| author | wenzelm | 
| Thu, 01 Jan 2015 14:40:20 +0100 | |
| changeset 59226 | 7b8c50be8d42 | 
| parent 58882 | 6e2010ab8bd9 | 
| child 61799 | 4cf66f21b764 | 
| permissions | -rw-r--r-- | 
| 33026 | 1 | (* Title: HOL/Isar_Examples/Fibonacci.thy | 
| 8051 | 2 | Author: Gertrud Bauer | 
| 3 | Copyright 1999 Technische Universitaet Muenchen | |
| 4 | ||
| 54892 | 5 | The Fibonacci function. Original | 
| 8051 | 6 | tactic script by Lawrence C Paulson. | 
| 7 | ||
| 8 | Fibonacci numbers: proofs of laws taken from | |
| 9 | ||
| 10 | R. L. Graham, D. E. Knuth, O. Patashnik. | |
| 11 | Concrete Mathematics. | |
| 12 | (Addison-Wesley, 1989) | |
| 13 | *) | |
| 14 | ||
| 58882 | 15 | section \<open>Fib and Gcd commute\<close> | 
| 8051 | 16 | |
| 27366 | 17 | theory Fibonacci | 
| 37672 | 18 | imports "../Number_Theory/Primes" | 
| 27366 | 19 | begin | 
| 8051 | 20 | |
| 58614 | 21 | text_raw \<open>\footnote{Isar version by Gertrud Bauer.  Original tactic
 | 
| 37671 | 22 | script by Larry Paulson. A few proofs of laws taken from | 
| 58614 | 23 |   @{cite "Concrete-Math"}.}\<close>
 | 
| 8051 | 24 | |
| 25 | ||
| 37672 | 26 | declare One_nat_def [simp] | 
| 27 | ||
| 28 | ||
| 58614 | 29 | subsection \<open>Fibonacci numbers\<close> | 
| 8051 | 30 | |
| 27366 | 31 | fun fib :: "nat \<Rightarrow> nat" where | 
| 18153 | 32 | "fib 0 = 0" | 
| 37671 | 33 | | "fib (Suc 0) = 1" | 
| 34 | | "fib (Suc (Suc x)) = fib x + fib (Suc x)" | |
| 8051 | 35 | |
| 37672 | 36 | lemma [simp]: "fib (Suc n) > 0" | 
| 18153 | 37 | by (induct n rule: fib.induct) simp_all | 
| 8051 | 38 | |
| 39 | ||
| 58614 | 40 | text \<open>Alternative induction rule.\<close> | 
| 8051 | 41 | |
| 8304 | 42 | theorem fib_induct: | 
| 55640 | 43 | fixes n :: nat | 
| 44 | shows "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P (n + 1) \<Longrightarrow> P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n" | |
| 18153 | 45 | by (induct rule: fib.induct) simp_all | 
| 8051 | 46 | |
| 47 | ||
| 58614 | 48 | subsection \<open>Fib and gcd commute\<close> | 
| 8051 | 49 | |
| 58614 | 50 | text \<open>A few laws taken from @{cite "Concrete-Math"}.\<close>
 | 
| 8051 | 51 | |
| 9659 | 52 | lemma fib_add: | 
| 8051 | 53 | "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" | 
| 9659 | 54 | (is "?P n") | 
| 58614 | 55 |   -- \<open>see @{cite \<open>page 280\<close> "Concrete-Math"}\<close>
 | 
| 11809 | 56 | proof (induct n rule: fib_induct) | 
| 10007 | 57 | show "?P 0" by simp | 
| 58 | show "?P 1" by simp | |
| 59 | fix n | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 60 | have "fib (n + 2 + k + 1) | 
| 10007 | 61 | = fib (n + k + 1) + fib (n + 1 + k + 1)" by simp | 
| 62 | also assume "fib (n + k + 1) | |
| 8051 | 63 | = fib (k + 1) * fib (n + 1) + fib k * fib n" | 
| 10007 | 64 | (is " _ = ?R1") | 
| 65 | also assume "fib (n + 1 + k + 1) | |
| 8051 | 66 | = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)" | 
| 10007 | 67 | (is " _ = ?R2") | 
| 68 | also have "?R1 + ?R2 | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 69 | = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)" | 
| 10007 | 70 | by (simp add: add_mult_distrib2) | 
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 71 | finally show "?P (n + 2)" . | 
| 10007 | 72 | qed | 
| 8051 | 73 | |
| 27556 | 74 | lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1" (is "?P n") | 
| 11809 | 75 | proof (induct n rule: fib_induct) | 
| 10007 | 76 | show "?P 0" by simp | 
| 77 | show "?P 1" by simp | |
| 78 | fix n | |
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 79 | have "fib (n + 2 + 1) = fib (n + 1) + fib (n + 2)" | 
| 10007 | 80 | by simp | 
| 55640 | 81 | also have "\<dots> = fib (n + 2) + fib (n + 1)" | 
| 82 | by simp | |
| 83 | also have "gcd (fib (n + 2)) \<dots> = gcd (fib (n + 2)) (fib (n + 1))" | |
| 37672 | 84 | by (rule gcd_add2_nat) | 
| 55640 | 85 | also have "\<dots> = gcd (fib (n + 1)) (fib (n + 1 + 1))" | 
| 37672 | 86 | by (simp add: gcd_commute_nat) | 
| 55640 | 87 | also assume "\<dots> = 1" | 
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 88 | finally show "?P (n + 2)" . | 
