A \<subseteq> A" .. |
|
219 |
qed |
|
220 |
thus "P {}" by simp |
|
221 |
qed |
|
222 |
||
223 |
lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)" |
|
224 |
by (rule Diff_subset [THEN finite_subset]) |
|
225 |
||
226 |
lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" |
|
227 |
apply (subst Diff_insert) |
|
228 |
apply (case_tac "a : A - B") |
|
229 |
apply (rule finite_insert [symmetric, THEN trans]) |
|
14208 | 230 |
apply (subst insert_Diff, simp_all) |
12396 | 231 |
done |
232 |
||
233 |
||
15392 | 234 |
text {* Image and Inverse Image over Finite Sets *} |
13825 | 235 |
|
236 |
lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" |
|
237 |
-- {* The image of a finite set is finite. *} |
|
238 |
by (induct set: Finites) simp_all |
|
239 |
||
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
240 |
lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
241 |
apply (frule finite_imageI) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
242 |
apply (erule finite_subset, assumption) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
243 |
done |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
244 |
|
13825 | 245 |
lemma finite_range_imageI: |
246 |
"finite (range g) ==> finite (range (%x. f (g x)))" |
|
14208 | 247 |
apply (drule finite_imageI, simp) |
13825 | 248 |
done |
249 |
||
12396 | 250 |
lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" |
251 |
proof - |
|
252 |
have aux: "!!A. finite (A - {}) = finite A" by simp |
|
253 |
fix B :: "'a set" |
|
254 |
assume "finite B" |
|
255 |
thus "!!A. f`A = B ==> inj_on f A ==> finite A" |
|
256 |
apply induct |
|
257 |
apply simp |
|
258 |
apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})") |
|
259 |
apply clarify |
|
260 |
apply (simp (no_asm_use) add: inj_on_def) |
|
14208 | 261 |
apply (blast dest!: aux [THEN iffD1], atomize) |
12396 | 262 |
apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) |
14208 | 263 |
apply (frule subsetD [OF equalityD2 insertI1], clarify) |
12396 | 264 |
apply (rule_tac x = xa in bexI) |
265 |
apply (simp_all add: inj_on_image_set_diff) |
|
266 |
done |
|
267 |
qed (rule refl) |
|
268 |
||
269 |
||
13825 | 270 |
lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}" |
271 |
-- {* The inverse image of a singleton under an injective function |
|
272 |
is included in a singleton. *} |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
273 |
apply (auto simp add: inj_on_def) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
274 |
apply (blast intro: the_equality [symmetric]) |
13825 | 275 |
done |
276 |
||
277 |
lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" |
|
278 |
-- {* The inverse image of a finite set under an injective function |
|
279 |
is finite. *} |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
280 |
apply (induct set: Finites, simp_all) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
281 |
apply (subst vimage_insert) |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
282 |
apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton]) |
13825 | 283 |
done |
284 |
||
285 |
||
15392 | 286 |
text {* The finite UNION of finite sets *} |
12396 | 287 |
|
288 |
lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" |
|
289 |
by (induct set: Finites) simp_all |
|
290 |
||
291 |
text {* |
|
292 |
Strengthen RHS to |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
293 |
@{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}? |
12396 | 294 |
|
295 |
We'd need to prove |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
296 |
@{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"} |
12396 | 297 |
by induction. *} |
298 |
||
299 |
lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" |
|
300 |
by (blast intro: finite_UN_I finite_subset) |
|
301 |
||
302 |
||
15392 | 303 |
text {* Sigma of finite sets *} |
12396 | 304 |
|
305 |
lemma finite_SigmaI [simp]: |
|
306 |
"finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" |
|
307 |
by (unfold Sigma_def) (blast intro!: finite_UN_I) |
|
308 |
||
15402 | 309 |
lemma finite_cartesian_product: "[| finite A; finite B |] ==> |
310 |
finite (A <*> B)" |
|
311 |
by (rule finite_SigmaI) |
|
312 |
||
12396 | 313 |
lemma finite_Prod_UNIV: |
314 |
"finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)" |
|
315 |
apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)") |
|
316 |
apply (erule ssubst) |
|
14208 | 317 |
apply (erule finite_SigmaI, auto) |
12396 | 318 |
done |
319 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
320 |
lemma finite_cartesian_productD1: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
321 |
"[| finite (A <*> B); B \<noteq> {} |] ==> finite A" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
322 |
apply (auto simp add: finite_conv_nat_seg_image) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
323 |
apply (drule_tac x=n in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
324 |
apply (drule_tac x="fst o f" in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
325 |
apply (auto simp add: o_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
326 |
prefer 2 apply (force dest!: equalityD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
327 |
apply (drule equalityD1) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
328 |
apply (rename_tac y x) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
329 |
apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
330 |
prefer 2 apply force |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
331 |
apply clarify |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
332 |
apply (rule_tac x=k in image_eqI, auto) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
333 |
done |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
334 |
|
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
335 |
lemma finite_cartesian_productD2: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
336 |
"[| finite (A <*> B); A \<noteq> {} |] ==> finite B" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
337 |
apply (auto simp add: finite_conv_nat_seg_image) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
338 |
apply (drule_tac x=n in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
339 |
apply (drule_tac x="snd o f" in spec) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
340 |
apply (auto simp add: o_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
341 |
prefer 2 apply (force dest!: equalityD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
342 |
apply (drule equalityD1) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
343 |
apply (rename_tac x y) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
344 |
apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
345 |
prefer 2 apply force |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
346 |
apply clarify |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
347 |
apply (rule_tac x=k in image_eqI, auto) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
348 |
done |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
349 |
|
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
350 |
|
12396 | 351 |
instance unit :: finite |
352 |
proof |
|
353 |
have "finite {()}" by simp |
|
354 |
also have "{()} = UNIV" by auto |
|
355 |
finally show "finite (UNIV :: unit set)" . |
|
356 |
qed |
|
357 |
||
358 |
instance * :: (finite, finite) finite |
|
359 |
proof |
|
360 |
show "finite (UNIV :: ('a \<times> 'b) set)" |
|
361 |
proof (rule finite_Prod_UNIV) |
|
362 |
show "finite (UNIV :: 'a set)" by (rule finite) |
|
363 |
show "finite (UNIV :: 'b set)" by (rule finite) |
|
364 |
qed |
|
365 |
qed |
|
366 |
||
367 |
||
15392 | 368 |
text {* The powerset of a finite set *} |
12396 | 369 |
|
370 |
lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" |
|
371 |
proof |
|
372 |
assume "finite (Pow A)" |
|
373 |
with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast |
|
374 |
thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp |
|
375 |
next |
|
376 |
assume "finite A" |
|
377 |
thus "finite (Pow A)" |
|
378 |
by induct (simp_all add: finite_UnI finite_imageI Pow_insert) |
|
379 |
qed |
|
380 |
||
15392 | 381 |
|
382 |
lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A" |
|
383 |
by(blast intro: finite_subset[OF subset_Pow_Union]) |
|
384 |
||
385 |
||
12396 | 386 |
lemma finite_converse [iff]: "finite (r^-1) = finite r" |
387 |
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") |
|
388 |
apply simp |
|
389 |
apply (rule iffI) |
|
390 |
apply (erule finite_imageD [unfolded inj_on_def]) |
|
391 |
apply (simp split add: split_split) |
|
392 |
apply (erule finite_imageI) |
|
14208 | 393 |
apply (simp add: converse_def image_def, auto) |
12396 | 394 |
apply (rule bexI) |
395 |
prefer 2 apply assumption |
|
396 |
apply simp |
|
397 |
done |
|
398 |
||
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
399 |
|
15392 | 400 |
text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi |
401 |
Ehmety) *} |
|
12396 | 402 |
|
403 |
lemma finite_Field: "finite r ==> finite (Field r)" |
|
404 |
-- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *} |
|
405 |
apply (induct set: Finites) |
|
406 |
apply (auto simp add: Field_def Domain_insert Range_insert) |
|
407 |
done |
|
408 |
||
409 |
lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" |
|
410 |
apply clarify |
|
411 |
apply (erule trancl_induct) |
|
412 |
apply (auto simp add: Field_def) |
|
413 |
done |
|
414 |
||
415 |
lemma finite_trancl: "finite (r^+) = finite r" |
|
416 |
apply auto |
|
417 |
prefer 2 |
|
418 |
apply (rule trancl_subset_Field2 [THEN finite_subset]) |
|
419 |
apply (rule finite_SigmaI) |
|
420 |
prefer 3 |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
13595
diff
changeset
|
421 |
apply (blast intro: r_into_trancl' finite_subset) |
12396 | 422 |
apply (auto simp add: finite_Field) |
423 |
done |
|
424 |
||
425 |
||
15392 | 426 |
subsection {* A fold functional for finite sets *} |
427 |
||
428 |
text {* The intended behaviour is |
|
15480 | 429 |
@{text "fold f g z {x\<^isub>1, ..., x\<^isub>n} = f (g x\<^isub>1) (\<dots> (f (g x\<^isub>n) z)\<dots>)"} |
15392 | 430 |
if @{text f} is associative-commutative. For an application of @{text fold} |
431 |
se the definitions of sums and products over finite sets. |
|
432 |
*} |
|
433 |
||
434 |
consts |
|
435 |
foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => ('b set \<times> 'a) set" |
|
436 |
||
15480 | 437 |
inductive "foldSet f g z" |
15392 | 438 |
intros |
15480 | 439 |
emptyI [intro]: "({}, z) : foldSet f g z" |
440 |
insertI [intro]: "\<lbrakk> x \<notin> A; (A, y) : foldSet f g z \<rbrakk> |
|
441 |
\<Longrightarrow> (insert x A, f (g x) y) : foldSet f g z" |
|
15392 | 442 |
|
15480 | 443 |
inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f g z" |
15392 | 444 |
|
445 |
constdefs |
|
446 |
fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a" |
|
15480 | 447 |
"fold f g z A == THE x. (A, x) : foldSet f g z" |
15392 | 448 |
|
15498 | 449 |
text{*A tempting alternative for the definiens is |
450 |
@{term "if finite A then THE x. (A, x) : foldSet f g e else e"}. |
|
451 |
It allows the removal of finiteness assumptions from the theorems |
|
452 |
@{text fold_commute}, @{text fold_reindex} and @{text fold_distrib}. |
|
453 |
The proofs become ugly, with @{text rule_format}. It is not worth the effort.*} |
|
454 |
||
455 |
||
15392 | 456 |
lemma Diff1_foldSet: |
15480 | 457 |
"(A - {x}, y) : foldSet f g z ==> x: A ==> (A, f (g x) y) : foldSet f g z" |
15392 | 458 |
by (erule insert_Diff [THEN subst], rule foldSet.intros, auto) |
459 |
||
15480 | 460 |
lemma foldSet_imp_finite: "(A, x) : foldSet f g z ==> finite A" |
15392 | 461 |
by (induct set: foldSet) auto |
462 |
||
15480 | 463 |
lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f g z" |
15392 | 464 |
by (induct set: Finites) auto |
465 |
||
466 |
||
467 |
subsubsection {* Commutative monoids *} |
|
15480 | 468 |
|
15392 | 469 |
locale ACf = |
470 |
fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) |
|
471 |
assumes commute: "x \<cdot> y = y \<cdot> x" |
|
472 |
and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" |
|
473 |
||
474 |
locale ACe = ACf + |
|
475 |
fixes e :: 'a |
|
476 |
assumes ident [simp]: "x \<cdot> e = x" |
|
477 |
||
15480 | 478 |
locale ACIf = ACf + |
479 |
assumes idem: "x \<cdot> x = x" |
|
480 |
||
15392 | 481 |
lemma (in ACf) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" |
482 |
proof - |
|
483 |
have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute) |
|
484 |
also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc) |
|
485 |
also have "z \<cdot> x = x \<cdot> z" by (simp only: commute) |
|
486 |
finally show ?thesis . |
|
487 |
qed |
|
488 |
||
489 |
lemmas (in ACf) AC = assoc commute left_commute |
|
490 |
||
491 |
lemma (in ACe) left_ident [simp]: "e \<cdot> x = x" |
|
492 |
proof - |
|
493 |
have "x \<cdot> e = x" by (rule ident) |
|
494 |
thus ?thesis by (subst commute) |
|
495 |
qed |
|
496 |
||
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
497 |
lemma (in ACIf) idem2: "x \<cdot> (x \<cdot> y) = x \<cdot> y" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
498 |
proof - |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
499 |
have "x \<cdot> (x \<cdot> y) = (x \<cdot> x) \<cdot> y" by(simp add:assoc) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
500 |
also have "\<dots> = x \<cdot> y" by(simp add:idem) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
501 |
