| author | wenzelm | 
| Sun, 25 Apr 2010 16:10:05 +0200 | |
| changeset 36324 | 7cd5057a5bb8 | 
| parent 35410 | 1ea89d2a1bd4 | 
| child 36700 | 9b85b9d74b83 | 
| permissions | -rw-r--r-- | 
| 23252 | 1  | 
(* Title: HOL/Tools/Groebner_Basis/normalizer.ML  | 
2  | 
Author: Amine Chaieb, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
signature NORMALIZER =  | 
|
6  | 
sig  | 
|
| 23485 | 7  | 
val semiring_normalize_conv : Proof.context -> conv  | 
8  | 
val semiring_normalize_ord_conv : Proof.context -> (cterm -> cterm -> bool) -> conv  | 
|
| 23252 | 9  | 
val semiring_normalize_tac : Proof.context -> int -> tactic  | 
| 23485 | 10  | 
val semiring_normalize_wrapper : Proof.context -> NormalizerData.entry -> conv  | 
| 27222 | 11  | 
val semiring_normalizers_ord_wrapper :  | 
12  | 
Proof.context -> NormalizerData.entry -> (cterm -> cterm -> bool) ->  | 
|
13  | 
      {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
 | 
|
| 23485 | 14  | 
val semiring_normalize_ord_wrapper : Proof.context -> NormalizerData.entry ->  | 
15  | 
(cterm -> cterm -> bool) -> conv  | 
|
| 23252 | 16  | 
val semiring_normalizers_conv :  | 
| 30866 | 17  | 
cterm list -> cterm list * thm list -> cterm list * thm list -> cterm list * thm list ->  | 
| 23485 | 18  | 
(cterm -> bool) * conv * conv * conv -> (cterm -> cterm -> bool) ->  | 
19  | 
       {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
 | 
|
| 23252 | 20  | 
end  | 
21  | 
||
22  | 
structure Normalizer: NORMALIZER =  | 
|
23  | 
struct  | 
|
| 23559 | 24  | 
|
| 25253 | 25  | 
open Conv;  | 
| 23252 | 26  | 
|
27  | 
(* Very basic stuff for terms *)  | 
|
| 25253 | 28  | 
|
29  | 
fun is_comb ct =  | 
|
30  | 
(case Thm.term_of ct of  | 
|
31  | 
_ $ _ => true  | 
|
32  | 
| _ => false);  | 
|
33  | 
||
34  | 
val concl = Thm.cprop_of #> Thm.dest_arg;  | 
|
35  | 
||
36  | 
fun is_binop ct ct' =  | 
|
37  | 
(case Thm.term_of ct' of  | 
|
38  | 
c $ _ $ _ => term_of ct aconv c  | 
|
39  | 
| _ => false);  | 
|
40  | 
||
41  | 
fun dest_binop ct ct' =  | 
|
42  | 
if is_binop ct ct' then Thm.dest_binop ct'  | 
|
43  | 
  else raise CTERM ("dest_binop: bad binop", [ct, ct'])
 | 
|
44  | 
||
45  | 
fun inst_thm inst = Thm.instantiate ([], inst);  | 
|
46  | 
||
| 23252 | 47  | 
val dest_numeral = term_of #> HOLogic.dest_number #> snd;  | 
48  | 
val is_numeral = can dest_numeral;  | 
|
49  | 
||
50  | 
val numeral01_conv = Simplifier.rewrite  | 
|
| 25481 | 51  | 
                         (HOL_basic_ss addsimps [@{thm numeral_1_eq_1}, @{thm numeral_0_eq_0}]);
 | 
| 23252 | 52  | 
val zero1_numeral_conv =  | 
| 25481 | 53  | 
 Simplifier.rewrite (HOL_basic_ss addsimps [@{thm numeral_1_eq_1} RS sym, @{thm numeral_0_eq_0} RS sym]);
 | 
| 
23580
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
54  | 
fun zerone_conv cv = zero1_numeral_conv then_conv cv then_conv numeral01_conv;  | 
| 23252 | 55  | 
val natarith = [@{thm "add_nat_number_of"}, @{thm "diff_nat_number_of"},
 | 
56  | 
                @{thm "mult_nat_number_of"}, @{thm "eq_nat_number_of"}, 
 | 
|
57  | 
                @{thm "less_nat_number_of"}];
 | 
|
58  | 
val nat_add_conv =  | 
|
59  | 
zerone_conv  | 
|
60  | 
(Simplifier.rewrite  | 
|
61  | 
(HOL_basic_ss  | 
|
| 25481 | 62  | 
       addsimps @{thms arith_simps} @ natarith @ @{thms rel_simps}
 | 
| 35410 | 63  | 
             @ [@{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc},