| 10007 | 89 | qed | 
| 8051 | 90 | |
| 55640 | 91 | lemma gcd_mult_add: "(0::nat) < n \<Longrightarrow> gcd (n * k + m) n = gcd m n" | 
| 10007 | 92 | proof - | 
| 93 | assume "0 < n" | |
| 27556 | 94 | then have "gcd (n * k + m) n = gcd n (m mod n)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
55656diff
changeset | 95 | by (simp add: gcd_non_0_nat add.commute) | 
| 58614 | 96 | also from \<open>0 < n\<close> have "\<dots> = gcd m n" | 
| 55640 | 97 | by (simp add: gcd_non_0_nat) | 
| 10007 | 98 | finally show ?thesis . | 
| 99 | qed | |
| 8051 | 100 | |
| 27556 | 101 | lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" | 
| 10007 | 102 | proof (cases m) | 
| 18153 | 103 | case 0 | 
| 104 | then show ?thesis by simp | |
| 10007 | 105 | next | 
| 18153 | 106 | case (Suc k) | 
| 27556 | 107 | then have "gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))" | 
| 37672 | 108 | by (simp add: gcd_commute_nat) | 
| 10007 | 109 | also have "fib (n + k + 1) | 
| 37671 | 110 | = fib (k + 1) * fib (n + 1) + fib k * fib n" | 
| 10007 | 111 | by (rule fib_add) | 
| 55640 | 112 | also have "gcd \<dots> (fib (k + 1)) = gcd (fib k * fib n) (fib (k + 1))" | 
| 10007 | 113 | by (simp add: gcd_mult_add) | 
| 55640 | 114 | also have "\<dots> = gcd (fib n) (fib (k + 1))" | 
| 37672 | 115 | by (simp only: gcd_fib_Suc_eq_1 gcd_mult_cancel_nat) | 
| 55640 | 116 | also have "\<dots> = gcd (fib m) (fib n)" | 
| 37672 | 117 | using Suc by (simp add: gcd_commute_nat) | 
| 10007 | 118 | finally show ?thesis . | 
| 119 | qed | |
| 8051 | 120 | |
| 9659 | 121 | lemma gcd_fib_diff: | 
| 55640 | 122 | assumes "m \<le> n" | 
| 27556 | 123 | shows "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 10007 | 124 | proof - | 
| 27556 | 125 | have "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib (n - m + m))" | 
| 10007 | 126 | by (simp add: gcd_fib_add) | 
| 58614 | 127 | also from \<open>m \<le> n\<close> have "n - m + m = n" | 
| 55640 | 128 | by simp | 
| 10007 | 129 | finally show ?thesis . | 
| 130 | qed | |
| 8051 | 131 | |
| 9659 | 132 | lemma gcd_fib_mod: | 
| 18241 | 133 | assumes "0 < m" | 
| 27556 | 134 | shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | 
| 18153 | 135 | proof (induct n rule: nat_less_induct) | 
| 136 | case (1 n) note hyp = this | |
| 137 | show ?case | |
| 138 | proof - | |
| 139 | have "n mod m = (if n < m then n else (n - m) mod m)" | |
| 140 | by (rule mod_if) | |
| 55640 | 141 | also have "gcd (fib m) (fib \<dots>) = gcd (fib m) (fib n)" | 
| 18153 | 142 | proof (cases "n < m") | 
| 55640 | 143 | case True | 
| 144 | then show ?thesis by simp | |
| 18153 | 145 | next | 
| 55640 | 146 | case False | 
| 147 | then have "m \<le> n" by simp | |
| 58614 | 148 | from \<open>0 < m\<close> and False have "n - m < n" | 
| 55640 | 149 | by simp | 
| 27556 | 150 | with hyp have "gcd (fib m) (fib ((n - m) mod m)) | 
| 37671 | 151 | = gcd (fib m) (fib (n - m))" by simp | 
| 55640 | 152 | also have "\<dots> = gcd (fib m) (fib n)" | 
| 58614 | 153 | using \<open>m \<le> n\<close> by (rule gcd_fib_diff) | 
| 27556 | 154 | finally have "gcd (fib m) (fib ((n - m) mod m)) = | 
| 37671 | 155 | gcd (fib m) (fib n)" . | 
| 18153 | 156 | with False show ?thesis by simp | 
| 10408 | 157 | qed | 
| 18153 | 158 | finally show ?thesis . | 
| 10007 | 159 | qed | 
| 160 | qed | |
| 8051 | 161 | |
| 27556 | 162 | theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" (is "?P m n") | 
| 37672 | 163 | proof (induct m n rule: gcd_nat_induct) | 
| 55640 | 164 | fix m | 
| 165 | show "fib (gcd m 0) = gcd (fib m) (fib 0)" | |
| 166 | by simp | |
| 167 | fix n :: nat | |
| 168 | assume n: "0 < n" | |
| 169 | then have "gcd m n = gcd n (m mod n)" | |
| 170 | by (simp add: gcd_non_0_nat) | |
| 171 | also assume hyp: "fib \<dots> = gcd (fib n) (fib (m mod n))" | |
| 172 | also from n have "\<dots> = gcd (fib n) (fib m)" | |
| 173 | by (rule gcd_fib_mod) | |
| 174 | also have "\<dots> = gcd (fib m) (fib n)" | |
| 175 | by (rule gcd_commute_nat) | |
| 27556 | 176 | finally show "fib (gcd m n) = gcd (fib m) (fib n)" . | 
| 10007 | 177 | qed | 
| 8051 | 178 | |
| 10007 | 179 | end |