finally show ?thesis . |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
502 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
503 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
504 |
lemmas (in ACIf) ACI = AC idem idem2 |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
505 |
|
15402 | 506 |
text{* Instantiation of locales: *} |
507 |
||
508 |
lemma ACf_add: "ACf (op + :: 'a::comm_monoid_add \<Rightarrow> 'a \<Rightarrow> 'a)" |
|
509 |
by(fastsimp intro: ACf.intro add_assoc add_commute) |
|
510 |
||
511 |
lemma ACe_add: "ACe (op +) (0::'a::comm_monoid_add)" |
|
512 |
by(fastsimp intro: ACe.intro ACe_axioms.intro ACf_add) |
|
513 |
||
514 |
||
515 |
lemma ACf_mult: "ACf (op * :: 'a::comm_monoid_mult \<Rightarrow> 'a \<Rightarrow> 'a)" |
|
516 |
by(fast intro: ACf.intro mult_assoc ab_semigroup_mult.mult_commute) |
|
517 |
||
518 |
lemma ACe_mult: "ACe (op *) (1::'a::comm_monoid_mult)" |
|
519 |
by(fastsimp intro: ACe.intro ACe_axioms.intro ACf_mult) |
|
520 |
||
521 |
||
15392 | 522 |
subsubsection{*From @{term foldSet} to @{term fold}*} |
523 |
||
15479 | 524 |
(* only used in the next lemma, but in there twice *) |
525 |
lemma card_lemma: assumes A1: "A = insert b B" and notinB: "b \<notin> B" and |
|
526 |
card: "A = h`{i. i<Suc n}" and new: "\<not>(EX k<n. h n = h k)" |
|
527 |
shows "EX h. B = h`{i. i<n}" (is "EX h. ?P h") |
|
528 |
proof |
|
529 |
let ?h = "%i. if h i = b then h n else h i" |
|
530 |
show "B = ?h`{i. i<n}" (is "_ = ?r") |
|
531 |
proof |
|
532 |
show "B \<subseteq> ?r" |
|
533 |
proof |
|
534 |
fix u assume "u \<in> B" |
|
535 |
hence uinA: "u \<in> A" and unotb: "u \<noteq> b" using A1 notinB by blast+ |
|
536 |
then obtain i\<^isub>u where below: "i\<^isub>u < Suc n" and [simp]: "u = h i\<^isub>u" |
|
537 |
using card by(auto simp:image_def) |
|
538 |
show "u \<in> ?r" |
|
539 |
proof cases |
|
540 |
assume "i\<^isub>u < n" |
|
541 |
thus ?thesis using unotb by(fastsimp) |
|
542 |
next |
|
543 |
assume "\<not> i\<^isub>u < n" |
|
544 |
with below have [simp]: "i\<^isub>u = n" by arith |
|
545 |
obtain i\<^isub>k where i\<^isub>k: "i\<^isub>k < Suc n" and [simp]: "b = h i\<^isub>k" |
|
546 |
using A1 card by blast |
|
547 |
have "i\<^isub>k < n" |
|
548 |
proof (rule ccontr) |
|
549 |
assume "\<not> i\<^isub>k < n" |
|
550 |
hence "i\<^isub>k = n" using i\<^isub>k by arith |
|
551 |
thus False using unotb by simp |
|
552 |
qed |
|
553 |
thus ?thesis by(auto simp add:image_def) |
|
554 |
qed |
|
555 |
qed |
|
556 |
next |
|
557 |
show "?r \<subseteq> B" |
|
558 |
proof |
|
559 |
fix u assume "u \<in> ?r" |
|
560 |
then obtain i\<^isub>u where below: "i\<^isub>u < n" and |
|
561 |
or: "b = h i\<^isub>u \<and> u = h n \<or> h i\<^isub>u \<noteq> b \<and> h i\<^isub>u = u" |
|
562 |
by(auto simp:image_def) |
|
563 |
from or show "u \<in> B" |
|
564 |
proof |
|
565 |
assume [simp]: "b = h i\<^isub>u \<and> u = h n" |
|
566 |
have "u \<in> A" using card by auto |
|
567 |
moreover have "u \<noteq> b" using new below by auto |
|
568 |
ultimately show "u \<in> B" using A1 by blast |
|
569 |
next |
|
570 |
assume "h i\<^isub>u \<noteq> b \<and> h i\<^isub>u = u" |
|
571 |
moreover hence "u \<in> A" using card below by auto |
|
572 |
ultimately show "u \<in> B" using A1 by blast |
|
573 |
qed |
|
574 |
qed |
|
575 |
qed |
|
576 |
qed |
|
577 |
||
15392 | 578 |
lemma (in ACf) foldSet_determ_aux: |
15480 | 579 |
"!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; (A,x) : foldSet f g z; (A,x') : foldSet f g z \<rbrakk> |
15392 | 580 |
\<Longrightarrow> x' = x" |
581 |
proof (induct n) |
|
582 |
case 0 thus ?case by auto |
|
583 |
next |
|
584 |
case (Suc n) |
|
15480 | 585 |
have IH: "!!A x x' h. \<lbrakk>A = h`{i::nat. i<n}; (A,x) \<in> foldSet f g z; (A,x') \<in> foldSet f g z\<rbrakk> |
15392 | 586 |
\<Longrightarrow> x' = x" and card: "A = h`{i. i<Suc n}" |
15480 | 587 |
and Afoldx: "(A, x) \<in> foldSet f g z" and Afoldy: "(A,x') \<in> foldSet f g z" . |
15392 | 588 |
show ?case |
589 |
proof cases |
|
15487 | 590 |
assume "EX k<n. h n = h k" |
591 |
--{*@{term h} is not injective, so the cardinality has not increased*} |
|
15392 | 592 |
hence card': "A = h ` {i. i < n}" |
593 |
using card by (auto simp:image_def less_Suc_eq) |
|
594 |
show ?thesis by(rule IH[OF card' Afoldx Afoldy]) |
|
595 |
next |
|
596 |
assume new: "\<not>(EX k<n. h n = h k)" |
|
597 |
show ?thesis |
|
598 |
proof (rule foldSet.cases[OF Afoldx]) |
|
15487 | 599 |
assume "(A, x) = ({}, z)" --{*fold of a singleton set*} |
15392 | 600 |
thus "x' = x" using Afoldy by (auto) |
601 |
next |
|
602 |
fix B b y |
|
603 |
assume eq1: "(A, x) = (insert b B, g b \<cdot> y)" |
|
15480 | 604 |
and y: "(B,y) \<in> foldSet f g z" and notinB: "b \<notin> B" |
15392 | 605 |
hence A1: "A = insert b B" and x: "x = g b \<cdot> y" by auto |
606 |
show ?thesis |
|
607 |
proof (rule foldSet.cases[OF Afoldy]) |
|
15480 | 608 |
assume "(A,x') = ({}, z)" |
15392 | 609 |
thus ?thesis using A1 by auto |
610 |
next |
|
15480 | 611 |
fix C c r |
612 |
assume eq2: "(A,x') = (insert c C, g c \<cdot> r)" |
|
613 |
and r: "(C,r) \<in> foldSet f g z" and notinC: "c \<notin> C" |
|
614 |
hence A2: "A = insert c C" and x': "x' = g c \<cdot> r" by auto |
|
15479 | 615 |
obtain hB where lessB: "B = hB ` {i. i<n}" |
616 |
using card_lemma[OF A1 notinB card new] by auto |
|
617 |
obtain hC where lessC: "C = hC ` {i. i<n}" |
|
618 |
using card_lemma[OF A2 notinC card new] by auto |
|
15392 | 619 |
show ?thesis |
620 |
proof cases |
|
621 |
assume "b = c" |
|
622 |
then moreover have "B = C" using A1 A2 notinB notinC by auto |
|
15480 | 623 |
ultimately show ?thesis using IH[OF lessB] y r x x' by auto |
15392 | 624 |
next |
625 |
assume diff: "b \<noteq> c" |
|
626 |
let ?D = "B - {c}" |
|
627 |
have B: "B = insert c ?D" and C: "C = insert b ?D" |
|
628 |
using A1 A2 notinB notinC diff by(blast elim!:equalityE)+ |
|
15402 | 629 |
have "finite A" by(rule foldSet_imp_finite[OF Afoldx]) |
630 |
with A1 have "finite ?D" by simp |
|
15480 | 631 |
then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g z" |
15392 | 632 |
using finite_imp_foldSet by rules |
633 |
moreover have cinB: "c \<in> B" using B by(auto) |
|
15480 | 634 |
ultimately have "(B,g c \<cdot> d) \<in> foldSet f g z" |
15392 | 635 |
by(rule Diff1_foldSet) |
15479 | 636 |
hence "g c \<cdot> d = y" by(rule IH[OF lessB y]) |
15480 | 637 |
moreover have "g b \<cdot> d = r" |
638 |
proof (rule IH[OF lessC r]) |
|
639 |
show "(C,g b \<cdot> d) \<in> foldSet f g z" using C notinB Dfoldd |
|
15392 | 640 |
by fastsimp |
641 |
qed |
|
642 |
ultimately show ?thesis using x x' by(auto simp:AC) |
|
643 |
qed |
|
644 |
qed |
|
645 |
qed |
|
646 |
qed |
|
647 |
qed |
|
648 |
||
649 |
(* The same proof, but using card |
|
650 |
lemma (in ACf) foldSet_determ_aux: |
|
651 |
"!!A x x'. \<lbrakk> card A < n; (A,x) : foldSet f g e; (A,x') : foldSet f g e \<rbrakk> |
|
652 |
\<Longrightarrow> x' = x" |
|
653 |
proof (induct n) |
|
654 |
case 0 thus ?case by simp |
|
655 |
next |
|
656 |
case (Suc n) |
|
657 |
have IH: "!!A x x'. \<lbrakk>card A < n; (A,x) \<in> foldSet f g e; (A,x') \<in> foldSet f g e\<rbrakk> |
|
658 |
\<Longrightarrow> x' = x" and card: "card A < Suc n" |
|
659 |
and Afoldx: "(A, x) \<in> foldSet f g e" and Afoldy: "(A,x') \<in> foldSet f g e" . |
|
660 |
from card have "card A < n \<or> card A = n" by arith |
|
661 |
thus ?case |
|
662 |
proof |
|
663 |
assume less: "card A < n" |
|
664 |
show ?thesis by(rule IH[OF less Afoldx Afoldy]) |
|
665 |
next |
|
666 |
assume cardA: "card A = n" |
|
667 |
show ?thesis |
|
668 |
proof (rule foldSet.cases[OF Afoldx]) |
|
669 |
assume "(A, x) = ({}, e)" |
|
670 |
thus "x' = x" using Afoldy by (auto) |
|
671 |
next |
|
672 |
fix B b y |
|
673 |
assume eq1: "(A, x) = (insert b B, g b \<cdot> y)" |
|
674 |
and y: "(B,y) \<in> foldSet f g e" and notinB: "b \<notin> B" |
|
675 |
hence A1: "A = insert b B" and x: "x = g b \<cdot> y" by auto |
|
676 |
show ?thesis |
|
677 |
proof (rule foldSet.cases[OF Afoldy]) |
|
678 |
assume "(A,x') = ({}, e)" |
|
679 |
thus ?thesis using A1 by auto |
|
680 |
next |
|
681 |
fix C c z |
|
682 |
assume eq2: "(A,x') = (insert c C, g c \<cdot> z)" |
|
683 |
and z: "(C,z) \<in> foldSet f g e" and notinC: "c \<notin> C" |
|
684 |
hence A2: "A = insert c C" and x': "x' = g c \<cdot> z" by auto |
|
685 |
have finA: "finite A" by(rule foldSet_imp_finite[OF Afoldx]) |
|
686 |
with cardA A1 notinB have less: "card B < n" by simp |
|
687 |
show ?thesis |
|
688 |
proof cases |
|
689 |
assume "b = c" |
|
690 |
then moreover have "B = C" using A1 A2 notinB notinC by auto |
|
691 |
ultimately show ?thesis using IH[OF less] y z x x' by auto |
|
692 |
next |
|
693 |
assume diff: "b \<noteq> c" |
|
694 |
let ?D = "B - {c}" |
|
695 |
have B: "B = insert c ?D" and C: "C = insert b ?D" |
|
696 |
using A1 A2 notinB notinC diff by(blast elim!:equalityE)+ |
|
697 |
have "finite ?D" using finA A1 by simp |
|
698 |
then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g e" |
|
699 |
using finite_imp_foldSet by rules |
|
700 |
moreover have cinB: "c \<in> B" using B by(auto) |
|
701 |
ultimately have "(B,g c \<cdot> d) \<in> foldSet f g e" |
|
702 |
by(rule Diff1_foldSet) |
|
703 |
hence "g c \<cdot> d = y" by(rule IH[OF less y]) |
|
704 |
moreover have "g b \<cdot> d = z" |
|
705 |
proof (rule IH[OF _ z]) |
|
706 |
show "card C < n" using C cardA A1 notinB finA cinB |
|
707 |
by(auto simp:card_Diff1_less) |
|
708 |
next |
|
709 |
show "(C,g b \<cdot> d) \<in> foldSet f g e" using C notinB Dfoldd |
|
710 |
by fastsimp |
|
711 |
qed |
|
712 |
ultimately show ?thesis using x x' by(auto simp:AC) |
|
713 |
qed |
|
714 |
qed |
|
715 |
qed |
|
716 |
qed |
|
717 |
qed |
|
718 |
*) |
|
719 |
||
720 |
lemma (in ACf) foldSet_determ: |
|
15480 | 721 |
"(A, x) : foldSet f g z ==> (A, y) : foldSet f g z ==> y = x" |
15392 | 722 |
apply(frule foldSet_imp_finite) |
723 |
apply(simp add:finite_conv_nat_seg_image) |
|
724 |
apply(blast intro: foldSet_determ_aux [rule_format]) |
|
725 |
done |
|
726 |
||
15480 | 727 |
lemma (in ACf) fold_equality: "(A, y) : foldSet f g z ==> fold f g z A = y" |
15392 | 728 |
by (unfold fold_def) (blast intro: foldSet_determ) |
729 |
||
730 |
text{* The base case for @{text fold}: *} |
|
731 |
||
15480 | 732 |
lemma fold_empty [simp]: "fold f g z {} = z" |
15392 | 733 |
by (unfold fold_def) blast |
734 |
||
735 |
lemma (in ACf) fold_insert_aux: "x \<notin> A ==> |
|
15480 | 736 |
((insert x A, v) : foldSet f g z) = |
737 |
(EX y. (A, y) : foldSet f g z & v = f (g x) y)" |
|
15392 | 738 |
apply auto |
739 |
apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE]) |
|
740 |
apply (fastsimp dest: foldSet_imp_finite) |
|
741 |
apply (blast intro: foldSet_determ) |
|
742 |
done |
|
743 |
||
744 |
text{* The recursion equation for @{text fold}: *} |
|
745 |
||
746 |
lemma (in ACf) fold_insert[simp]: |
|
15480 | 747 |
"finite A ==> x \<notin> A ==> fold f g z (insert x A) = f (g x) (fold f g z A)" |
15392 | 748 |
apply (unfold fold_def) |
749 |
apply (simp add: fold_insert_aux) |
|
750 |
apply (rule the_equality) |
|
751 |
apply (auto intro: finite_imp_foldSet |
|
752 |
cong add: conj_cong simp add: fold_def [symmetric] fold_equality) |
|
753 |
done |
|
754 |
||
755 |
declare |
|
756 |
empty_foldSetE [rule del] foldSet.intros [rule del] |
|
757 |
-- {* Delete rules to do with @{text foldSet} relation. *} |
|
758 |
||
15480 | 759 |
text{* A simplified version for idempotent functions: *} |
760 |
||
761 |
lemma (in ACIf) fold_insert2: |
|
762 |
assumes finA: "finite A" |
|
763 |
shows "fold (op \<cdot>) g z (insert a A) = g a \<cdot> fold f g z A" |
|
764 |
proof cases |
|
765 |
assume "a \<in> A" |
|
766 |
then obtain B where A: "A = insert a B" and disj: "a \<notin> B" |
|
767 |
by(blast dest: mk_disjoint_insert) |
|
768 |
show ?thesis |
|
769 |
proof - |
|
770 |
from finA A have finB: "finite B" by(blast intro: finite_subset) |
|
771 |
have "fold f g z (insert a A) = fold f g z (insert a B)" using A by simp |
|
772 |
also have "\<dots> = (g a) \<cdot> (fold f g z B)" |
|
773 |
using finB disj by(simp) |
|
774 |
also have "\<dots> = g a \<cdot> fold f g z A" |
|
775 |
using A finB disj by(simp add:idem assoc[symmetric]) |
|
776 |
finally show ?thesis . |
|
777 |
qed |
|
778 |
next |
|
779 |
assume "a \<notin> A" |
|
780 |
with finA show ?thesis by simp |
|
781 |
qed |
|
782 |
||
15484 | 783 |
lemma (in ACIf) foldI_conv_id: |
784 |
"finite A \<Longrightarrow> fold f g z A = fold f id z (g ` A)" |
|
785 |
by(erule finite_induct)(simp_all add: fold_insert2 del: fold_insert) |
|
786 |
||
15392 | 787 |
subsubsection{*Lemmas about @{text fold}*} |
788 |
||
789 |
lemma (in ACf) fold_commute: |
|
15487 | 790 |
"finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)" |
15392 | 791 |
apply (induct set: Finites, simp) |
15487 | 792 |
apply (simp add: left_commute [of x]) |
15392 | 793 |
done |
794 |
||
795 |
lemma (in ACf) fold_nest_Un_Int: |
|
796 |
"finite A ==> finite B |
|
15480 | 797 |
==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)" |
15392 | 798 |
apply (induct set: Finites, simp) |
799 |
apply (simp add: fold_commute Int_insert_left insert_absorb) |
|
800 |
done |
|
801 |
||
802 |
lemma (in ACf) fold_nest_Un_disjoint: |
|
803 |
"finite A ==> finite B ==> A Int B = {} |
|
15480 | 804 |
==> fold f g z (A Un B) = fold f g (fold f g z B) A" |
15392 | 805 |
by (simp add: fold_nest_Un_Int) |
806 |
||
807 |
lemma (in ACf) fold_reindex: |
|
15487 | 808 |
assumes fin: "finite A" |