 | 
| 31790 | 64  | 
                 @{thm add_number_of_left}, @{thm Suc_eq_plus1}]
 | 
| 25481 | 65  | 
             @ map (fn th => th RS sym) @{thms numerals}));
 | 
| 23252 | 66  | 
|
67  | 
val nat_mul_conv = nat_add_conv;  | 
|
68  | 
val zeron_tm = @{cterm "0::nat"};
 | 
|
69  | 
val onen_tm  = @{cterm "1::nat"};
 | 
|
70  | 
val true_tm = @{cterm "True"};
 | 
|
71  | 
||
72  | 
||
73  | 
(* The main function! *)  | 
|
| 30866 | 74  | 
fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules) (f_ops, f_rules)  | 
| 23252 | 75  | 
(is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) =  | 
76  | 
let  | 
|
77  | 
||
78  | 
val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08,  | 
|
79  | 
pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16,  | 
|
80  | 
pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24,  | 
|
81  | 
pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32,  | 
|
82  | 
pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38,pthm_39,pthm_40] = sr_rules;  | 
|
83  | 
||
84  | 
val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars;  | 
|
85  | 
val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops;  | 
|
86  | 
val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat];  | 
|
87  | 
||
88  | 
val dest_add = dest_binop add_tm  | 
|
89  | 
val dest_mul = dest_binop mul_tm  | 
|
90  | 
fun dest_pow tm =  | 
|
91  | 
let val (l,r) = dest_binop pow_tm tm  | 
|
92  | 
 in if is_numeral r then (l,r) else raise CTERM ("dest_pow",[tm])
 | 
|
93  | 
end;  | 
|
94  | 
val is_add = is_binop add_tm  | 
|
95  | 
val is_mul = is_binop mul_tm  | 
|
96  | 
fun is_pow tm = is_binop pow_tm tm andalso is_numeral(Thm.dest_arg tm);  | 
|
97  | 
||
98  | 
val (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub,cx',cy') =  | 
|
99  | 
(case (r_ops, r_rules) of  | 
|
| 30866 | 100  | 
([sub_pat, neg_pat], [neg_mul, sub_add]) =>  | 
| 23252 | 101  | 
let  | 
102  | 
val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat)  | 
|
103  | 
val neg_tm = Thm.dest_fun neg_pat  | 
|
104  | 
val dest_sub = dest_binop sub_tm  | 
|
105  | 
val is_sub = is_binop sub_tm  | 
|
106  | 
in (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub, neg_mul |> concl |> Thm.dest_arg,  | 
|
107  | 
sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg)  | 
|
| 30866 | 108  | 
end  | 
109  | 
| _ => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), K false, true_tm, true_tm));  | 
|
110  | 
||
111  | 
val (divide_inverse, inverse_divide, divide_tm, inverse_tm, is_divide) =  | 
|
112  | 
(case (f_ops, f_rules) of  | 
|
113  | 
([divide_pat, inverse_pat], [div_inv, inv_div]) =>  | 
|
114  | 
let val div_tm = funpow 2 Thm.dest_fun divide_pat  | 
|
115  | 
val inv_tm = Thm.dest_fun inverse_pat  | 
|
116  | 
in (div_inv, inv_div, div_tm, inv_tm, is_binop div_tm)  | 
|
117  | 
end  | 
|
118  | 
| _ => (TrueI, TrueI, true_tm, true_tm, K false));  | 
|
119  | 
||
| 23252 | 120  | 
in fn variable_order =>  | 
121  | 
let  | 
|
122  | 
||
123  | 
(* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible. *)  | 
|
124  | 
(* Also deals with "const * const", but both terms must involve powers of *)  | 
|
125  | 
(* the same variable, or both be constants, or behaviour may be incorrect. *)  | 
|
126  | 
||
127  | 
fun powvar_mul_conv tm =  | 
|
128  | 
let  | 
|
129  | 
val (l,r) = dest_mul tm  | 
|
130  | 
