35833
|
1 |
theory Product_Measure
|
|
2 |
imports "~~/src/HOL/Probability/Lebesgue"
|
|
3 |
begin
|
|
4 |
|
|
5 |
definition
|
|
6 |
"prod_measure M M' = (\<lambda>a. measure_space.integral M (\<lambda>s0. measure M' ((\<lambda>s1. (s0, s1)) -` a)))"
|
|
7 |
|
|
8 |
definition
|
|
9 |
"prod_measure_space M M' \<equiv>
|
|
10 |
\<lparr> space = space M \<times> space M',
|
|
11 |
sets = sets (sigma (space M \<times> space M') (prod_sets (sets M) (sets M'))),
|
|
12 |
measure = prod_measure M M' \<rparr>"
|
|
13 |
|
|
14 |
lemma prod_measure_times:
|
|
15 |
assumes "measure_space M" and "measure_space M'" and a: "a \<in> sets M"
|
|
16 |
shows "prod_measure M M' (a \<times> a') = measure M a * measure M' a'"
|
|
17 |
proof -
|
|
18 |
interpret M: measure_space M by fact
|
|
19 |
interpret M': measure_space M' by fact
|
|
20 |
|
|
21 |
{ fix \<omega>
|
|
22 |
have "(\<lambda>\<omega>'. (\<omega>, \<omega>')) -` (a \<times> a') = (if \<omega> \<in> a then a' else {})"
|
|
23 |
by auto
|
|
24 |
hence "measure M' ((\<lambda>\<omega>'. (\<omega>, \<omega>')) -` (a \<times> a')) =
|
|
25 |
measure M' a' * indicator_fn a \<omega>"
|
|
26 |
unfolding indicator_fn_def by auto }
|
|
27 |
note vimage_eq_indicator = this
|
|
28 |
|
|
29 |
show ?thesis
|
|
30 |
unfolding prod_measure_def vimage_eq_indicator
|
|
31 |
M.integral_cmul_indicator(1)[OF `a \<in> sets M`]
|
|
32 |
by simp
|
|
33 |
qed
|
|
34 |
|
|
35 |
|
|
36 |
|
|
37 |
lemma measure_space_finite_prod_measure:
|
|
38 |
fixes M :: "('a, 'b) measure_space_scheme"
|
|
39 |
and M' :: "('c, 'd) measure_space_scheme"
|
|
40 |
assumes "measure_space M" and "measure_space M'"
|
|
41 |
and finM: "finite (space M)" "Pow (space M) = sets M"
|
|
42 |
and finM': "finite (space M')" "Pow (space M') = sets M'"
|
|
43 |
shows "measure_space (prod_measure_space M M')"
|
|
44 |
proof (rule finite_additivity_sufficient)
|
|
45 |
interpret M: measure_space M by fact
|
|
46 |
interpret M': measure_space M' by fact
|
|
47 |
|
|
48 |
have measure: "measure_space.measure (prod_measure_space M M') = prod_measure M M'"
|
|
49 |
unfolding prod_measure_space_def by simp
|
|
50 |
|
|
51 |
have prod_sets: "prod_sets (sets M) (sets M') \<subseteq> Pow (space M \<times> space M')"
|
|
52 |
using M.sets_into_space M'.sets_into_space unfolding prod_sets_def by auto
|
|
53 |
show sigma: "sigma_algebra (prod_measure_space M M')" unfolding prod_measure_space_def
|
|
54 |
by (rule sigma_algebra_sigma_sets[where a="prod_sets (sets M) (sets M')"])
|
|
55 |
(simp_all add: sigma_def prod_sets)
|
|
56 |
|
|
57 |
then interpret sa: sigma_algebra "prod_measure_space M M'" .
|
|
58 |
|
|
59 |
{ fix x y assume "y \<in> sets (prod_measure_space M M')" and "x \<in> space M"
|
|
60 |
hence "y \<subseteq> space M \<times> space M'"
|
|
61 |
using sa.sets_into_space unfolding prod_measure_space_def by simp
|
|
62 |
hence "Pair x -` y \<in> sets M'"
|
|
63 |
using `x \<in> space M` unfolding finM'(2)[symmetric] by auto }
|
|
64 |
note Pair_in_sets = this
|
|
65 |
|
|
66 |
show "additive (prod_measure_space M M') (measure (prod_measure_space M M'))"
|
|
67 |
unfolding measure additive_def
|
|
68 |
proof safe
|
|
69 |
fix x y assume x: "x \<in> sets (prod_measure_space M M')" and y: "y \<in> sets (prod_measure_space M M')"
|
|
70 |
and disj_x_y: "x \<inter> y = {}"
|
|
71 |
{ fix z have "Pair z -` x \<inter> Pair z -` y = {}" using disj_x_y by auto }
|
|
72 |
note Pair_disj = this
|
|
73 |
|
|
74 |
from M'.measure_additive[OF Pair_in_sets[OF x] Pair_in_sets[OF y] Pair_disj, symmetric]
|
|
75 |
show "prod_measure M M' (x \<union> y) = prod_measure M M' x + prod_measure M M' y"
|
|
76 |
unfolding prod_measure_def
|
|
77 |
apply (subst (1 2 3) M.integral_finite_singleton[OF finM])
|
|
78 |
by (simp_all add: setsum_addf[symmetric] field_simps)
|
|
79 |
qed
|
|
80 |
|
|
81 |