809 |
shows "inj_on h A \<Longrightarrow> fold f g z (h ` A) = fold f (g \<circ> h) z A" |
|
15392 | 810 |
using fin apply (induct) |
811 |
apply simp |
|
812 |
apply simp |
|
813 |
done |
|
814 |
||
815 |
lemma (in ACe) fold_Un_Int: |
|
816 |
"finite A ==> finite B ==> |
|
817 |
fold f g e A \<cdot> fold f g e B = |
|
818 |
fold f g e (A Un B) \<cdot> fold f g e (A Int B)" |
|
819 |
apply (induct set: Finites, simp) |
|
820 |
apply (simp add: AC insert_absorb Int_insert_left) |
|
821 |
done |
|
822 |
||
823 |
corollary (in ACe) fold_Un_disjoint: |
|
824 |
"finite A ==> finite B ==> A Int B = {} ==> |
|
825 |
fold f g e (A Un B) = fold f g e A \<cdot> fold f g e B" |
|
826 |
by (simp add: fold_Un_Int) |
|
827 |
||
828 |
lemma (in ACe) fold_UN_disjoint: |
|
829 |
"\<lbrakk> finite I; ALL i:I. finite (A i); |
|
830 |
ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk> |
|
831 |
\<Longrightarrow> fold f g e (UNION I A) = |
|
832 |
fold f (%i. fold f g e (A i)) e I" |
|
833 |
apply (induct set: Finites, simp, atomize) |
|
834 |
apply (subgoal_tac "ALL i:F. x \<noteq> i") |
|
835 |
prefer 2 apply blast |
|
836 |
apply (subgoal_tac "A x Int UNION F A = {}") |
|
837 |
prefer 2 apply blast |
|
838 |
apply (simp add: fold_Un_disjoint) |
|
839 |
done |
|
840 |
||
841 |
lemma (in ACf) fold_cong: |
|
15480 | 842 |
"finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A" |
843 |
apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold f g z C = fold f h z C") |
|
15392 | 844 |
apply simp |
845 |
apply (erule finite_induct, simp) |
|
846 |
apply (simp add: subset_insert_iff, clarify) |
|
847 |
apply (subgoal_tac "finite C") |
|
848 |
prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) |
|
849 |
apply (subgoal_tac "C = insert x (C - {x})") |
|
850 |
prefer 2 apply blast |
|
851 |
apply (erule ssubst) |
|
852 |
apply (drule spec) |
|
853 |
apply (erule (1) notE impE) |
|
854 |
apply (simp add: Ball_def del: insert_Diff_single) |
|
855 |
done |
|
856 |
||
857 |
lemma (in ACe) fold_Sigma: "finite A ==> ALL x:A. finite (B x) ==> |
|
858 |
fold f (%x. fold f (g x) e (B x)) e A = |
|
859 |
fold f (split g) e (SIGMA x:A. B x)" |
|
860 |
apply (subst Sigma_def) |
|
861 |
apply (subst fold_UN_disjoint) |
|
862 |
apply assumption |
|
863 |
apply simp |
|
864 |
apply blast |
|
865 |
apply (erule fold_cong) |
|
866 |
apply (subst fold_UN_disjoint) |
|
867 |
apply simp |
|
868 |
apply simp |
|
869 |
apply blast |
|
870 |
apply (simp) |
|
871 |
done |
|
872 |
||
873 |
lemma (in ACe) fold_distrib: "finite A \<Longrightarrow> |
|
874 |
fold f (%x. f (g x) (h x)) e A = f (fold f g e A) (fold f h e A)" |
|
875 |
apply (erule finite_induct) |
|
876 |
apply simp |
|
877 |
apply (simp add:AC) |
|
878 |
done |
|
879 |
||
880 |
||
15402 | 881 |
subsection {* Generalized summation over a set *} |
882 |
||
883 |
constdefs |
|
884 |
setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add" |
|
885 |
"setsum f A == if finite A then fold (op +) f 0 A else 0" |
|
886 |
||
887 |
text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is |
|
888 |
written @{text"\<Sum>x\<in>A. e"}. *} |
|
889 |
||
890 |
syntax |
|
891 |
"_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10) |
|
892 |
syntax (xsymbols) |
|
893 |
"_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10) |
|
894 |
syntax (HTML output) |
|
895 |
"_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10) |
|
896 |
||
897 |
translations -- {* Beware of argument permutation! *} |
|
898 |
"SUM i:A. b" == "setsum (%i. b) A" |
|
899 |
"\<Sum>i\<in>A. b" == "setsum (%i. b) A" |
|
900 |
||
901 |
text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter |
|
902 |
@{text"\<Sum>x|P. e"}. *} |
|
903 |
||
904 |
syntax |
|
905 |
"_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10) |
|
906 |
syntax (xsymbols) |
|
907 |
"_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10) |
|
908 |
syntax (HTML output) |
|
909 |
"_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10) |
|
910 |
||
911 |
translations |
|
912 |
"SUM x|P. t" => "setsum (%x. t) {x. P}" |
|
913 |
"\<Sum>x|P. t" => "setsum (%x. t) {x. P}" |
|
914 |
||
915 |
text{* Finally we abbreviate @{term"\<Sum>x\<in>A. x"} by @{text"\<Sum>A"}. *} |
|
916 |
||
917 |
syntax |
|
918 |
"_Setsum" :: "'a set => 'a::comm_monoid_mult" ("\<Sum>_" [1000] 999) |
|
919 |
||
920 |
parse_translation {* |
|
921 |
let |
|
922 |
fun Setsum_tr [A] = Syntax.const "setsum" $ Abs ("", dummyT, Bound 0) $ A |
|
923 |
in [("_Setsum", Setsum_tr)] end; |
|
924 |
*} |
|
925 |
||
926 |
print_translation {* |
|
927 |
let |
|
928 |
fun setsum_tr' [Abs(_,_,Bound 0), A] = Syntax.const "_Setsum" $ A |
|
929 |
| setsum_tr' [Abs(x,Tx,t), Const ("Collect",_) $ Abs(y,Ty,P)] = |
|
930 |
if x<>y then raise Match |
|
931 |
else let val x' = Syntax.mark_bound x |
|
932 |
val t' = subst_bound(x',t) |
|
933 |
val P' = subst_bound(x',P) |
|
934 |
in Syntax.const "_qsetsum" $ Syntax.mark_bound x $ P' $ t' end |
|
935 |
in |
|
936 |
[("setsum", setsum_tr')] |
|
937 |
end |
|
938 |
*} |
|
939 |
||
940 |
lemma setsum_empty [simp]: "setsum f {} = 0" |
|
941 |
by (simp add: setsum_def) |
|
942 |
||
943 |
lemma setsum_insert [simp]: |
|
944 |
"finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" |
|
945 |
by (simp add: setsum_def ACf.fold_insert [OF ACf_add]) |
|
946 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
947 |
lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
948 |
by (simp add: setsum_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
949 |
|
15402 | 950 |
lemma setsum_reindex: |
951 |
"inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B" |
|
952 |
by(auto simp add: setsum_def ACf.fold_reindex[OF ACf_add] dest!:finite_imageD) |
|
953 |
||
954 |
lemma setsum_reindex_id: |
|
955 |
"inj_on f B ==> setsum f B = setsum id (f ` B)" |
|
956 |
by (auto simp add: setsum_reindex) |
|
957 |
||
958 |
lemma setsum_cong: |
|
959 |
"A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" |
|
960 |
by(fastsimp simp: setsum_def intro: ACf.fold_cong[OF ACf_add]) |
|
961 |
||
962 |
lemma setsum_reindex_cong: |
|
963 |
"[|inj_on f A; B = f ` A; !!a. g a = h (f a)|] |
|
964 |
==> setsum h B = setsum g A" |
|
965 |
by (simp add: setsum_reindex cong: setsum_cong) |
|
966 |
||
967 |
lemma setsum_0: "setsum (%i. 0) A = 0" |
|
968 |
apply (clarsimp simp: setsum_def) |
|
969 |
apply (erule finite_induct, auto simp:ACf.fold_insert [OF ACf_add]) |
|
970 |
done |
|
971 |
||
972 |
lemma setsum_0': "ALL a:F. f a = 0 ==> setsum f F = 0" |
|
973 |
apply (subgoal_tac "setsum f F = setsum (%x. 0) F") |
|
974 |
apply (erule ssubst, rule setsum_0) |
|
975 |
apply (rule setsum_cong, auto) |
|
976 |
done |
|
977 |
||
978 |
lemma setsum_Un_Int: "finite A ==> finite B ==> |
|
979 |
setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" |
|
980 |
-- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} |
|
981 |
by(simp add: setsum_def ACe.fold_Un_Int[OF ACe_add,symmetric]) |
|
982 |
||
983 |
lemma setsum_Un_disjoint: "finite A ==> finite B |
|
984 |
==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B" |
|
985 |
by (subst setsum_Un_Int [symmetric], auto) |
|
986 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
987 |
(*But we can't get rid of finite I. If infinite, although the rhs is 0, |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
988 |
the lhs need not be, since UNION I A could still be finite.*) |
15402 | 989 |
lemma setsum_UN_disjoint: |
990 |
"finite I ==> (ALL i:I. finite (A i)) ==> |
|
991 |
(ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==> |
|
992 |
setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" |
|
993 |
by(simp add: setsum_def ACe.fold_UN_disjoint[OF ACe_add] cong: setsum_cong) |
|
994 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
995 |
text{*No need to assume that @{term C} is finite. If infinite, the rhs is |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
996 |
directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*} |
15402 | 997 |
lemma setsum_Union_disjoint: |
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
998 |
"[| (ALL A:C. finite A); |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
999 |
(ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1000 |
==> setsum f (Union C) = setsum (setsum f) C" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1001 |
apply (cases "finite C") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1002 |
prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) |
15402 | 1003 |
apply (frule setsum_UN_disjoint [of C id f]) |
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1004 |
apply (unfold Union_def id_def, assumption+) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1005 |
done |
15402 | 1006 |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1007 |
(*But we can't get rid of finite A. If infinite, although the lhs is 0, |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1008 |
the rhs need not be, since SIGMA A B could still be finite.*) |
15402 | 1009 |
lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> |
1010 |
(\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = |
|
1011 |
(\<Sum>z\<in>(SIGMA x:A. B x). f (fst z) (snd z))" |
|
1012 |
by(simp add:setsum_def ACe.fold_Sigma[OF ACe_add] split_def cong:setsum_cong) |
|
1013 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1014 |
text{*Here we can eliminate the finiteness assumptions, by cases.*} |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1015 |
lemma setsum_cartesian_product: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1016 |
"(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>z\<in>A <*> B. f (fst z) (snd z))" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1017 |
apply (cases "finite A") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1018 |
apply (cases "finite B") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1019 |
apply (simp add: setsum_Sigma) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1020 |
apply (cases "A={}", simp) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1021 |
apply (simp add: setsum_0) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1022 |
apply (auto simp add: setsum_def |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1023 |
dest: finite_cartesian_productD1 finite_cartesian_productD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1024 |
done |
15402 | 1025 |
|
1026 |
lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" |
|
1027 |
by(simp add:setsum_def ACe.fold_distrib[OF ACe_add]) |
|
1028 |
||
1029 |
||
1030 |
subsubsection {* Properties in more restricted classes of structures *} |
|
1031 |
||
1032 |
lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" |
|
1033 |
apply (case_tac "finite A") |
|
1034 |
prefer 2 apply (simp add: setsum_def) |
|
1035 |
apply (erule rev_mp) |
|
1036 |
apply (erule finite_induct, auto) |
|
1037 |
done |
|
1038 |
||
1039 |
lemma setsum_eq_0_iff [simp]: |
|
1040 |
"finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" |
|
1041 |
by (induct set: Finites) auto |
|
1042 |
||
1043 |
lemma setsum_Un_nat: "finite A ==> finite B ==> |
|
1044 |
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" |
|
1045 |
-- {* For the natural numbers, we have subtraction. *} |
|
1046 |
by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) |
|
1047 |
||
1048 |
lemma setsum_Un: "finite A ==> finite B ==> |
|
1049 |
(setsum f (A Un B) :: 'a :: ab_group_add) = |
|
1050 |
setsum f A + setsum f B - setsum f (A Int B)" |
|
1051 |
by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) |
|
1052 |
||
1053 |
lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) = |
|
1054 |
(if a:A then setsum f A - f a else setsum f A)" |
|
1055 |
apply (case_tac "finite A") |
|
1056 |
prefer 2 apply (simp add: setsum_def) |
|
1057 |
apply (erule finite_induct) |
|
1058 |
apply (auto simp add: insert_Diff_if) |
|
1059 |
apply (drule_tac a = a in mk_disjoint_insert, auto) |
|
1060 |
done |
|
1061 |
||
1062 |
lemma setsum_diff1: "finite A \<Longrightarrow> |
|
1063 |
(setsum f (A - {a}) :: ('a::ab_group_add)) = |
|
1064 |
(if a:A then setsum f A - f a else setsum f A)" |
|
1065 |
by (erule finite_induct) (auto simp add: insert_Diff_if) |
|
1066 |
||
1067 |
(* By Jeremy Siek: *) |
|
1068 |
||
1069 |
lemma setsum_diff_nat: |
|
1070 |
assumes finB: "finite B" |
|
1071 |
shows "B \<subseteq> A \<Longrightarrow> (setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" |
|
1072 |
using finB |
|
1073 |
proof (induct) |
|
1074 |
show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp |
|
1075 |
next |
|
1076 |
fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" |
|
1077 |
and xFinA: "insert x F \<subseteq> A" |
|
1078 |
and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" |
|
1079 |
from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp |
|
1080 |
from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x" |
|
1081 |
by (simp add: setsum_diff1_nat) |
|
1082 |
from xFinA have "F \<subseteq> A" by simp |
|
1083 |
with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp |
|
1084 |
with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x" |
|
1085 |
by simp |
|
1086 |
from xnotinF have "A - insert x F = (A - F) - {x}" by auto |
|
1087 |
with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" |
|
1088 |
by simp |
|
1089 |
from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp |
|
1090 |
with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" |
|
1091 |
by simp |
|
1092 |
thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp |
|
1093 |
qed |
|
1094 |
||
1095 |
lemma setsum_diff: |
|
1096 |
assumes le: "finite A" "B \<subseteq> A" |
|
1097 |
shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))" |
|
1098 |
proof - |
|
1099 |
from le have finiteB: "finite B" using finite_subset by auto |
|
1100 |
show ?thesis using finiteB le |
|
1101 |
proof (induct) |
|
1102 |
case empty |
|
1103 |
thus ?case by auto |
|
1104 |
next |
|
1105 |
case (insert x F) |
|
1106 |
thus ?case using le finiteB |
|
1107 |
by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) |
|
1108 |
qed |
|
1109 |
qed |
|
1110 |
||
1111 |
lemma setsum_mono: |
|
1112 |
assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, pordered_ab_semigroup_add}))" |
|
1113 |
shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" |
|
1114 |
proof (cases "finite K") |
|
1115 |
case True |
|
1116 |
thus ?thesis using le |
|
1117 |
proof (induct) |
|
1118 |
case empty |
|
1119 |
thus ?case by simp |
|
1120 |
next |
|
1121 |
case insert |
|
1122 |
thus ?case using add_mono |
|
1123 |
by force |
|
1124 |
qed |
|
1125 |
next |
|
1126 |
case False |
|
1127 |
thus ?thesis |
|
1128 |
by (simp add: setsum_def) |
|
1129 |
qed |
|
1130 |
||
1131 |
lemma setsum_mono2_nat: |
|
1132 |
assumes fin: "finite B" and sub: "A \<subseteq> B" |
|
1133 |
shows "setsum f A \<le> (setsum f B :: nat)" |
|
1134 |
proof - |
|
1135 |
have "setsum f A \<le> setsum f A + setsum f (B-A)" by arith |
|
1136 |
also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] |
|
1137 |
by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) |
|
1138 |
also have "A \<union> (B-A) = B" using sub by blast |
|
1139 |
finally show ?thesis . |
|
1140 |
qed |
|
1141 |
||
1142 |
lemma setsum_negf: "finite A ==> setsum (%x. - (f x)::'a::ab_group_add) A = |
|
1143 |
- setsum f A" |
|
1144 |
by (induct set: Finites, auto) |
|
1145 |
||
1146 |
lemma setsum_subtractf: "finite A ==> setsum (%x. ((f x)::'a::ab_group_add) - g x) A = |
|
1147 |
setsum f A - setsum g A" |
|
1148 |
by (simp add: diff_minus setsum_addf setsum_negf) |
|
1149 |
||
1150 |
lemma setsum_nonneg: "[| finite A; |
|
1151 |
\<forall>x \<in> A. (0::'a::{pordered_ab_semigroup_add, comm_monoid_add}) \<le> f x |] ==> |
|
1152 |
0 \<le> setsum f A"; |
|
1153 |
apply (induct set: Finites, auto) |
|
1154 |
apply (subgoal_tac "0 + 0 \<le> f x + setsum f F", simp) |
|
1155 |
apply (blast intro: add_mono) |
|
1156 |
done |
|
1157 |
||
1158 |
lemma setsum_nonpos: "[| finite A; |
|
1159 |
\<forall>x \<in> A. f x \<le> (0::'a::{pordered_ab_semigroup_add, comm_monoid_add}) |] ==> |
|
1160 |
setsum f A \<le> 0"; |
|
1161 |
apply (induct set: Finites, auto) |
|
1162 |
apply (subgoal_tac "f x + setsum f F \<le> 0 + 0", simp) |
|
1163 |
apply (blast intro: add_mono) |
|
1164 |
done |
|
1165 |
||
1166 |
lemma setsum_mult: |
|
1167 |
fixes f :: "'a => ('b::semiring_0_cancel)" |
|
1168 |
shows "r * setsum f A = setsum (%n. r * f n) A" |
|
1169 |
proof (cases "finite A") |
|
1170 |
case True |
|
1171 |
thus ?thesis |
|
1172 |
proof (induct) |
|
1173 |
case empty thus ?case by simp |
|
1174 |
next |
|
1175 |
case (insert x A) thus ?case by (simp add: right_distrib) |
|
1176 |
qed |
|
1177 |
next |
|
1178 |
case False thus ?thesis by (simp add: setsum_def) |
|
1179 |
qed |
|
1180 |
||
1181 |
lemma setsum_abs: |
|
1182 |
fixes f :: "'a => ('b::lordered_ab_group_abs)" |
|
1183 |
assumes fin: "finite A" |
|
1184 |
shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" |
|
1185 |
using fin |
|
1186 |
proof (induct) |
|
1187 |
case empty thus ?case by simp |
|
1188 |
next |
|
1189 |
case (insert x A) |
|
1190 |
thus ?case by (auto intro: abs_triangle_ineq order_trans) |
|
1191 |
qed |
|
1192 |
||
1193 |
lemma setsum_abs_ge_zero: |
|
1194 |
fixes f :: "'a => ('b::lordered_ab_group_abs)" |
|
1195 |
assumes fin: "finite A" |
|
1196 |
shows "0 \<le> setsum (%i. abs(f i)) A" |
|
1197 |
using fin |
|
1198 |
proof (induct) |
|
1199 |
case empty thus ?case by simp |
|
1200 |
next |
|
1201 |
case (insert x A) thus ?case by (auto intro: order_trans) |
|
1202 |
qed |
|
1203 |
||
1204 |
||
1205 |
subsection {* Generalized product over a set *} |
|
1206 |
||
1207 |
constdefs |
|
1208 |
setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult" |
|
1209 |
"setprod f A == if finite A then fold (op *) f 1 A else 1" |
|
1210 |
||
1211 |
syntax |
|
1212 |
"_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_:_. _)" [0, 51, 10] 10) |
|
1213 |
||
1214 |
syntax (xsymbols) |
|
1215 |
"_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10) |
|
1216 |
syntax (HTML output) |
|
1217 |
"_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10) |
|
1218 |
translations |
|
1219 |
"\<Prod>i:A. b" == "setprod (%i. b) A" -- {* Beware of argument permutation! *} |
|
1220 |
||
1221 |
syntax |
|
1222 |
"_Setprod" :: "'a set => 'a::comm_monoid_mult" ("\<Prod>_" [1000] 999) |
|
1223 |
||
1224 |
parse_translation {* |
|
1225 |
let |
|
1226 |
fun Setprod_tr [A] = Syntax.const "setprod" $ Abs ("", dummyT, Bound 0) $ A |
|
1227 |
in [("_Setprod", Setprod_tr)] end; |
|
1228 |
*} |
|
1229 |
print_translation {* |
|
1230 |
let fun setprod_tr' [Abs(x,Tx,t), A] = |
|
1231 |
if t = Bound 0 then Syntax.const "_Setprod" $ A else raise Match |
|
1232 |
in |
|
1233 |
[("setprod", setprod_tr')] |
|
1234 |
end |
|
1235 |
*} |
|
1236 |
||
1237 |
||
1238 |
lemma setprod_empty [simp]: "setprod f {} = 1" |
|
1239 |
by (auto simp add: setprod_def) |
|
1240 |
||
1241 |
lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==> |
|
1242 |
setprod f (insert a A) = f a * setprod f A" |
|
1243 |
by (simp add: setprod_def ACf.fold_insert [OF ACf_mult]) |
|
1244 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1245 |
lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1246 |
by (simp add: setprod_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1247 |
|
15402 | 1248 |
lemma setprod_reindex: |
1249 |
"inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" |
|
1250 |
by(auto simp: setprod_def ACf.fold_reindex[OF ACf_mult] dest!:finite_imageD) |
|
1251 |
||
1252 |
lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" |
|
1253 |
by (auto simp add: setprod_reindex) |
|
1254 |
||
1255 |
lemma setprod_cong: |
|
1256 |
"A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" |
|
1257 |
by(fastsimp simp: setprod_def intro: ACf.fold_cong[OF ACf_mult]) |
|
1258 |
||
1259 |
lemma setprod_reindex_cong: "inj_on f A ==> |
|
1260 |
B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" |
|
1261 |
by (frule setprod_reindex, simp) |
|
1262 |
||
1263 |
||
1264 |
lemma setprod_1: "setprod (%i. 1) A = 1" |
|
1265 |
apply (case_tac "finite A") |
|
1266 |
apply (erule finite_induct, auto simp add: mult_ac) |
|
1267 |
done |
|
1268 |
||
1269 |
lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" |
|
1270 |
apply (subgoal_tac "setprod f F = setprod (%x. 1) F") |
|
1271 |
apply (erule ssubst, rule setprod_1) |
|
1272 |
apply (rule setprod_cong, auto) |
|
1273 |
done |
|
1274 |
||
1275 |
lemma setprod_Un_Int: "finite A ==> finite B |
|
1276 |
==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" |
|
1277 |
by(simp add: setprod_def ACe.fold_Un_Int[OF ACe_mult,symmetric]) |
|
1278 |
||
1279 |
lemma setprod_Un_disjoint: "finite A ==> finite B |
|
1280 |
==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B" |
|
1281 |
by (subst setprod_Un_Int [symmetric], auto) |
|
1282 |
||
1283 |
lemma setprod_UN_disjoint: |
|
1284 |
"finite I ==> (ALL i:I. finite (A i)) ==> |
|
1285 |
(ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==> |
|
1286 |
setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" |
|
1287 |
by(simp add: setprod_def ACe.fold_UN_disjoint[OF ACe_mult] cong: setprod_cong) |
|
1288 |
||
1289 |
lemma setprod_Union_disjoint: |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1290 |
"[| (ALL A:C. finite A); |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1291 |
(ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1292 |
==> setprod f (Union C) = setprod (setprod f) C" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1293 |
apply (cases "finite C") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1294 |
prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) |
15402 | 1295 |
apply (frule setprod_UN_disjoint [of C id f]) |
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1296 |
apply (unfold Union_def id_def, assumption+) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1297 |
done |
15402 | 1298 |
|
1299 |
lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> |
|
1300 |
(\<Prod>x:A. (\<Prod>y: B x. f x y)) = |
|
1301 |
(\<Prod>z:(SIGMA x:A. B x). f (fst z) (snd z))" |
|
1302 |
by(simp add:setprod_def ACe.fold_Sigma[OF ACe_mult] split_def cong:setprod_cong) |
|
1303 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1304 |
text{*Here we can eliminate the finiteness assumptions, by cases.*} |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1305 |
lemma setprod_cartesian_product: |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1306 |
"(\<Prod>x:A. (\<Prod>y: B. f x y)) = (\<Prod>z:(A <*> B). f (fst z) (snd z))" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1307 |
apply (cases "finite A") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1308 |
apply (cases "finite B") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1309 |
apply (simp add: setprod_Sigma) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1310 |
apply (cases "A={}", simp) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1311 |
apply (simp add: setprod_1) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1312 |
apply (auto simp add: setprod_def |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1313 |
dest: finite_cartesian_productD1 finite_cartesian_productD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1314 |
done |
15402 | 1315 |
|
1316 |
lemma setprod_timesf: |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1317 |
"setprod (%x. f x * g x) A = (setprod f A * setprod g A)" |
15402 | 1318 |
by(simp add:setprod_def ACe.fold_distrib[OF ACe_mult]) |
1319 |
||
1320 |
||
1321 |
subsubsection {* Properties in more restricted classes of structures *} |
|
1322 |
||
1323 |
lemma setprod_eq_1_iff [simp]: |
|
1324 |
"finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" |
|
1325 |
by (induct set: Finites) auto |
|
1326 |
||
1327 |
lemma setprod_zero: |
|
1328 |
"finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==> setprod f A = 0" |
|
1329 |
apply (induct set: Finites, force, clarsimp) |
|
1330 |
apply (erule disjE, auto) |
|
1331 |
done |
|
1332 |
||
1333 |
lemma setprod_nonneg [rule_format]: |
|
1334 |
"(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A" |
|
1335 |
apply (case_tac "finite A") |
|
1336 |
apply (induct set: Finites, force, clarsimp) |
|
1337 |
apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force) |
|
1338 |
apply (rule mult_mono, assumption+) |
|
1339 |
apply (auto simp add: setprod_def) |
|
1340 |
done |
|
1341 |
||
1342 |
lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x) |
|
1343 |
--> 0 < setprod f A" |
|
1344 |
apply (case_tac "finite A") |
|
1345 |
apply (induct set: Finites, force, clarsimp) |
|
1346 |
apply (subgoal_tac "0 * 0 < f x * setprod f F", force) |
|
1347 |
apply (rule mult_strict_mono, assumption+) |
|
1348 |
apply (auto simp add: setprod_def) |
|
1349 |
done |
|
1350 |
||
1351 |
lemma setprod_nonzero [rule_format]: |
|
1352 |
"(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> |
|
1353 |
finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0" |
|
1354 |
apply (erule finite_induct, auto) |
|
1355 |
done |
|
1356 |
||
1357 |
lemma setprod_zero_eq: |
|
1358 |
"(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> |
|
1359 |
finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)" |
|
1360 |
apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast) |
|
1361 |
done |
|
1362 |
||
1363 |
lemma setprod_nonzero_field: |
|
1364 |
"finite A ==> (ALL x: A. f x \<noteq> (0::'a::field)) ==> setprod f A \<noteq> 0" |
|
1365 |
apply (rule setprod_nonzero, auto) |
|
1366 |
done |
|
1367 |
||
1368 |
lemma setprod_zero_eq_field: |
|
1369 |
"finite A ==> (setprod f A = (0::'a::field)) = (EX x: A. f x = 0)" |
|
1370 |
apply (rule setprod_zero_eq, auto) |
|
1371 |
done |
|
1372 |
||
1373 |
lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> |
|
1374 |
(setprod f (A Un B) :: 'a ::{field}) |
|
1375 |
= setprod f A * setprod f B / setprod f (A Int B)" |
|
1376 |
apply (subst setprod_Un_Int [symmetric], auto) |
|
1377 |
apply (subgoal_tac "finite (A Int B)") |
|
1378 |
apply (frule setprod_nonzero_field [of "A Int B" f], assumption) |
|
1379 |
apply (subst times_divide_eq_right [THEN sym], auto simp add: divide_self) |
|
1380 |
done |
|
1381 |
||
1382 |
lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> |
|
1383 |
(setprod f (A - {a}) :: 'a :: {field}) = |
|
1384 |
(if a:A then setprod f A / f a else setprod f A)" |
|
1385 |
apply (erule finite_induct) |
|
1386 |
apply (auto simp add: insert_Diff_if) |
|
1387 |
apply (subgoal_tac "f a * setprod f F / f a = setprod f F * f a / f a") |
|
1388 |
apply (erule ssubst) |
|
1389 |
apply (subst times_divide_eq_right [THEN sym]) |
|
1390 |
apply (auto simp add: mult_ac times_divide_eq_right divide_self) |
|
1391 |
done |
|
1392 |
||
1393 |
lemma setprod_inversef: "finite A ==> |
|
1394 |
ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==> |
|
1395 |
setprod (inverse \<circ> f) A = inverse (setprod f A)" |
|
1396 |
apply (erule finite_induct) |