in if is_semiring_constant l andalso is_semiring_constant r  | 
|
131  | 
then semiring_mul_conv tm  | 
|
132  | 
else  | 
|
133  | 
((let  | 
|
134  | 
val (lx,ln) = dest_pow l  | 
|
135  | 
in  | 
|
136  | 
((let val (rx,rn) = dest_pow r  | 
|
137  | 
val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29  | 
|
138  | 
val (tm1,tm2) = Thm.dest_comb(concl th1) in  | 
|
139  | 
transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)  | 
|
140  | 
handle CTERM _ =>  | 
|
141  | 
(let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31  | 
|
142  | 
val (tm1,tm2) = Thm.dest_comb(concl th1) in  | 
|
143  | 
transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)) end)  | 
|
144  | 
handle CTERM _ =>  | 
|
145  | 
((let val (rx,rn) = dest_pow r  | 
|
146  | 
val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30  | 
|
147  | 
val (tm1,tm2) = Thm.dest_comb(concl th1) in  | 
|
148  | 
transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)  | 
|
149  | 
handle CTERM _ => inst_thm [(cx,l)] pthm_32  | 
|
150  | 
||
151  | 
))  | 
|
152  | 
end;  | 
|
153  | 
||
154  | 
(* Remove "1 * m" from a monomial, and just leave m. *)  | 
|
155  | 
||
156  | 
fun monomial_deone th =  | 
|
157  | 
(let val (l,r) = dest_mul(concl th) in  | 
|
158  | 
if l aconvc one_tm  | 
|
159  | 
then transitive th (inst_thm [(ca,r)] pthm_13) else th end)  | 
|
160  | 
handle CTERM _ => th;  | 
|
161  | 
||
162  | 
(* Conversion for "(monomial)^n", where n is a numeral. *)  | 
|
163  | 
||
164  | 
val monomial_pow_conv =  | 
|
165  | 
let  | 
|
166  | 
fun monomial_pow tm bod ntm =  | 
|
167  | 
if not(is_comb bod)  | 
|
168  | 
then reflexive tm  | 
|
169  | 
else  | 
|
170  | 
if is_semiring_constant bod  | 
|
171  | 
then semiring_pow_conv tm  | 
|
172  | 
else  | 
|
173  | 
let  | 
|
174  | 
val (lopr,r) = Thm.dest_comb bod  | 
|
175  | 
in if not(is_comb lopr)  | 
|
176  | 
then reflexive tm  | 
|
177  | 
else  | 
|
178  | 
let  | 
|
179  | 
val (opr,l) = Thm.dest_comb lopr  | 
|
180  | 
in  | 
|
181  | 
if opr aconvc pow_tm andalso is_numeral r  | 
|
182  | 
then  | 
|
183  | 
let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34  | 
|
184  | 
val (l,r) = Thm.dest_comb(concl th1)  | 
|
185  | 
in transitive th1 (Drule.arg_cong_rule l (nat_mul_conv r))  | 
|
186  | 
end  | 
|
187  | 
else  | 
|
188  | 
if opr aconvc mul_tm  | 
|
189  | 
then  | 
|
190  | 
let  | 
|
191  | 
val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33  | 
|
192  | 
val (xy,z) = Thm.dest_comb(concl th1)  | 
|
193  | 
val (x,y) = Thm.dest_comb xy  | 
|
194  | 
val thl = monomial_pow y l ntm  | 
|
195  | 
val thr = monomial_pow z r ntm  | 
|
196  | 
in transitive th1 (combination (Drule.arg_cong_rule x thl) thr)  | 
|
197  | 
end  | 
|
198  | 
else reflexive tm  | 
|
199  | 
end  | 
|
200  | 
end  | 
|
201  | 
in fn tm =>  | 
|
202  | 
let  | 
|
203  | 
val (lopr,r) = Thm.dest_comb tm  | 
|
204  | 
val (opr,l) = Thm.dest_comb lopr  | 
|
205  | 
in if not (opr aconvc pow_tm) orelse not(is_numeral r)  | 
|
206  | 
      then raise CTERM ("monomial_pow_conv", [tm])
 | 
|
207  | 
else if r aconvc zeron_tm  | 
|
208  | 
then inst_thm [(cx,l)] pthm_35  | 
|
209  | 
else if r aconvc onen_tm  | 
|
210  | 
then inst_thm [(cx,l)] pthm_36  | 
|
211  | 
else monomial_deone(monomial_pow tm l r)  | 
|
212  | 
end  | 
|
213  | 
end;  | 
|
214  | 
||
215  | 
(* Multiplication of canonical monomials. *)  | 