show "finite (space (prod_measure_space M M'))"
|
|
82 |
unfolding prod_measure_space_def using finM finM' by simp
|
|
83 |
|
|
84 |
have singletonM: "\<And>x. x \<in> space M \<Longrightarrow> {x} \<in> sets M"
|
|
85 |
unfolding finM(2)[symmetric] by simp
|
|
86 |
|
|
87 |
show "positive (prod_measure_space M M') (measure (prod_measure_space M M'))"
|
|
88 |
unfolding positive_def
|
|
89 |
proof (safe, simp add: M.integral_zero prod_measure_space_def prod_measure_def)
|
|
90 |
fix Q assume "Q \<in> sets (prod_measure_space M M')"
|
|
91 |
from Pair_in_sets[OF this]
|
|
92 |
show "0 \<le> measure (prod_measure_space M M') Q"
|
|
93 |
unfolding prod_measure_space_def prod_measure_def
|
|
94 |
apply (subst M.integral_finite_singleton[OF finM])
|
|
95 |
using M.positive M'.positive singletonM
|
|
96 |
by (auto intro!: setsum_nonneg mult_nonneg_nonneg)
|
|
97 |
qed
|
|
98 |
qed
|
|
99 |
|
|
100 |
lemma measure_space_finite_prod_measure_alterantive:
|
|
101 |
assumes "measure_space M" and "measure_space M'"
|
|
102 |
and finM: "finite (space M)" "Pow (space M) = sets M"
|
|
103 |
and finM': "finite (space M')" "Pow (space M') = sets M'"
|
|
104 |
shows "measure_space \<lparr> space = space M \<times> space M',
|
|
105 |
sets = Pow (space M \<times> space M'),
|
|
106 |
measure = prod_measure M M' \<rparr>"
|
|
107 |
(is "measure_space ?space")
|
|
108 |
proof (rule finite_additivity_sufficient)
|
|
109 |
interpret M: measure_space M by fact
|
|
110 |
interpret M': measure_space M' by fact
|
|
111 |
|
|
112 |
show "sigma_algebra ?space"
|
|
113 |
using sigma_algebra.sigma_algebra_extend[where M="\<lparr> space = space M \<times> space M', sets = Pow (space M \<times> space M') \<rparr>"]
|
|
114 |
by (auto intro!: sigma_algebra_Pow)
|
|
115 |
then interpret sa: sigma_algebra ?space .
|
|
116 |
|
|
117 |
have measure: "measure_space.measure (prod_measure_space M M') = prod_measure M M'"
|
|
118 |
unfolding prod_measure_space_def by simp
|
|
119 |
|
|
120 |
{ fix x y assume "y \<in> sets ?space" and "x \<in> space M"
|
|
121 |
hence "y \<subseteq> space M \<times> space M'"
|
|
122 |
using sa.sets_into_space by simp
|
|
123 |
hence "Pair x -` y \<in> sets M'"
|
|
124 |
using `x \<in> space M` unfolding finM'(2)[symmetric] by auto }
|
|
125 |
note Pair_in_sets = this
|
|
126 |
|
|
127 |
show "additive ?space (measure ?space)"
|
|
128 |
unfolding measure additive_def
|
|
129 |
proof safe
|
|
130 |
fix x y assume x: "x \<in> sets ?space" and y: "y \<in> sets ?space"
|
|
131 |
and disj_x_y: "x \<inter> y = {}"
|
|
132 |
{ fix z have "Pair z -` x \<inter> Pair z -` y = {}" using disj_x_y by auto }
|
|
133 |
note Pair_disj = this
|
|
134 |
|
|
135 |
from M'.measure_additive[OF Pair_in_sets[OF x] Pair_in_sets[OF y] Pair_disj, symmetric]
|
|
136 |
show "measure ?space (x \<union> y) = measure ?space x + measure ?space y"
|
|
137 |
apply (simp add: prod_measure_def)
|
|
138 |
apply (subst (1 2 3) M.integral_finite_singleton[OF finM])
|
|
139 |
by (simp_all add: setsum_addf[symmetric] field_simps)
|
|
140 |
qed
|
|
141 |
|
|
142 |
show "finite (space ?space)" using finM finM' by simp
|
|
143 |
|
|
144 |
have singletonM: "\<And>x. x \<in> space M \<Longrightarrow> {x} \<in> sets M"
|
|
145 |
unfolding finM(2)[symmetric] by simp
|
|
146 |
|
|
147 |
show "positive ?space (measure ?space)"
|
|
148 |
unfolding positive_def
|
|
149 |
proof (safe, simp add: M.integral_zero prod_measure_def)
|
|
150 |
fix Q assume "Q \<in> sets ?space"
|
|
151 |
from Pair_in_sets[OF this]
|
|
152 |
show "0 \<le> measure ?space Q"
|
|
153 |
unfolding prod_measure_space_def prod_measure_def
|
|
154 |
apply (subst M.integral_finite_singleton[OF finM])
|
|
155 |
using M.positive M'.positive singletonM
|
|
156 |
by (auto intro!: setsum_nonneg mult_nonneg_nonneg)
|
|
157 |
qed
|
|
158 |
qed
|
|
159 |
|
|
160 |
end |