|
1397 |
apply (simp, simp) |
|
1398 |
done |
|
1399 |
||
1400 |
lemma setprod_dividef: |
|
1401 |
"[|finite A; |
|
1402 |
\<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|] |
|
1403 |
==> setprod (%x. f x / g x) A = setprod f A / setprod g A" |
|
1404 |
apply (subgoal_tac |
|
1405 |
"setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") |
|
1406 |
apply (erule ssubst) |
|
1407 |
apply (subst divide_inverse) |
|
1408 |
apply (subst setprod_timesf) |
|
1409 |
apply (subst setprod_inversef, assumption+, rule refl) |
|
1410 |
apply (rule setprod_cong, rule refl) |
|
1411 |
apply (subst divide_inverse, auto) |
|
1412 |
done |
|
1413 |
||
12396 | 1414 |
subsection {* Finite cardinality *} |
1415 |
||
15402 | 1416 |
text {* This definition, although traditional, is ugly to work with: |
1417 |
@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}. |
|
1418 |
But now that we have @{text setsum} things are easy: |
|
12396 | 1419 |
*} |
1420 |
||
1421 |
constdefs |
|
1422 |
card :: "'a set => nat" |
|
15402 | 1423 |
"card A == setsum (%x. 1::nat) A" |
12396 | 1424 |
|
1425 |
lemma card_empty [simp]: "card {} = 0" |
|
15402 | 1426 |
by (simp add: card_def) |
1427 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1428 |
lemma card_infinite [simp]: "~ finite A ==> card A = 0" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1429 |
by (simp add: card_def) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1430 |
|
15402 | 1431 |
lemma card_eq_setsum: "card A = setsum (%x. 1) A" |
1432 |
by (simp add: card_def) |
|
12396 | 1433 |
|
1434 |
lemma card_insert_disjoint [simp]: |
|
1435 |
"finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)" |
|
15402 | 1436 |
by(simp add: card_def ACf.fold_insert[OF ACf_add]) |
1437 |
||
1438 |
lemma card_insert_if: |
|
1439 |
"finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" |
|
1440 |
by (simp add: insert_absorb) |
|
12396 | 1441 |
|
1442 |
lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})" |
|
1443 |
apply auto |
|
14208 | 1444 |
apply (drule_tac a = x in mk_disjoint_insert, clarify) |
15402 | 1445 |
apply (auto) |
12396 | 1446 |
done |
1447 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1448 |
lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1449 |
by auto |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1450 |
|
12396 | 1451 |
lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A" |
14302 | 1452 |
apply(rule_tac t = A in insert_Diff [THEN subst], assumption) |
1453 |
apply(simp del:insert_Diff_single) |
|
1454 |
done |
|
12396 | 1455 |
|
1456 |
lemma card_Diff_singleton: |
|
1457 |
"finite A ==> x: A ==> card (A - {x}) = card A - 1" |
|
1458 |
by (simp add: card_Suc_Diff1 [symmetric]) |
|
1459 |
||
1460 |
lemma card_Diff_singleton_if: |
|
1461 |
"finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)" |
|
1462 |
by (simp add: card_Diff_singleton) |
|
1463 |
||
1464 |
lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" |
|
1465 |
by (simp add: card_insert_if card_Suc_Diff1) |
|
1466 |
||
1467 |
lemma card_insert_le: "finite A ==> card A <= card (insert x A)" |
|
1468 |
by (simp add: card_insert_if) |
|
1469 |
||
15402 | 1470 |
lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B" |
1471 |
by (simp add: card_def setsum_mono2_nat) |
|
1472 |
||
12396 | 1473 |
lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" |
14208 | 1474 |
apply (induct set: Finites, simp, clarify) |
12396 | 1475 |
apply (subgoal_tac "finite A & A - {x} <= F") |
14208 | 1476 |
prefer 2 apply (blast intro: finite_subset, atomize) |
12396 | 1477 |
apply (drule_tac x = "A - {x}" in spec) |
1478 |
apply (simp add: card_Diff_singleton_if split add: split_if_asm) |
|
14208 | 1479 |
apply (case_tac "card A", auto) |
12396 | 1480 |
done |
1481 |
||
1482 |
lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" |
|
1483 |
apply (simp add: psubset_def linorder_not_le [symmetric]) |
|
1484 |
apply (blast dest: card_seteq) |
|
1485 |
done |
|
1486 |
||
1487 |
lemma card_Un_Int: "finite A ==> finite B |
|
1488 |
==> card A + card B = card (A Un B) + card (A Int B)" |
|
15402 | 1489 |
by(simp add:card_def setsum_Un_Int) |
12396 | 1490 |
|
1491 |
lemma card_Un_disjoint: "finite A ==> finite B |
|
1492 |
==> A Int B = {} ==> card (A Un B) = card A + card B" |
|
1493 |
by (simp add: card_Un_Int) |
|
1494 |
||
1495 |
lemma card_Diff_subset: |
|
15402 | 1496 |
"finite B ==> B <= A ==> card (A - B) = card A - card B" |
1497 |
by(simp add:card_def setsum_diff_nat) |
|
12396 | 1498 |
|
1499 |
lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" |
|
1500 |
apply (rule Suc_less_SucD) |
|
1501 |
apply (simp add: card_Suc_Diff1) |
|
1502 |
done |
|
1503 |
||
1504 |
lemma card_Diff2_less: |
|
1505 |
"finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" |
|
1506 |
apply (case_tac "x = y") |
|
1507 |
apply (simp add: card_Diff1_less) |
|
1508 |
apply (rule less_trans) |
|
1509 |
prefer 2 apply (auto intro!: card_Diff1_less) |
|
1510 |
done |
|
1511 |
||
1512 |
lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" |
|
1513 |
apply (case_tac "x : A") |
|
1514 |
apply (simp_all add: card_Diff1_less less_imp_le) |
|
1515 |
done |
|
1516 |
||
1517 |
lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" |
|
14208 | 1518 |
by (erule psubsetI, blast) |
12396 | 1519 |
|
14889 | 1520 |
lemma insert_partition: |
15402 | 1521 |
"\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk> |
1522 |
\<Longrightarrow> x \<inter> \<Union> F = {}" |
|
14889 | 1523 |
by auto |
1524 |
||
1525 |
(* main cardinality theorem *) |
|
1526 |
lemma card_partition [rule_format]: |
|
1527 |
"finite C ==> |
|
1528 |
finite (\<Union> C) --> |
|
1529 |
(\<forall>c\<in>C. card c = k) --> |
|
1530 |
(\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) --> |
|
1531 |
k * card(C) = card (\<Union> C)" |
|
1532 |
apply (erule finite_induct, simp) |
|
1533 |
apply (simp add: card_insert_disjoint card_Un_disjoint insert_partition |
|
1534 |
finite_subset [of _ "\<Union> (insert x F)"]) |
|
1535 |
done |
|
1536 |
||
12396 | 1537 |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1538 |
lemma setsum_constant_nat: "(\<Sum>x\<in>A. y) = (card A) * y" |
15402 | 1539 |
-- {* Generalized to any @{text comm_semiring_1_cancel} in |
1540 |
@{text IntDef} as @{text setsum_constant}. *} |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1541 |
apply (cases "finite A") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1542 |
apply (erule finite_induct, auto) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1543 |
done |
15402 | 1544 |
|
1545 |
lemma setprod_constant: "finite A ==> (\<Prod>x: A. (y::'a::recpower)) = y^(card A)" |
|
1546 |
apply (erule finite_induct) |
|
1547 |
apply (auto simp add: power_Suc) |
|
1548 |
done |
|
1549 |
||
1550 |
||
1551 |
subsubsection {* Cardinality of unions *} |
|
1552 |
||
1553 |
lemma card_UN_disjoint: |
|
1554 |
"finite I ==> (ALL i:I. finite (A i)) ==> |
|
1555 |
(ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==> |
|
1556 |
card (UNION I A) = (\<Sum>i\<in>I. card(A i))" |
|
1557 |
apply (simp add: card_def) |
|
1558 |
apply (subgoal_tac |
|
1559 |
"setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") |
|
1560 |
apply (simp add: setsum_UN_disjoint) |
|
1561 |
apply (simp add: setsum_constant_nat cong: setsum_cong) |
|
1562 |
done |
|
1563 |
||
1564 |
lemma card_Union_disjoint: |
|
1565 |
"finite C ==> (ALL A:C. finite A) ==> |
|
1566 |
(ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==> |
|
1567 |
card (Union C) = setsum card C" |
|
1568 |
apply (frule card_UN_disjoint [of C id]) |
|
1569 |
apply (unfold Union_def id_def, assumption+) |
|
1570 |
done |
|
1571 |
||
12396 | 1572 |
subsubsection {* Cardinality of image *} |
1573 |
||
15447 | 1574 |
text{*The image of a finite set can be expressed using @{term fold}.*} |
1575 |
lemma image_eq_fold: "finite A ==> f ` A = fold (op Un) (%x. {f x}) {} A" |
|
1576 |
apply (erule finite_induct, simp) |
|
1577 |
apply (subst ACf.fold_insert) |
|
1578 |
apply (auto simp add: ACf_def) |
|
1579 |
done |
|
1580 |
||
12396 | 1581 |
lemma card_image_le: "finite A ==> card (f ` A) <= card A" |
14208 | 1582 |
apply (induct set: Finites, simp) |
12396 | 1583 |
apply (simp add: le_SucI finite_imageI card_insert_if) |
1584 |
done |
|
1585 |
||
15402 | 1586 |
lemma card_image: "inj_on f A ==> card (f ` A) = card A" |
1587 |
by(simp add:card_def setsum_reindex o_def) |
|
12396 | 1588 |
|
1589 |
lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" |
|
1590 |
by (simp add: card_seteq card_image) |
|
1591 |
||
15111 | 1592 |
lemma eq_card_imp_inj_on: |
1593 |
"[| finite A; card(f ` A) = card A |] ==> inj_on f A" |
|
1594 |
apply(induct rule:finite_induct) |
|
1595 |
apply simp |
|
1596 |
apply(frule card_image_le[where f = f]) |
|
1597 |
apply(simp add:card_insert_if split:if_splits) |
|
1598 |
done |
|
1599 |
||
1600 |
lemma inj_on_iff_eq_card: |
|
1601 |
"finite A ==> inj_on f A = (card(f ` A) = card A)" |
|
1602 |
by(blast intro: card_image eq_card_imp_inj_on) |
|
1603 |
||
12396 | 1604 |
|
15402 | 1605 |
lemma card_inj_on_le: |
1606 |
"[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B" |
|
1607 |
apply (subgoal_tac "finite A") |
|
1608 |
apply (force intro: card_mono simp add: card_image [symmetric]) |
|
1609 |
apply (blast intro: finite_imageD dest: finite_subset) |
|
1610 |
done |
|
1611 |
||
1612 |
lemma card_bij_eq: |
|
1613 |
"[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; |
|
1614 |
finite A; finite B |] ==> card A = card B" |
|
1615 |
by (auto intro: le_anti_sym card_inj_on_le) |
|
1616 |
||
1617 |
||
1618 |
subsubsection {* Cardinality of products *} |
|
1619 |
||
1620 |
(* |
|
1621 |
lemma SigmaI_insert: "y \<notin> A ==> |
|
1622 |
(SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))" |
|
1623 |
by auto |
|
1624 |
*) |
|
1625 |
||
1626 |
lemma card_SigmaI [simp]: |
|
1627 |
"\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> |
|
1628 |
\<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" |
|
1629 |
by(simp add:card_def setsum_Sigma) |
|
1630 |
||
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1631 |
lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1632 |
apply (cases "finite A") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1633 |
apply (cases "finite B") |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1634 |
apply (simp add: setsum_constant_nat) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1635 |
apply (auto simp add: card_eq_0_iff |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1636 |
dest: finite_cartesian_productD1 finite_cartesian_productD2) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1637 |
done |
15402 | 1638 |
|
1639 |
lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)" |
|
15409
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1640 |
by (simp add: card_cartesian_product) |
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
paulson
parents:
15402
diff
changeset
|
1641 |
|
15402 | 1642 |
|
1643 |
||
12396 | 1644 |
subsubsection {* Cardinality of the Powerset *} |
1645 |
||
1646 |
lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) |
|
1647 |
apply (induct set: Finites) |
|
1648 |
apply (simp_all add: Pow_insert) |
|
14208 | 1649 |
apply (subst card_Un_disjoint, blast) |
1650 |
apply (blast intro: finite_imageI, blast) |
|
12396 | 1651 |
apply (subgoal_tac "inj_on (insert x) (Pow F)") |
1652 |
apply (simp add: card_image Pow_insert) |
|
1653 |
apply (unfold inj_on_def) |
|
1654 |
apply (blast elim!: equalityE) |
|
1655 |
done |
|
1656 |
||
15392 | 1657 |
text {* Relates to equivalence classes. Based on a theorem of |
1658 |
F. Kammüller's. *} |
|
12396 | 1659 |
|
1660 |
lemma dvd_partition: |
|
15392 | 1661 |
"finite (Union C) ==> |
12396 | 1662 |
ALL c : C. k dvd card c ==> |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14331
diff
changeset
|
1663 |
(ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==> |
12396 | 1664 |
k dvd card (Union C)" |
15392 | 1665 |
apply(frule finite_UnionD) |
1666 |
apply(rotate_tac -1) |
|
14208 | 1667 |
apply (induct set: Finites, simp_all, clarify) |
12396 | 1668 |
apply (subst card_Un_disjoint) |
1669 |
apply (auto simp add: dvd_add disjoint_eq_subset_Compl) |
|
1670 |
done |
|
1671 |
||
1672 |
||
15392 | 1673 |
subsubsection {* Theorems about @{text "choose"} *} |
12396 | 1674 |
|
1675 |
text {* |
|
15392 | 1676 |
\medskip Basic theorem about @{text "choose"}. By Florian |
1677 |
Kamm\"uller, tidied by LCP. |
|
12396 | 1678 |
*} |
1679 |
||
15392 | 1680 |
lemma card_s_0_eq_empty: |
1681 |
"finite A ==> card {B. B \<subseteq> A & card B = 0} = 1" |
|
1682 |
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) |
|
1683 |
apply (simp cong add: rev_conj_cong) |
|
1684 |
done |
|
12396 | 1685 |
|
15392 | 1686 |
lemma choose_deconstruct: "finite M ==> x \<notin> M |
1687 |
==> {s. s <= insert x M & card(s) = Suc k} |
|
1688 |
= {s. s <= M & card(s) = Suc k} Un |
|
1689 |
{s. EX t. t <= M & card(t) = k & s = insert x t}" |
|
1690 |
apply safe |
|
1691 |
apply (auto intro: finite_subset [THEN card_insert_disjoint]) |
|
1692 |
apply (drule_tac x = "xa - {x}" in spec) |
|
1693 |
apply (subgoal_tac "x \<notin> xa", auto) |
|
1694 |
apply (erule rev_mp, subst card_Diff_singleton) |
|
1695 |
apply (auto intro: finite_subset) |
|
12396 | 1696 |
done |
1697 |
||
15392 | 1698 |
text{*There are as many subsets of @{term A} having cardinality @{term k} |
1699 |
as there are sets obtained from the former by inserting a fixed element |