|
216  | 
val monomial_mul_conv =  | 
|
217  | 
let  | 
|
218  | 
fun powvar tm =  | 
|
219  | 
if is_semiring_constant tm then one_tm  | 
|
220  | 
else  | 
|
221  | 
((let val (lopr,r) = Thm.dest_comb tm  | 
|
222  | 
val (opr,l) = Thm.dest_comb lopr  | 
|
223  | 
in if opr aconvc pow_tm andalso is_numeral r then l  | 
|
224  | 
          else raise CTERM ("monomial_mul_conv",[tm]) end)
 | 
|
225  | 
handle CTERM _ => tm) (* FIXME !? *)  | 
|
226  | 
fun vorder x y =  | 
|
227  | 
if x aconvc y then 0  | 
|
228  | 
else  | 
|
229  | 
if x aconvc one_tm then ~1  | 
|
230  | 
else if y aconvc one_tm then 1  | 
|
231  | 
else if variable_order x y then ~1 else 1  | 
|
232  | 
fun monomial_mul tm l r =  | 
|
233  | 
((let val (lx,ly) = dest_mul l val vl = powvar lx  | 
|
234  | 
in  | 
|
235  | 
((let  | 
|
236  | 
val (rx,ry) = dest_mul r  | 
|
237  | 
val vr = powvar rx  | 
|
238  | 
val ord = vorder vl vr  | 
|
239  | 
in  | 
|
240  | 
if ord = 0  | 
|
241  | 
then  | 
|
242  | 
let  | 
|
243  | 
val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15  | 
|
244  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
245  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
246  | 
val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2  | 
|
247  | 
val th3 = transitive th1 th2  | 
|
248  | 
val (tm5,tm6) = Thm.dest_comb(concl th3)  | 
|
249  | 
val (tm7,tm8) = Thm.dest_comb tm6  | 
|
250  | 
val th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8  | 
|
251  | 
in transitive th3 (Drule.arg_cong_rule tm5 th4)  | 
|
252  | 
end  | 
|
253  | 
else  | 
|
254  | 
let val th0 = if ord < 0 then pthm_16 else pthm_17  | 
|
255  | 
val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0  | 
|
256  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
257  | 
val (tm3,tm4) = Thm.dest_comb tm2  | 
|
258  | 
in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))  | 
|
259  | 
end  | 
|
260  | 
end)  | 
|
261  | 
handle CTERM _ =>  | 
|
262  | 
(let val vr = powvar r val ord = vorder vl vr  | 
|
263  | 
in  | 
|
264  | 
if ord = 0 then  | 
|
265  | 
let  | 
|
266  | 
val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18  | 
|
267  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
268  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
269  | 
val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2  | 
|
270  | 
in transitive th1 th2  | 
|
271  | 
end  | 
|
272  | 
else  | 
|
273  | 
if ord < 0 then  | 
|
274  | 
let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19  | 
|
275  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
276  | 
val (tm3,tm4) = Thm.dest_comb tm2  | 
|
277  | 
in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))  | 
|
278  | 
end  | 
|
279  | 
else inst_thm [(ca,l),(cb,r)] pthm_09  | 
|
280  | 
end)) end)  | 
|
281  | 
handle CTERM _ =>  | 
|
282  | 
(let val vl = powvar l in  | 
|
283  | 
((let  | 
|
284  | 
val (rx,ry) = dest_mul r  | 
|
285  | 
val vr = powvar rx  | 
|
286  | 
val ord = vorder vl vr  | 
|
287  | 
in if ord = 0 then  | 
|
288  | 
let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21  | 
|
289  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
290  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
291  | 
in transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2)  | 
|
292  | 
end  | 
|
293  | 
else if ord > 0 then  | 
|
294  | 
let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22  | 
