| 
31974
 | 
     1  | 
(*  Title:      FOL/ex/Prolog.thy
  | 
| 
1473
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
0
 | 
     3  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
17245
 | 
     6  | 
header {* First-Order Logic: PROLOG examples *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Prolog
  | 
| 
 | 
     9  | 
imports FOL
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
typedecl 'a list
  | 
| 
 | 
    13  | 
arities list :: ("term") "term"
 | 
| 
41779
 | 
    14  | 
  | 
| 
 | 
    15  | 
axiomatization
  | 
| 
 | 
    16  | 
  Nil     :: "'a list" and
  | 
| 
 | 
    17  | 
  Cons    :: "['a, 'a list]=> 'a list"    (infixr ":" 60) and
  | 
| 
 | 
    18  | 
  app     :: "['a list, 'a list, 'a list] => o" and
  | 
| 
17245
 | 
    19  | 
  rev     :: "['a list, 'a list] => o"
  | 
| 
41779
 | 
    20  | 
where
  | 
| 
 | 
    21  | 
  appNil:  "app(Nil,ys,ys)" and
  | 
| 
 | 
    22  | 
  appCons: "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)" and
  | 
| 
 | 
    23  | 
  revNil:  "rev(Nil,Nil)" and
  | 
| 
17245
 | 
    24  | 
  revCons: "[| rev(xs,ys);  app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)"
  | 
| 
 | 
    25  | 
  | 
| 
36319
 | 
    26  | 
schematic_lemma "app(a:b:c:Nil, d:e:Nil, ?x)"
  | 
| 
19819
 | 
    27  | 
apply (rule appNil appCons)
  | 
| 
 | 
    28  | 
apply (rule appNil appCons)
  | 
| 
 | 
    29  | 
apply (rule appNil appCons)
  | 
| 
 | 
    30  | 
apply (rule appNil appCons)
  | 
| 
 | 
    31  | 
done
  | 
| 
 | 
    32  | 
  | 
| 
36319
 | 
    33  | 
schematic_lemma "app(?x, c:d:Nil, a:b:c:d:Nil)"
  | 
| 
19819
 | 
    34  | 
apply (rule appNil appCons)+
  | 
| 
 | 
    35  | 
done
  | 
| 
 | 
    36  | 
  | 
| 
36319
 | 
    37  | 
schematic_lemma "app(?x, ?y, a:b:c:d:Nil)"
  | 
| 
19819
 | 
    38  | 
apply (rule appNil appCons)+
  | 
| 
 | 
    39  | 
back
  | 
| 
 | 
    40  | 
back
  | 
| 
 | 
    41  | 
back
  | 
| 
 | 
    42  | 
back
  | 
| 
 | 
    43  | 
done
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
(*app([x1,...,xn], y, ?z) requires (n+1) inferences*)
  | 
| 
 | 
    46  | 
(*rev([x1,...,xn], ?y) requires (n+1)(n+2)/2 inferences*)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemmas rules = appNil appCons revNil revCons
  | 
| 
 | 
    49  | 
  | 
| 
36319
 | 
    50  | 
schematic_lemma "rev(a:b:c:d:Nil, ?x)"
  | 
| 
19819
 | 
    51  | 
apply (rule rules)+
  | 
| 
 | 
    52  | 
done
  | 
| 
 | 
    53  | 
  | 
| 
36319
 | 
    54  | 
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
  | 
| 
19819
 | 
    55  | 
apply (rule rules)+
  | 
| 
 | 
    56  | 
done
  | 
| 
 | 
    57  | 
  | 
| 
36319
 | 
    58  | 
schematic_lemma "rev(?x, a:b:c:Nil)"
  | 
| 
19819
 | 
    59  | 
apply (rule rules)+  -- {* does not solve it directly! *}
 | 
| 
 | 
    60  | 
back
  | 
| 
 | 
    61  | 
back
  | 
| 
 | 
    62  | 
done
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
(*backtracking version*)
  | 
| 
 | 
    65  | 
ML {*
 | 
| 
26287
 | 
    66  | 
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) (resolve_tac (@{thms rules}) 1)
 | 
| 
19819
 | 
    67  | 
*}
  | 
| 
 | 
    68  | 
  | 
| 
36319
 | 
    69  | 
schematic_lemma "rev(?x, a:b:c:Nil)"
  | 
| 
19819
 | 
    70  | 
apply (tactic prolog_tac)
  | 
| 
 | 
    71  | 
done
  | 
| 
 | 
    72  | 
  | 
| 
36319
 | 
    73  | 
schematic_lemma "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
  | 
| 
19819
 | 
    74  | 
apply (tactic prolog_tac)
  | 
| 
 | 
    75  | 
done
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
(*rev([a..p], ?w) requires 153 inferences *)
  | 
| 
36319
 | 
    78  | 
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
  | 
| 
26287
 | 
    79  | 
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
 | 
| 
19819
 | 
    80  | 
done
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
(*?x has 16, ?y has 32;  rev(?y,?w) requires 561 (rather large) inferences
  | 
| 
 | 
    83  | 
  total inferences = 2 + 1 + 17 + 561 = 581*)
  | 
| 
36319
 | 
    84  | 
schematic_lemma "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
  | 
| 
26287
 | 
    85  | 
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
 | 
| 
19819
 | 
    86  | 
done
  | 
| 
17245
 | 
    87  | 
  | 
| 
0
 | 
    88  | 
end
  |