|
1700 |
@{term x} into each.*} |
|
1701 |
lemma constr_bij: |
|
1702 |
"[|finite A; x \<notin> A|] ==> |
|
1703 |
card {B. EX C. C <= A & card(C) = k & B = insert x C} = |
|
1704 |
card {B. B <= A & card(B) = k}" |
|
1705 |
apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) |
|
1706 |
apply (auto elim!: equalityE simp add: inj_on_def) |
|
1707 |
apply (subst Diff_insert0, auto) |
|
1708 |
txt {* finiteness of the two sets *} |
|
1709 |
apply (rule_tac [2] B = "Pow (A)" in finite_subset) |
|
1710 |
apply (rule_tac B = "Pow (insert x A)" in finite_subset) |
|
1711 |
apply fast+ |
|
12396 | 1712 |
done |
1713 |
||
15392 | 1714 |
text {* |
1715 |
Main theorem: combinatorial statement about number of subsets of a set. |
|
1716 |
*} |
|
12396 | 1717 |
|
15392 | 1718 |
lemma n_sub_lemma: |
1719 |
"!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
1720 |
apply (induct k) |
|
1721 |
apply (simp add: card_s_0_eq_empty, atomize) |
|
1722 |
apply (rotate_tac -1, erule finite_induct) |
|
1723 |
apply (simp_all (no_asm_simp) cong add: conj_cong |
|
1724 |
add: card_s_0_eq_empty choose_deconstruct) |
|
1725 |
apply (subst card_Un_disjoint) |
|
1726 |
prefer 4 apply (force simp add: constr_bij) |
|
1727 |
prefer 3 apply force |
|
1728 |
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] |
|
1729 |
finite_subset [of _ "Pow (insert x F)", standard]) |
|
1730 |
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) |
|
12396 | 1731 |
done |
1732 |
||
15392 | 1733 |
theorem n_subsets: |
1734 |
"finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
1735 |
by (simp add: n_sub_lemma) |
|
1736 |
||
1737 |
||
1738 |
subsection{* A fold functional for non-empty sets *} |
|
1739 |
||
1740 |
text{* Does not require start value. *} |
|
12396 | 1741 |
|
15392 | 1742 |
consts |
1743 |
foldSet1 :: "('a => 'a => 'a) => ('a set \<times> 'a) set" |
|
1744 |
||
1745 |
inductive "foldSet1 f" |
|
1746 |
intros |
|
1747 |
foldSet1_singletonI [intro]: "({a}, a) : foldSet1 f" |
|
1748 |
foldSet1_insertI [intro]: |
|
1749 |
"\<lbrakk> (A, x) : foldSet1 f; a \<notin> A; A \<noteq> {} \<rbrakk> |
|
1750 |
\<Longrightarrow> (insert a A, f a x) : foldSet1 f" |
|
12396 | 1751 |
|
15392 | 1752 |
constdefs |
1753 |
fold1 :: "('a => 'a => 'a) => 'a set => 'a" |
|
1754 |
"fold1 f A == THE x. (A, x) : foldSet1 f" |
|
1755 |
||
1756 |
lemma foldSet1_nonempty: |
|
1757 |
"(A, x) : foldSet1 f \<Longrightarrow> A \<noteq> {}" |
|
1758 |
by(erule foldSet1.cases, simp_all) |
|
1759 |
||
12396 | 1760 |
|
15392 | 1761 |
inductive_cases empty_foldSet1E [elim!]: "({}, x) : foldSet1 f" |
1762 |
||
1763 |
lemma foldSet1_sing[iff]: "(({a},b) : foldSet1 f) = (a = b)" |
|
1764 |
apply(rule iffI) |
|
1765 |
prefer 2 apply fast |
|
1766 |
apply (erule foldSet1.cases) |
|
1767 |
apply blast |
|
1768 |
apply (erule foldSet1.cases) |
|
1769 |
apply blast |
|
1770 |
apply blast |
|
15376 | 1771 |
done |
12396 | 1772 |
|
15392 | 1773 |
lemma Diff1_foldSet1: |
1774 |
"(A - {x}, y) : foldSet1 f ==> x: A ==> (A, f x y) : foldSet1 f" |
|
1775 |
by (erule insert_Diff [THEN subst], rule foldSet1.intros, |
|
1776 |
auto dest!:foldSet1_nonempty) |
|
12396 | 1777 |
|
15392 | 1778 |
lemma foldSet1_imp_finite: "(A, x) : foldSet1 f ==> finite A" |
1779 |
by (induct set: foldSet1) auto |
|
12396 | 1780 |
|
15392 | 1781 |
lemma finite_nonempty_imp_foldSet1: |
1782 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. (A, x) : foldSet1 f" |
|
1783 |
by (induct set: Finites) auto |
|
15376 | 1784 |
|
15392 | 1785 |
lemma (in ACf) foldSet1_determ_aux: |
1786 |
"!!A x y. \<lbrakk> card A < n; (A, x) : foldSet1 f; (A, y) : foldSet1 f \<rbrakk> \<Longrightarrow> y = x" |
|
1787 |
proof (induct n) |
|
1788 |
case 0 thus ?case by simp |
|
1789 |
next |
|
1790 |
case (Suc n) |
|
1791 |
have IH: "!!A x y. \<lbrakk>card A < n; (A, x) \<in> foldSet1 f; (A, y) \<in> foldSet1 f\<rbrakk> |
|
1792 |
\<Longrightarrow> y = x" and card: "card A < Suc n" |
|
1793 |
and Afoldx: "(A, x) \<in> foldSet1 f" and Afoldy: "(A, y) \<in> foldSet1 f" . |
|
1794 |
from card have "card A < n \<or> card A = n" by arith |
|
1795 |
thus ?case |
|
1796 |
proof |
|
1797 |
assume less: "card A < n" |
|
1798 |
show ?thesis by(rule IH[OF less Afoldx Afoldy]) |
|
1799 |
next |
|
1800 |
assume cardA: "card A = n" |
|
1801 |
show ?thesis |
|
1802 |
proof (rule foldSet1.cases[OF Afoldx]) |
|
1803 |
fix a assume "(A, x) = ({a}, a)" |
|
1804 |
thus "y = x" using Afoldy by (simp add:foldSet1_sing) |
|
1805 |
next |
|
1806 |
fix Ax ax x' |
|
1807 |
assume eq1: "(A, x) = (insert ax Ax, ax \<cdot> x')" |
|
1808 |
and x': "(Ax, x') \<in> foldSet1 f" and notinx: "ax \<notin> Ax" |
|
1809 |
and Axnon: "Ax \<noteq> {}" |
|
1810 |
hence A1: "A = insert ax Ax" and x: "x = ax \<cdot> x'" by auto |
|
1811 |
show ?thesis |
|
1812 |
proof (rule foldSet1.cases[OF Afoldy]) |
|
1813 |
fix ay assume "(A, y) = ({ay}, ay)" |
|
1814 |
thus ?thesis using eq1 x' Axnon notinx |
|
1815 |
by (fastsimp simp:foldSet1_sing) |
|
1816 |
next |
|
1817 |
fix Ay ay y' |
|
1818 |
assume eq2: "(A, y) = (insert ay Ay, ay \<cdot> y')" |
|
1819 |
and y': "(Ay, y') \<in> foldSet1 f" and notiny: "ay \<notin> Ay" |
|
1820 |
and Aynon: "Ay \<noteq> {}" |
|
1821 |
hence A2: "A = insert ay Ay" and y: "y = ay \<cdot> y'" by auto |
|
1822 |
have finA: "finite A" by(rule foldSet1_imp_finite[OF Afoldx]) |
|
1823 |
with cardA A1 notinx have less: "card Ax < n" by simp |
|
1824 |
show ?thesis |
|
1825 |
proof cases |
|
1826 |
assume "ax = ay" |
|
1827 |
then moreover have "Ax = Ay" using A1 A2 notinx notiny by auto |
|
1828 |
ultimately show ?thesis using IH[OF less x'] y' eq1 eq2 by auto |
|
1829 |
next |
|
1830 |
assume diff: "ax \<noteq> ay" |
|
1831 |
let ?B = "Ax - {ay}" |
|
1832 |
have Ax: "Ax = insert ay ?B" and Ay: "Ay = insert ax ?B" |
|
1833 |
using A1 A2 notinx notiny diff by(blast elim!:equalityE)+ |
|
1834 |
show ?thesis |
|
1835 |
proof cases |
|
1836 |
assume "?B = {}" |
|
1837 |
with Ax Ay show ?thesis using x' y' x y by(simp add:commute) |
|
1838 |
next |
|
1839 |
assume Bnon: "?B \<noteq> {}" |
|
1840 |
moreover have "finite ?B" using finA A1 by simp |
|
1841 |
ultimately obtain b where Bfoldb: "(?B,b) \<in> foldSet1 f" |
|
1842 |
using finite_nonempty_imp_foldSet1 by(blast) |
|
1843 |
moreover have ayinAx: "ay \<in> Ax" using Ax by(auto) |
|
1844 |
ultimately have "(Ax,ay\<cdot>b) \<in> foldSet1 f" by(rule Diff1_foldSet1) |
|
1845 |
hence "ay\<cdot>b = x'" by(rule IH[OF less x']) |
|
1846 |
moreover have "ax\<cdot>b = y'" |
|
1847 |
proof (rule IH[OF _ y']) |
|
1848 |
show "card Ay < n" using Ay cardA A1 notinx finA ayinAx |
|
1849 |
by(auto simp:card_Diff1_less) |
|
1850 |
next |
|
1851 |
show "(Ay,ax\<cdot>b) \<in> foldSet1 f" using Ay notinx Bfoldb Bnon |
|
1852 |
by fastsimp |
|
1853 |
qed |
|
1854 |
ultimately show ?thesis using x y by(auto simp:AC) |
|
1855 |
qed |
|
1856 |
qed |
|
1857 |
qed |
|
1858 |
qed |
|
1859 |
qed |
|
12396 | 1860 |
qed |
1861 |
||
15392 | 1862 |
|
1863 |
lemma (in ACf) foldSet1_determ: |
|
1864 |
"(A, x) : foldSet1 f ==> (A, y) : foldSet1 f ==> y = x" |
|
1865 |
by (blast intro: foldSet1_determ_aux [rule_format]) |
|
1866 |
||
1867 |
lemma (in ACf) foldSet1_equality: "(A, y) : foldSet1 f ==> fold1 f A = y" |
|
1868 |
by (unfold fold1_def) (blast intro: foldSet1_determ) |
|
1869 |
||
15483 | 1870 |
lemma fold1_singleton[simp]: "fold1 f {a} = a" |
15392 | 1871 |
by (unfold fold1_def) blast |
12396 | 1872 |
|
15392 | 1873 |
lemma (in ACf) foldSet1_insert_aux: "x \<notin> A ==> A \<noteq> {} \<Longrightarrow> |
1874 |
((insert x A, v) : foldSet1 f) = |
|
1875 |
(EX y. (A, y) : foldSet1 f & v = f x y)" |
|
1876 |
apply auto |
|
1877 |
apply (rule_tac A1 = A and f1 = f in finite_nonempty_imp_foldSet1 [THEN exE]) |
|
1878 |
apply (fastsimp dest: foldSet1_imp_finite) |
|
1879 |
apply blast |
|
1880 |
apply (blast intro: foldSet1_determ) |
|
1881 |
done |
|
15376 | 1882 |
|
15392 | 1883 |
lemma (in ACf) fold1_insert: |
1884 |
"finite A ==> x \<notin> A ==> A \<noteq> {} \<Longrightarrow> fold1 f (insert x A) = f x (fold1 f A)" |
|
1885 |
apply (unfold fold1_def) |
|
1886 |
apply (simp add: foldSet1_insert_aux) |
|
1887 |
apply (rule the_equality) |
|
1888 |
apply (auto intro: finite_nonempty_imp_foldSet1 |
|
1889 |
cong add: conj_cong simp add: fold1_def [symmetric] foldSet1_equality) |
|
1890 |
done |
|
15376 | 1891 |
|
15484 | 1892 |
lemma (in ACIf) fold1_insert2[simp]: |
15392 | 1893 |
assumes finA: "finite A" and nonA: "A \<noteq> {}" |
1894 |
shows "fold1 f (insert a A) = f a (fold1 f A)" |
|
1895 |
proof cases |
|
1896 |
assume "a \<in> A" |
|
1897 |
then obtain B where A: "A = insert a B" and disj: "a \<notin> B" |
|
1898 |
by(blast dest: mk_disjoint_insert) |
|
1899 |
show ?thesis |
|
1900 |
proof cases |
|
1901 |
assume "B = {}" |
|
1902 |
thus ?thesis using A by(simp add:idem fold1_singleton) |
|
1903 |
next |
|
1904 |
assume nonB: "B \<noteq> {}" |
|
1905 |
from finA A have finB: "finite B" by(blast intro: finite_subset) |
|
1906 |
have "fold1 f (insert a A) = fold1 f (insert a B)" using A by simp |
|
1907 |
also have "\<dots> = f a (fold1 f B)" |
|
1908 |
using finB nonB disj by(simp add: fold1_insert) |
|
1909 |
also have "\<dots> = f a (fold1 f A)" |
|
1910 |
using A finB nonB disj by(simp add:idem fold1_insert assoc[symmetric]) |
|
1911 |
finally show ?thesis . |
|
1912 |
qed |
|
1913 |
next |
|
1914 |
assume "a \<notin> A" |
|
1915 |
with finA nonA show ?thesis by(simp add:fold1_insert) |
|
1916 |
qed |
|
1917 |
||
1918 |
text{* Now the recursion rules for definitions: *} |
|
1919 |
||
1920 |
lemma fold1_singleton_def: "g \<equiv> fold1 f \<Longrightarrow> g {a} = a" |
|
1921 |
by(simp add:fold1_singleton) |
|
1922 |
||
1923 |
lemma (in ACf) fold1_insert_def: |
|
1924 |
"\<lbrakk> g \<equiv> fold1 f; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)" |
|
1925 |
by(simp add:fold1_insert) |
|
1926 |
||
1927 |
lemma (in ACIf) fold1_insert2_def: |
|
1928 |
"\<lbrakk> g \<equiv> fold1 f; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)" |
|
1929 |
by(simp add:fold1_insert2) |
|
1930 |
||
15376 | 1931 |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1932 |
subsubsection{* Semi-Lattices *} |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1933 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1934 |
locale ACIfSL = ACIf + |
15500 | 1935 |
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50) |
1936 |
assumes below_def: "(x \<sqsubseteq> y) = (x\<cdot>y = x)" |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1937 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1938 |
locale ACIfSLlin = ACIfSL + |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1939 |
assumes lin: "x\<cdot>y \<in> {x,y}" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1940 |
|
15500 | 1941 |
lemma (in ACIfSL) below_refl[simp]: "x \<sqsubseteq> x" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1942 |
by(simp add: below_def idem) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1943 |
|
15500 | 1944 |
lemma (in ACIfSL) below_f_conv[simp]: "x \<sqsubseteq> y \<cdot> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1945 |
proof |
15500 | 1946 |
assume "x \<sqsubseteq> y \<cdot> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1947 |
hence xyzx: "x \<cdot> (y \<cdot> z) = x" by(simp add: below_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1948 |
have "x \<cdot> y = x" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1949 |
proof - |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1950 |
have "x \<cdot> y = (x \<cdot> (y \<cdot> z)) \<cdot> y" by(rule subst[OF xyzx], rule refl) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1951 |
also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1952 |
also have "\<dots> = x" by(rule xyzx) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1953 |
finally show ?thesis . |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1954 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1955 |
moreover have "x \<cdot> z = x" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1956 |
proof - |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1957 |
have "x \<cdot> z = (x \<cdot> (y \<cdot> z)) \<cdot> z" by(rule subst[OF xyzx], rule refl) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1958 |
also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1959 |
also have "\<dots> = x" by(rule xyzx) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1960 |
finally show ?thesis . |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1961 |
qed |
15500 | 1962 |
ultimately show "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" by(simp add: below_def) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1963 |
next |
15500 | 1964 |
assume a: "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1965 |
hence y: "x \<cdot> y = x" and z: "x \<cdot> z = x" by(simp_all add: below_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1966 |
have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by(simp add:assoc) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1967 |
also have "x \<cdot> y = x" using a by(simp_all add: below_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1968 |
also have "x \<cdot> z = x" using a by(simp_all add: below_def) |
15500 | 1969 |
finally show "x \<sqsubseteq> y \<cdot> z" by(simp_all add: below_def) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1970 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1971 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1972 |