|
295  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
296  | 
val (tm3,tm4) = Thm.dest_comb tm2  | 
|
297  | 
in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))  | 
|
298  | 
end  | 
|
299  | 
else reflexive tm  | 
|
300  | 
end)  | 
|
301  | 
handle CTERM _ =>  | 
|
302  | 
(let val vr = powvar r  | 
|
303  | 
val ord = vorder vl vr  | 
|
304  | 
in if ord = 0 then powvar_mul_conv tm  | 
|
305  | 
else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09  | 
|
306  | 
else reflexive tm  | 
|
307  | 
end)) end))  | 
|
308  | 
in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r)  | 
|
309  | 
end  | 
|
310  | 
end;  | 
|
311  | 
(* Multiplication by monomial of a polynomial. *)  | 
|
312  | 
||
313  | 
val polynomial_monomial_mul_conv =  | 
|
314  | 
let  | 
|
315  | 
fun pmm_conv tm =  | 
|
316  | 
let val (l,r) = dest_mul tm  | 
|
317  | 
in  | 
|
318  | 
((let val (y,z) = dest_add r  | 
|
319  | 
val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37  | 
|
320  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
321  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
322  | 
val th2 = combination (Drule.arg_cong_rule tm3 (monomial_mul_conv tm4)) (pmm_conv tm2)  | 
|
323  | 
in transitive th1 th2  | 
|
324  | 
end)  | 
|
325  | 
handle CTERM _ => monomial_mul_conv tm)  | 
|
326  | 
end  | 
|
327  | 
in pmm_conv  | 
|
328  | 
end;  | 
|
329  | 
||
330  | 
(* Addition of two monomials identical except for constant multiples. *)  | 
|
331  | 
||
332  | 
fun monomial_add_conv tm =  | 
|
333  | 
let val (l,r) = dest_add tm  | 
|
334  | 
in if is_semiring_constant l andalso is_semiring_constant r  | 
|
335  | 
then semiring_add_conv tm  | 
|
336  | 
else  | 
|
337  | 
let val th1 =  | 
|
338  | 
if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l)  | 
|
339  | 
then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then  | 
|
340  | 
inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02  | 
|
341  | 
else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03  | 
|
342  | 
else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r)  | 
|
343  | 
then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04  | 
|
344  | 
else inst_thm [(cm,r)] pthm_05  | 
|
345  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
346  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
347  | 
val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4)  | 
|
348  | 
val th3 = transitive th1 (Drule.fun_cong_rule th2 tm2)  | 
|
349  | 
val tm5 = concl th3  | 
|
350  | 
in  | 
|
351  | 
if (Thm.dest_arg1 tm5) aconvc zero_tm  | 
|
352  | 
then transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11)  | 
|
353  | 
else monomial_deone th3  | 
|
354  | 
end  | 
|
355  | 
end;  | 
|
356  | 
||
357  | 
(* Ordering on monomials. *)  | 
|
358  | 
||
359  | 
fun striplist dest =  | 
|
360  | 
let fun strip x acc =  | 
|
361  | 
((let val (l,r) = dest x in  | 
|
362  | 
strip l (strip r acc) end)  | 
|
363  | 
handle CTERM _ => x::acc) (* FIXME !? *)  | 
|
364  | 
in fn x => strip x []  | 
|
365  | 
end;  | 
|
366  | 
||
367  | 
||
368  | 
fun powervars tm =  | 
|
369  | 
let val ptms = striplist dest_mul tm  | 
|
370  | 
in if is_semiring_constant (hd ptms) then tl ptms else ptms  | 
|
371  | 
end;  | 
|
372  | 
val num_0 = 0;  | 
|
373  | 
val num_1 = 1;  | 
|
374  | 
fun dest_varpow tm =  | 
|
375  | 
