| author | chaieb | 
| Wed, 27 Feb 2008 14:39:49 +0100 | |
| changeset 26155 | 7c265e3da23c | 
| parent 21404 | eb85850d3eb7 | 
| child 32153 | a0e57fb1b930 | 
| permissions | -rw-r--r-- | 
| 17456 | 1 | (* Title: CCL/Gfp.thy | 
| 0 | 2 | ID: $Id$ | 
| 1474 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1992 University of Cambridge | 
| 5 | *) | |
| 6 | ||
| 17456 | 7 | header {* Greatest fixed points *}
 | 
| 8 | ||
| 9 | theory Gfp | |
| 10 | imports Lfp | |
| 11 | begin | |
| 12 | ||
| 20140 | 13 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20140diff
changeset | 14 | gfp :: "['a set=>'a set] => 'a set" where -- "greatest fixed point" | 
| 17456 | 15 |   "gfp(f) == Union({u. u <= f(u)})"
 | 
| 16 | ||
| 20140 | 17 | (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | 
| 18 | ||
| 19 | lemma gfp_upperbound: "[| A <= f(A) |] ==> A <= gfp(f)" | |
| 20 | unfolding gfp_def by blast | |
| 21 | ||
| 22 | lemma gfp_least: "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A" | |
| 23 | unfolding gfp_def by blast | |
| 24 | ||
| 25 | lemma gfp_lemma2: "mono(f) ==> gfp(f) <= f(gfp(f))" | |
| 26 | by (rule gfp_least, rule subset_trans, assumption, erule monoD, | |
| 27 | rule gfp_upperbound, assumption) | |
| 28 | ||
| 29 | lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) <= gfp(f)" | |
| 30 | by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+) | |
| 31 | ||
| 32 | lemma gfp_Tarski: "mono(f) ==> gfp(f) = f(gfp(f))" | |
| 33 | by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+ | |
| 34 | ||
| 35 | ||
| 36 | (*** Coinduction rules for greatest fixed points ***) | |
| 37 | ||
| 38 | (*weak version*) | |
| 39 | lemma coinduct: "[| a: A; A <= f(A) |] ==> a : gfp(f)" | |
| 40 | by (blast dest: gfp_upperbound) | |
| 41 | ||
| 42 | lemma coinduct2_lemma: | |
| 43 | "[| A <= f(A) Un gfp(f); mono(f) |] ==> | |
| 44 | A Un gfp(f) <= f(A Un gfp(f))" | |
| 45 | apply (rule subset_trans) | |
| 46 | prefer 2 | |
| 47 | apply (erule mono_Un) | |
| 48 | apply (rule subst, erule gfp_Tarski) | |
| 49 | apply (erule Un_least) | |
| 50 | apply (rule Un_upper2) | |
| 51 | done | |
| 52 | ||
| 53 | (*strong version, thanks to Martin Coen*) | |
| 54 | lemma coinduct2: | |
| 55 | "[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)" | |
| 56 | apply (rule coinduct) | |
| 57 | prefer 2 | |
| 58 | apply (erule coinduct2_lemma, assumption) | |
| 59 | apply blast | |
| 60 | done | |
| 61 | ||
| 62 | (*** Even Stronger version of coinduct [by Martin Coen] | |
| 63 | - instead of the condition A <= f(A) | |
| 64 | consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***) | |
| 65 | ||
| 66 | lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un A Un B)" | |
| 67 | by (rule monoI) (blast dest: monoD) | |
| 68 | ||
| 69 | lemma coinduct3_lemma: | |
| 70 | assumes prem: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))" | |
| 71 | and mono: "mono(f)" | |
| 72 | shows "lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))" | |
| 73 | apply (rule subset_trans) | |
| 74 | apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3]) | |
| 75 | apply (rule Un_least [THEN Un_least]) | |
| 76 | apply (rule subset_refl) | |
| 77 | apply (rule prem) | |
| 78 | apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans]) | |
| 79 | apply (rule mono [THEN monoD]) | |
| 80 | apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski]) | |
| 81 | apply (rule Un_upper2) | |
| 82 | done | |
| 83 | ||
| 84 | lemma coinduct3: | |
| 85 | assumes 1: "a:A" | |
| 86 | and 2: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))" | |
| 87 | and 3: "mono(f)" | |
| 88 | shows "a : gfp(f)" | |
| 89 | apply (rule coinduct) | |
| 90 | prefer 2 | |
| 91 | apply (rule coinduct3_lemma [OF 2 3]) | |
| 92 | apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3]) | |
| 93 | using 1 apply blast | |
| 94 | done | |
| 95 | ||
| 96 | ||
| 97 | subsection {* Definition forms of @{text "gfp_Tarski"}, to control unfolding *}
 | |
| 98 | ||
| 99 | lemma def_gfp_Tarski: "[| h==gfp(f); mono(f) |] ==> h = f(h)" | |
| 100 | apply unfold | |
| 101 | apply (erule gfp_Tarski) | |
| 102 | done | |
| 103 | ||
| 104 | lemma def_coinduct: "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h" | |
| 105 | apply unfold | |
| 106 | apply (erule coinduct) | |
| 107 | apply assumption | |
| 108 | done | |
| 109 | ||
| 110 | lemma def_coinduct2: "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h" | |
| 111 | apply unfold | |
| 112 | apply (erule coinduct2) | |
| 113 | apply assumption | |
| 114 | apply assumption | |
| 115 | done | |
| 116 | ||
| 117 | lemma def_coinduct3: "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h" | |
| 118 | apply unfold | |
| 119 | apply (erule coinduct3) | |
| 120 | apply assumption | |
| 121 | apply assumption | |
| 122 | done | |
| 123 | ||
| 124 | (*Monotonicity of gfp!*) | |
| 125 | lemma gfp_mono: "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)" | |
| 126 | apply (rule gfp_upperbound) | |
| 127 | apply (rule subset_trans) | |
| 128 | apply (rule gfp_lemma2) | |
| 129 | apply assumption | |
| 130 | apply (erule meta_spec) | |
| 131 | done | |
| 17456 | 132 | |
| 0 | 133 | end |