lemma (in ACIfSLlin) above_f_conv: |
15500 | 1973 |
"x \<cdot> y \<sqsubseteq> z = (x \<sqsubseteq> z \<or> y \<sqsubseteq> z)" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1974 |
proof |
15500 | 1975 |
assume a: "x \<cdot> y \<sqsubseteq> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1976 |
have "x \<cdot> y = x \<or> x \<cdot> y = y" using lin[of x y] by simp |
15500 | 1977 |
thus "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1978 |
proof |
15500 | 1979 |
assume "x \<cdot> y = x" hence "x \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1980 |
next |
15500 | 1981 |
assume "x \<cdot> y = y" hence "y \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1982 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1983 |
next |
15500 | 1984 |
assume "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" |
1985 |
thus "x \<cdot> y \<sqsubseteq> z" |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1986 |
proof |
15500 | 1987 |
assume a: "x \<sqsubseteq> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1988 |
have "(x \<cdot> y) \<cdot> z = (x \<cdot> z) \<cdot> y" by(simp add:ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1989 |
also have "x \<cdot> z = x" using a by(simp add:below_def) |
15500 | 1990 |
finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1991 |
next |
15500 | 1992 |
assume a: "y \<sqsubseteq> z" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1993 |
have "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" by(simp add:ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1994 |
also have "y \<cdot> z = y" using a by(simp add:below_def) |
15500 | 1995 |
finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1996 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1997 |
qed |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1998 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
1999 |
|
15502 | 2000 |
subsubsection{* Lemmas about @{text fold1} *} |
15484 | 2001 |
|
2002 |
lemma (in ACf) fold1_Un: |
|
2003 |
assumes A: "finite A" "A \<noteq> {}" |
|
2004 |
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow> |
|
2005 |
fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" |
|
2006 |
using A |
|
2007 |
proof(induct rule:finite_ne_induct) |
|
2008 |
case singleton thus ?case by(simp add:fold1_insert) |
|
2009 |
next |
|
2010 |
case insert thus ?case by (simp add:fold1_insert assoc) |
|
2011 |
qed |
|
2012 |
||
2013 |
lemma (in ACIf) fold1_Un2: |
|
2014 |
assumes A: "finite A" "A \<noteq> {}" |
|
2015 |
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> |
|
2016 |
fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" |
|
2017 |
using A |
|
2018 |
proof(induct rule:finite_ne_induct) |
|
2019 |
case singleton thus ?case by(simp add:fold1_insert2) |
|
2020 |
next |
|
2021 |
case insert thus ?case by (simp add:fold1_insert2 assoc) |
|
2022 |
qed |
|
2023 |
||
2024 |
lemma (in ACf) fold1_in: |
|
2025 |
assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x\<cdot>y \<in> {x,y}" |
|
2026 |
shows "fold1 f A \<in> A" |
|
2027 |
using A |
|
2028 |
proof (induct rule:finite_ne_induct) |
|
2029 |
case singleton thus ?case by(simp) |
|
2030 |
next |
|
2031 |
case insert thus ?case using elem by (force simp add:fold1_insert) |
|
2032 |
qed |
|
2033 |
||
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2034 |
lemma (in ACIfSL) below_fold1_iff: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2035 |
assumes A: "finite A" "A \<noteq> {}" |
15500 | 2036 |
shows "x \<sqsubseteq> fold1 f A = (\<forall>a\<in>A. x \<sqsubseteq> a)" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2037 |
using A |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2038 |
by(induct rule:finite_ne_induct) simp_all |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2039 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2040 |
lemma (in ACIfSL) fold1_belowI: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2041 |
assumes A: "finite A" "A \<noteq> {}" |
15500 | 2042 |
shows "a \<in> A \<Longrightarrow> fold1 f A \<sqsubseteq> a" |
15484 | 2043 |
using A |
2044 |
proof (induct rule:finite_ne_induct) |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2045 |
case singleton thus ?case by simp |
15484 | 2046 |
next |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2047 |
case (insert x F) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2048 |
from insert(4) have "a = x \<or> a \<in> F" by simp |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2049 |
thus ?case |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2050 |
proof |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2051 |
assume "a = x" thus ?thesis using insert by(simp add:below_def ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2052 |
next |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2053 |
assume "a \<in> F" |
15500 | 2054 |
hence bel: "fold1 op \<cdot> F \<sqsubseteq> a" by(rule insert) |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2055 |
have "fold1 op \<cdot> (insert x F) \<cdot> a = x \<cdot> (fold1 op \<cdot> F \<cdot> a)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2056 |
using insert by(simp add:below_def ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2057 |
also have "fold1 op \<cdot> F \<cdot> a = fold1 op \<cdot> F" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2058 |
using bel by(simp add:below_def ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2059 |
also have "x \<cdot> \<dots> = fold1 op \<cdot> (insert x F)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2060 |
using insert by(simp add:below_def ACI) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2061 |
finally show ?thesis by(simp add:below_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2062 |
qed |
15484 | 2063 |
qed |
2064 |
||
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2065 |
lemma (in ACIfSLlin) fold1_below_iff: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2066 |
assumes A: "finite A" "A \<noteq> {}" |
15500 | 2067 |
shows "fold1 f A \<sqsubseteq> x = (\<exists>a\<in>A. a \<sqsubseteq> x)" |
15484 | 2068 |
using A |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2069 |
by(induct rule:finite_ne_induct)(simp_all add:above_f_conv) |
15484 | 2070 |
|
15500 | 2071 |
subsubsection{* Lattices *} |
2072 |
||
2073 |
locale Lattice = |
|
2074 |
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50) |
|
2075 |
and inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) |
|
2076 |
and sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) |
|
2077 |
and Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900) |
|
2078 |
and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900) |
|
2079 |
assumes refl: "x \<sqsubseteq> x" |
|
2080 |
and trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" |
|
2081 |
and antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" |
|
2082 |
and inf_le1: "x \<sqinter> y \<sqsubseteq> x" and inf_le2: "x \<sqinter> y \<sqsubseteq> y" |
|
2083 |
and inf_least: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" |
|
2084 |
and sup_ge1: "x \<sqsubseteq> x \<squnion> y" and sup_ge2: "y \<sqsubseteq> x \<squnion> y" |
|
2085 |
and sup_greatest: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" |
|
15504 | 2086 |
and inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" |
2087 |
and sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" |
|
15500 | 2088 |
defines "Inf == fold1 inf" and "Sup == fold1 sup" |
2089 |
||
2090 |
||
2091 |
lemma (in Lattice) inf_comm: "(x \<sqinter> y) = (y \<sqinter> x)" |
|
2092 |
by(blast intro: antisym inf_le1 inf_le2 inf_least) |
|
2093 |
||
2094 |
lemma (in Lattice) sup_comm: "(x \<squnion> y) = (y \<squnion> x)" |
|
2095 |
by(blast intro: antisym sup_ge1 sup_ge2 sup_greatest) |
|
2096 |
||
2097 |
lemma (in Lattice) inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" |
|
2098 |
by(blast intro: antisym inf_le1 inf_le2 inf_least trans) |
|
2099 |
||
2100 |
lemma (in Lattice) sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" |
|
2101 |
by(blast intro!: antisym sup_ge1 sup_ge2 intro: sup_greatest trans) |
|
2102 |
||
15504 | 2103 |
lemma (in Lattice) inf_idem[simp]: "x \<sqinter> x = x" |
15500 | 2104 |
by(blast intro: antisym inf_le1 inf_le2 inf_least refl) |
2105 |
||
15504 | 2106 |
lemma (in Lattice) sup_idem[simp]: "x \<squnion> x = x" |
15500 | 2107 |
by(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl) |
2108 |
||
15504 | 2109 |
lemma (in Lattice) sup_absorb: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" |
2110 |
by(blast intro: antisym sup_ge2 sup_greatest refl) |
|
2111 |
||
2112 |
lemma (in Lattice) inf_absorb: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" |
|
2113 |
by(blast intro: antisym inf_le1 inf_least refl) |
|
2114 |
||
2115 |
text{* Distributive lattices: *} |
|
2116 |
||
2117 |
locale DistribLattice = Lattice + |
|
2118 |
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
2119 |
||
2120 |
lemma (in Lattice) distrib_imp1: |
|
2121 |
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
|
2122 |
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
2123 |
proof- |
|
2124 |
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) |
|
2125 |
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_comm sup_assoc) |
|
2126 |
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" |
|
2127 |
by(simp add:inf_sup_absorb inf_comm) |
|
2128 |
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) |
|
2129 |
finally show ?thesis . |
|
2130 |
qed |
|
2131 |
||
2132 |
lemma (in Lattice) distrib_imp2: |
|
2133 |
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
2134 |
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
|
2135 |
proof- |
|
2136 |
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) |
|
2137 |
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_comm inf_assoc) |
|
2138 |
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" |
|
2139 |
by(simp add:sup_inf_absorb sup_comm) |
|
2140 |
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) |
|
2141 |
finally show ?thesis . |
|
2142 |
qed |
|
2143 |
||
2144 |
||
2145 |
lemma (in DistribLattice) inf_sup_distrib1: |
|
2146 |
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
|
2147 |
by(rule distrib_imp2[OF sup_inf_distrib1]) |
|
2148 |
||
2149 |
||
15500 | 2150 |
text{* Lattices are semilattices *} |
2151 |
||
2152 |
lemma (in Lattice) ACf_inf: "ACf inf" |
|
2153 |
by(blast intro: ACf.intro inf_comm inf_assoc) |
|
2154 |
||
2155 |
lemma (in Lattice) ACf_sup: "ACf sup" |
|
2156 |
by(blast intro: ACf.intro sup_comm sup_assoc) |
|
2157 |
||
2158 |
lemma (in Lattice) ACIf_inf: "ACIf inf" |
|
2159 |
apply(rule ACIf.intro) |
|
2160 |
apply(rule ACf_inf) |
|
2161 |
apply(rule ACIf_axioms.intro) |
|
2162 |
apply(rule inf_idem) |
|
2163 |
done |
|
2164 |
||
2165 |
lemma (in Lattice) ACIf_sup: "ACIf sup" |
|
2166 |
apply(rule ACIf.intro) |
|
2167 |
apply(rule ACf_sup) |
|
2168 |
apply(rule ACIf_axioms.intro) |
|
2169 |
apply(rule sup_idem) |
|
2170 |
done |
|
2171 |
||
2172 |
lemma (in Lattice) ACIfSL_inf: "ACIfSL inf (op \<sqsubseteq>)" |
|
2173 |
apply(rule ACIfSL.intro) |
|
2174 |
apply(rule ACf_inf) |
|
2175 |
apply(rule ACIf.axioms[OF ACIf_inf]) |
|
2176 |
apply(rule ACIfSL_axioms.intro) |
|
2177 |
apply(rule iffI) |
|
2178 |
apply(blast intro: antisym inf_le1 inf_le2 inf_least refl) |
|
2179 |
apply(erule subst) |
|
2180 |
apply(rule inf_le2) |
|
2181 |
done |
|
2182 |
||
2183 |
lemma (in Lattice) ACIfSL_sup: "ACIfSL sup (%x y. y \<sqsubseteq> x)" |
|
2184 |
apply(rule ACIfSL.intro) |
|
2185 |
apply(rule ACf_sup) |
|
2186 |
apply(rule ACIf.axioms[OF ACIf_sup]) |
|
2187 |
apply(rule ACIfSL_axioms.intro) |
|
2188 |
apply(rule iffI) |
|
2189 |
apply(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl) |
|
2190 |
apply(erule subst) |
|
2191 |
apply(rule sup_ge2) |
|
2192 |
done |
|
2193 |
||
2194 |
text{* Fold laws in lattices *} |
|
2195 |
||
2196 |
lemma (in Lattice) Inf_le_Sup: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Squnion>A" |
|
2197 |
apply(unfold Sup_def Inf_def) |
|
2198 |
apply(subgoal_tac "EX a. a:A") |
|
2199 |
prefer 2 apply blast |
|
2200 |
apply(erule exE) |
|
2201 |
apply(rule trans) |
|
2202 |
apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_inf]) |
|
2203 |
apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_sup]) |
|
2204 |
done |
|
2205 |
||
15504 | 2206 |
lemma (in Lattice) sup_Inf_absorb: |
2207 |
"\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<squnion> \<Sqinter>A) = a" |
|
2208 |
apply(subst sup_comm) |
|
2209 |
apply(simp add:Inf_def sup_absorb ACIfSL.fold1_belowI[OF ACIfSL_inf]) |
|
2210 |
done |
|
2211 |
||
2212 |
lemma (in Lattice) inf_Sup_absorb: |
|
2213 |
"\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<sqinter> \<Squnion>A) = a" |
|
2214 |
by(simp add:Sup_def inf_absorb ACIfSL.fold1_belowI[OF ACIfSL_sup]) |
|
2215 |
||
2216 |
||
2217 |
lemma (in DistribLattice) sup_Inf1_distrib: |
|
15500 | 2218 |
assumes A: "finite A" "A \<noteq> {}" |
2219 |
shows "(x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}" |
|
2220 |
using A |
|
2221 |
proof (induct rule: finite_ne_induct) |
|
2222 |
case singleton thus ?case by(simp add:Inf_def) |
|
2223 |
next |
|
2224 |
case (insert y A) |
|
2225 |
have fin: "finite {x \<squnion> a |a. a \<in> A}" |
|
2226 |
by(fast intro: finite_surj[where f = "%a. x \<squnion> a", OF insert(0)]) |
|
2227 |
have "x \<squnion> \<Sqinter> (insert y A) = x \<squnion> (y \<sqinter> \<Sqinter> A)" |