((let val (x,n) = dest_pow tm in (x,dest_numeral n) end)  | 
|
376  | 
handle CTERM _ =>  | 
|
377  | 
(tm,(if is_semiring_constant tm then num_0 else num_1)));  | 
|
378  | 
||
379  | 
val morder =  | 
|
380  | 
let fun lexorder l1 l2 =  | 
|
381  | 
case (l1,l2) of  | 
|
382  | 
([],[]) => 0  | 
|
383  | 
| (vps,[]) => ~1  | 
|
384  | 
| ([],vps) => 1  | 
|
385  | 
| (((x1,n1)::vs1),((x2,n2)::vs2)) =>  | 
|
386  | 
if variable_order x1 x2 then 1  | 
|
387  | 
else if variable_order x2 x1 then ~1  | 
|
388  | 
else if n1 < n2 then ~1  | 
|
389  | 
else if n2 < n1 then 1  | 
|
390  | 
else lexorder vs1 vs2  | 
|
391  | 
in fn tm1 => fn tm2 =>  | 
|
392  | 
let val vdegs1 = map dest_varpow (powervars tm1)  | 
|
393  | 
val vdegs2 = map dest_varpow (powervars tm2)  | 
|
| 33002 | 394  | 
val deg1 = fold (Integer.add o snd) vdegs1 num_0  | 
395  | 
val deg2 = fold (Integer.add o snd) vdegs2 num_0  | 
|
| 23252 | 396  | 
in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1  | 
397  | 
else lexorder vdegs1 vdegs2  | 
|
398  | 
end  | 
|
399  | 
end;  | 
|
400  | 
||
401  | 
(* Addition of two polynomials. *)  | 
|
402  | 
||
403  | 
val polynomial_add_conv =  | 
|
404  | 
let  | 
|
405  | 
fun dezero_rule th =  | 
|
406  | 
let  | 
|
407  | 
val tm = concl th  | 
|
408  | 
in  | 
|
409  | 
if not(is_add tm) then th else  | 
|
410  | 
let val (lopr,r) = Thm.dest_comb tm  | 
|
411  | 
val l = Thm.dest_arg lopr  | 
|
412  | 
in  | 
|
413  | 
if l aconvc zero_tm  | 
|
414  | 
then transitive th (inst_thm [(ca,r)] pthm_07) else  | 
|
415  | 
if r aconvc zero_tm  | 
|
416  | 
then transitive th (inst_thm [(ca,l)] pthm_08) else th  | 
|
417  | 
end  | 
|
418  | 
end  | 
|
419  | 
fun padd tm =  | 
|
420  | 
let  | 
|
421  | 
val (l,r) = dest_add tm  | 
|
422  | 
in  | 
|
423  | 
if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07  | 
|
424  | 
else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08  | 
|
425  | 
else  | 
|
426  | 
if is_add l  | 
|
427  | 
then  | 
|
428  | 
let val (a,b) = dest_add l  | 
|
429  | 
in  | 
|
430  | 
if is_add r then  | 
|
431  | 
let val (c,d) = dest_add r  | 
|
432  | 
val ord = morder a c  | 
|
433  | 
in  | 
|
434  | 
if ord = 0 then  | 
|
435  | 
let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23  | 
|
436  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
437  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
438  | 
val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4)  | 
|
439  | 
in dezero_rule (transitive th1 (combination th2 (padd tm2)))  | 
|
440  | 
end  | 
|
441  | 
else (* ord <> 0*)  | 
|
442  | 
let val th1 =  | 
|
443  | 
if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24  | 
|
444  | 
else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25  | 
|
445  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
446  | 
in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))  | 
|
447  | 
end  | 
|
448  | 
end  | 
|
449  | 
else (* not (is_add r)*)  | 
|
450  | 
let val ord = morder a r  | 
|
451  | 
in  | 
|
452  | 
if ord = 0 then  | 
|
453  | 
let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26  | 
|
454  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
455  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
456  | 
val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2  | 
|
457  | 
in dezero_rule (transitive th1 th2)  | 
|
458  | 
end  | 
|
459  | 
else (* ord <> 0*)  | 
|
460  | 
if ord > 0 then  | 
|
461  | 
let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24  | 
|
462  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
463  | 
in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))  | 
|
464  | 
end  | 
|
465  | 
else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)  | 
|
466  | 
end  | 
|
467  | 
end  | 
|
468  | 
else (* not (is_add l)*)  | 
|
469  | 
if is_add r then  | 
|
470  | 
let val (c,d) = dest_add r  | 
|
471  | 
val ord = morder l c  | 
|
472  | 
in  | 
|
473  | 
if ord = 0 then  | 
|
474  | 
let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28  | 
|
475  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
476  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
477  | 
val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2  | 
|
478  | 
in dezero_rule (transitive th1 th2)  | 
|
479  | 
end  | 
|
480  | 
else  | 
|
481  | 
if ord > 0 then reflexive tm  | 
|
482  | 
else  | 
|
483  | 
let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25  | 
|
484  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
485  | 
in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))  | 
|
486  | 
end  | 
|
487  | 
end  | 
|
488  | 
else  | 
|
489  | 
let val ord = morder l r  | 
|
490  | 
in  | 
|
491  | 
if ord = 0 then monomial_add_conv tm  | 
|
492  | 
else if ord > 0 then dezero_rule(reflexive tm)  | 
|
493  | 
else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)  | 
|
494  | 
end  | 
|
495  | 
end  | 
|
496  | 
in padd  | 
|
497  | 
end;  | 
|
498  | 
||
499  | 
(* Multiplication of two polynomials. *)  | 
|
500  | 
||
501  | 
val polynomial_mul_conv =  | 
|
502  | 
let  | 
|
503  | 
fun pmul tm =  | 
|
504  | 
let val (l,r) = dest_mul tm  | 
|
505  | 
in  | 
|
506  | 
if not(is_add l) then polynomial_monomial_mul_conv tm  | 
|
507  | 
else  | 
|
508  | 
if not(is_add r) then  | 
|
509  | 
let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09  | 
|
510  | 
in transitive th1 (polynomial_monomial_mul_conv(concl th1))  | 
|
511  | 
end  | 
|
512  | 
else  | 
|
513  | 
let val (a,b) = dest_add l  | 
|
514  | 
val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10  | 
|
515  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
516  | 
val (tm3,tm4) = Thm.dest_comb tm1  | 
|
517  | 
val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv tm4)  | 
|
518  | 
val th3 = transitive th1 (combination th2 (pmul tm2))  | 
|
519  | 
in transitive th3 (polynomial_add_conv (concl th3))  | 
|
520  | 
end  | 
|
521  | 
end  | 
|
522  | 
in fn tm =>  | 
|
523  | 
let val (l,r) = dest_mul tm  | 
|
524  | 
in  | 
|
525  | 
if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11  | 
|
526  | 
else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12  | 
|
527  | 
else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13  | 
|
528  | 
else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14  | 
|
529  | 
else pmul tm  | 
|
530  | 
end  | 
|
531  | 
end;  | 
|
532  | 
||
533  | 
(* Power of polynomial (optimized for the monomial and trivial cases). *)  | 
|
534  | 
||
| 
23580
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
535  | 
fun num_conv n =  | 
| 
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
536  | 
  nat_add_conv (Thm.capply @{cterm Suc} (Numeral.mk_cnumber @{ctyp nat} (dest_numeral n - 1)))
 | 
| 
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