|
2228 |
using insert by(simp add:ACf.fold1_insert_def[OF ACf_inf Inf_def]) |
|
2229 |
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> \<Sqinter> A)" by(rule sup_inf_distrib1) |
|
2230 |
also have "x \<squnion> \<Sqinter> A = \<Sqinter>{x \<squnion> a|a. a \<in> A}" using insert by simp |
|
2231 |
also have "(x \<squnion> y) \<sqinter> \<dots> = \<Sqinter> (insert (x \<squnion> y) {x \<squnion> a |a. a \<in> A})" |
|
2232 |
using insert by(simp add:ACIf.fold1_insert2_def[OF ACIf_inf Inf_def fin]) |
|
2233 |
also have "insert (x\<squnion>y) {x\<squnion>a |a. a \<in> A} = {x\<squnion>a |a. a \<in> insert y A}" |
|
2234 |
by blast |
|
2235 |
finally show ?case . |
|
2236 |
qed |
|
2237 |
||
15504 | 2238 |
(* FIXME |
2239 |
lemma (in DistribLattice) sup_Inf2_distrib: |
|
15500 | 2240 |
assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}" |
2241 |
shows "(\<Sqinter>A \<squnion> \<Sqinter>B) = \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}" |
|
2242 |
using A |
|
2243 |
proof (induct rule: finite_ne_induct) |
|
2244 |
case singleton thus ?case |
|
2245 |
by(simp add: sup_Inf1_distrib[OF B] fold1_singleton_def[OF Inf_def]) |
|
2246 |
next |
|
2247 |
case (insert x A) |
|
2248 |
have finB: "finite {x \<squnion> b |b. b \<in> B}" |
|
2249 |
by(fast intro: finite_surj[where f = "%b. x \<squnion> b", OF B(0)]) |
|
2250 |
have finAB: "finite {a \<squnion> b |a b. a \<in> A \<and> b \<in> B}" |
|
2251 |
proof - |
|
2252 |
have "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<squnion> b})" |
|
2253 |
by blast |
|
2254 |
thus ?thesis by(simp add: insert(0) B(0)) |
|
2255 |
qed |
|
2256 |
have ne: "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast |
|
2257 |
have "\<Sqinter>(insert x A) \<squnion> \<Sqinter>B = (x \<sqinter> \<Sqinter>A) \<squnion> \<Sqinter>B" |
|
2258 |
using insert by(simp add:ACIf.fold1_insert2_def[OF ACIf_inf Inf_def]) |
|
2259 |
also have "\<dots> = (x \<squnion> \<Sqinter>B) \<sqinter> (\<Sqinter>A \<squnion> \<Sqinter>B)" by(rule sup_inf_distrib2) |
|
2260 |
also have "\<dots> = \<Sqinter>{x \<squnion> b|b. b \<in> B} \<sqinter> \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}" |
|
2261 |
using insert by(simp add:sup_Inf1_distrib[OF B]) |
|
2262 |
also have "\<dots> = \<Sqinter>({x\<squnion>b |b. b \<in> B} \<union> {a\<squnion>b |a b. a \<in> A \<and> b \<in> B})" |
|
2263 |
(is "_ = \<Sqinter>?M") |
|
2264 |
using B insert |
|
2265 |
by(simp add:Inf_def ACIf.fold1_Un2[OF ACIf_inf finB _ finAB ne]) |
|
2266 |
also have "?M = {a \<squnion> b |a b. a \<in> insert x A \<and> b \<in> B}" |
|
2267 |
by blast |
|
2268 |
finally show ?case . |
|
2269 |
qed |
|
15504 | 2270 |
*) |
15500 | 2271 |
|
15484 | 2272 |
|
15392 | 2273 |
subsection{*Min and Max*} |
2274 |
||
2275 |
text{* As an application of @{text fold1} we define the minimal and |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2276 |
maximal element of a (non-empty) set over a linear order. *} |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2277 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2278 |
constdefs |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2279 |
Min :: "('a::linorder)set => 'a" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2280 |
"Min == fold1 min" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2281 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2282 |
Max :: "('a::linorder)set => 'a" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2283 |
"Max == fold1 max" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2284 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2285 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2286 |
text{* Before we can do anything, we need to show that @{text min} and |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2287 |
@{text max} are ACI and the ordering is linear: *} |
15392 | 2288 |
|
2289 |
lemma ACf_min: "ACf(min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)" |
|
2290 |
apply(rule ACf.intro) |
|
2291 |
apply(auto simp:min_def) |
|
2292 |
done |
|
2293 |
||
2294 |
lemma ACIf_min: "ACIf(min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)" |
|
2295 |
apply(rule ACIf.intro[OF ACf_min]) |
|
2296 |
apply(rule ACIf_axioms.intro) |
|
2297 |
apply(auto simp:min_def) |
|
15376 | 2298 |
done |
2299 |
||
15392 | 2300 |
lemma ACf_max: "ACf(max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)" |
2301 |
apply(rule ACf.intro) |
|
2302 |
apply(auto simp:max_def) |
|
2303 |
done |
|
2304 |
||
2305 |
lemma ACIf_max: "ACIf(max:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)" |
|
2306 |
apply(rule ACIf.intro[OF ACf_max]) |
|
2307 |
apply(rule ACIf_axioms.intro) |
|
2308 |
apply(auto simp:max_def) |
|
15376 | 2309 |
done |
12396 | 2310 |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2311 |
lemma ACIfSL_min: "ACIfSL(min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a) (op \<le>)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2312 |
apply(rule ACIfSL.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2313 |
apply(rule ACf_min) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2314 |
apply(rule ACIf.axioms[OF ACIf_min]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2315 |
apply(rule ACIfSL_axioms.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2316 |
apply(auto simp:min_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2317 |
done |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2318 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2319 |
lemma ACIfSLlin_min: "ACIfSLlin(min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a) (op \<le>)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2320 |
apply(rule ACIfSLlin.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2321 |
apply(rule ACf_min) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2322 |
apply(rule ACIf.axioms[OF ACIf_min]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2323 |
apply(rule ACIfSL.axioms[OF ACIfSL_min]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2324 |
apply(rule ACIfSLlin_axioms.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2325 |
apply(auto simp:min_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2326 |
done |
15392 | 2327 |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2328 |
lemma ACIfSL_max: "ACIfSL(max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a) (%x y. y\<le>x)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2329 |
apply(rule ACIfSL.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2330 |
apply(rule ACf_max) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2331 |
apply(rule ACIf.axioms[OF ACIf_max]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2332 |
apply(rule ACIfSL_axioms.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2333 |
apply(auto simp:max_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2334 |
done |
15392 | 2335 |
|
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2336 |
lemma ACIfSLlin_max: "ACIfSLlin(max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a) (%x y. y\<le>x)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2337 |
apply(rule ACIfSLlin.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2338 |
apply(rule ACf_max) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2339 |
apply(rule ACIf.axioms[OF ACIf_max]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2340 |
apply(rule ACIfSL.axioms[OF ACIfSL_max]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2341 |
apply(rule ACIfSLlin_axioms.intro) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2342 |
apply(auto simp:max_def) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2343 |
done |
15392 | 2344 |
|
15500 | 2345 |
lemma Lattice_min_max: "Lattice (op \<le>) (min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a) max" |
2346 |
apply(rule Lattice.intro) |
|
2347 |
apply simp |
|
2348 |
apply(erule (1) order_trans) |
|
2349 |
apply(erule (1) order_antisym) |
|
2350 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2351 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2352 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2353 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2354 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2355 |
apply(simp add:min_def max_def linorder_not_le order_less_imp_le) |
|
2356 |
apply(rule_tac x=x and y=y in linorder_le_cases) |
|
2357 |
apply(rule_tac x=x and y=z in linorder_le_cases) |
|
2358 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2359 |
apply(simp add:min_def max_def) |
|
2360 |
apply(simp add:min_def max_def) |
|
2361 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2362 |
apply(simp add:min_def max_def) |
|
2363 |
apply(simp add:min_def max_def) |
|
2364 |
apply(rule_tac x=x and y=z in linorder_le_cases) |
|
2365 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2366 |
apply(simp add:min_def max_def) |
|
2367 |
apply(simp add:min_def max_def) |
|
2368 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2369 |
apply(simp add:min_def max_def) |
|
2370 |
apply(simp add:min_def max_def) |
|
2371 |
||
2372 |
apply(rule_tac x=x and y=y in linorder_le_cases) |
|
2373 |
apply(rule_tac x=x and y=z in linorder_le_cases) |
|
2374 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2375 |
apply(simp add:min_def max_def) |
|
2376 |
apply(simp add:min_def max_def) |
|
2377 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2378 |
apply(simp add:min_def max_def) |
|
2379 |
apply(simp add:min_def max_def) |
|
2380 |
apply(rule_tac x=x and y=z in linorder_le_cases) |
|
2381 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2382 |
apply(simp add:min_def max_def) |
|
2383 |
apply(simp add:min_def max_def) |
|
2384 |
apply(rule_tac x=y and y=z in linorder_le_cases) |
|
2385 |
apply(simp add:min_def max_def) |
|
2386 |
apply(simp add:min_def max_def) |
|
2387 |
done |
|
2388 |
||
15402 | 2389 |
text{* Now we instantiate the recursion equations and declare them |
15392 | 2390 |
simplification rules: *} |
2391 |
||
2392 |
declare |
|
2393 |
fold1_singleton_def[OF Min_def, simp] |
|
2394 |
ACIf.fold1_insert2_def[OF ACIf_min Min_def, simp] |
|
2395 |
fold1_singleton_def[OF Max_def, simp] |
|
2396 |
ACIf.fold1_insert2_def[OF ACIf_max Max_def, simp] |
|
2397 |
||
15484 | 2398 |
text{* Now we instantiate some @{text fold1} properties: *} |
15392 | 2399 |
|
2400 |
lemma Min_in [simp]: |
|
15484 | 2401 |
shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Min A \<in> A" |
2402 |
using ACf.fold1_in[OF ACf_min] |
|
2403 |
by(fastsimp simp: Min_def min_def) |
|
15392 | 2404 |
|
2405 |
lemma Max_in [simp]: |
|
15484 | 2406 |
shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Max A \<in> A" |
2407 |
using ACf.fold1_in[OF ACf_max] |
|
2408 |
by(fastsimp simp: Max_def max_def) |
|
15392 | 2409 |
|
15484 | 2410 |
lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<le> x" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2411 |
by(simp add: Min_def ACIfSL.fold1_belowI[OF ACIfSL_min]) |
15392 | 2412 |
|
15484 | 2413 |
lemma Max_ge [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> x \<le> Max A" |
15497
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2414 |
by(simp add: Max_def ACIfSL.fold1_belowI[OF ACIfSL_max]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2415 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2416 |
lemma Min_ge_iff[simp]: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2417 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Min A) = (\<forall>a\<in>A. x \<le> a)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2418 |
by(simp add: Min_def ACIfSL.below_fold1_iff[OF ACIfSL_min]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2419 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2420 |
lemma Max_le_iff[simp]: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2421 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A \<le> x) = (\<forall>a\<in>A. a \<le> x)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2422 |
by(simp add: Max_def ACIfSL.below_fold1_iff[OF ACIfSL_max]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2423 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2424 |
lemma Min_le_iff: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2425 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A \<le> x) = (\<exists>a\<in>A. a \<le> x)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2426 |
by(simp add: Min_def ACIfSLlin.fold1_below_iff[OF ACIfSLlin_min]) |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2427 |
|
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2428 |
lemma Max_ge_iff: |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2429 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Max A) = (\<exists>a\<in>A. x \<le> a)" |
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
nipkow
parents:
15487
diff
changeset
|
2430 |
by(simp add: Max_def ACIfSLlin.fold1_below_iff[OF ACIfSLlin_max]) |
12396 | 2431 |
|
15500 | 2432 |
lemma Min_le_Max: |
2433 |
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Min A \<le> Max A" |
|
2434 |
by(simp add: Min_def Max_def Lattice.Inf_le_Sup[OF Lattice_min_max]) |
|
15504 | 2435 |
(* FIXME |
15500 | 2436 |
lemma max_Min2_distrib: |
2437 |
"\<lbrakk> finite A; A \<noteq> {}; finite B; B \<noteq> {} \<rbrakk> \<Longrightarrow> |
|
2438 |
max (Min A) (Min B) = Min{ max a b |a b. a \<in> A \<and> b \<in> B}" |
|
2439 |
by(simp add: Min_def Max_def Lattice.sup_Inf2_distrib[OF Lattice_min_max]) |
|
15504 | 2440 |
*) |
15042 | 2441 |
end |