537  | 
|> Thm.symmetric;  | 
| 23252 | 538  | 
|
539  | 
||
540  | 
val polynomial_pow_conv =  | 
|
541  | 
let  | 
|
542  | 
fun ppow tm =  | 
|
543  | 
let val (l,n) = dest_pow tm  | 
|
544  | 
in  | 
|
545  | 
if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35  | 
|
546  | 
else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36  | 
|
547  | 
else  | 
|
548  | 
let val th1 = num_conv n  | 
|
549  | 
val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38  | 
|
550  | 
val (tm1,tm2) = Thm.dest_comb(concl th2)  | 
|
551  | 
val th3 = transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2))  | 
|
552  | 
val th4 = transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3  | 
|
553  | 
in transitive th4 (polynomial_mul_conv (concl th4))  | 
|
554  | 
end  | 
|
555  | 
end  | 
|
556  | 
in fn tm =>  | 
|
557  | 
if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv tm  | 
|
558  | 
end;  | 
|
559  | 
||
560  | 
(* Negation. *)  | 
|
561  | 
||
| 
23580
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
562  | 
fun polynomial_neg_conv tm =  | 
| 23252 | 563  | 
let val (l,r) = Thm.dest_comb tm in  | 
564  | 
        if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else
 | 
|
565  | 
let val th1 = inst_thm [(cx',r)] neg_mul  | 
|
566  | 
val th2 = transitive th1 (arg1_conv semiring_mul_conv (concl th1))  | 
|
567  | 
in transitive th2 (polynomial_monomial_mul_conv (concl th2))  | 
|
568  | 
end  | 
|
569  | 
end;  | 
|
570  | 
||
571  | 
||
572  | 
(* Subtraction. *)  | 
|
| 
23580
 
998a6fda9bb6
moved mk_cnumeral/mk_cnumber to Tools/numeral.ML;
 
wenzelm 
parents: 
23559 
diff
changeset
 | 
573  | 
fun polynomial_sub_conv tm =  | 
| 23252 | 574  | 
let val (l,r) = dest_sub tm  | 
575  | 
val th1 = inst_thm [(cx',l),(cy',r)] sub_add  | 
|
576  | 
val (tm1,tm2) = Thm.dest_comb(concl th1)  | 
|
577  | 
val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv tm2)  | 
|
578  | 
in transitive th1 (transitive th2 (polynomial_add_conv (concl th2)))  | 
|
579  | 
end;  | 
|
580  | 
||
581  | 
(* Conversion from HOL term. *)  | 
|
582  | 
||
583  | 
fun polynomial_conv tm =  | 
|
| 
23407
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
584  | 
if is_semiring_constant tm then semiring_add_conv tm  | 
| 
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
585  | 
else if not(is_comb tm) then reflexive tm  | 
| 23252 | 586  | 
else  | 
587  | 
let val (lopr,r) = Thm.dest_comb tm  | 
|
588  | 
in if lopr aconvc neg_tm then  | 
|
589  | 
let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)  | 
|
590  | 
in transitive th1 (polynomial_neg_conv (concl th1))  | 
|
591  | 
end  | 
|
| 30866 | 592  | 
else if lopr aconvc inverse_tm then  | 
593  | 
let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)  | 
|
594  | 
in transitive th1 (semiring_mul_conv (concl th1))  | 
|
595  | 
end  | 
|
| 23252 | 596  | 
else  | 
597  | 
if not(is_comb lopr) then reflexive tm  | 
|
598  | 
else  | 
|
599  | 
let val (opr,l) = Thm.dest_comb lopr  | 
|
600  | 
in if opr aconvc pow_tm andalso is_numeral r  | 
|
601  | 
then  | 
|
602  | 
let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv l)) r  | 
|
603  | 
in transitive th1 (polynomial_pow_conv (concl th1))  | 
|
604  | 
end  | 
|
| 30866 | 605  | 
else if opr aconvc divide_tm  | 
606  | 
then  | 
|
607  | 
let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l))  | 
|
608  | 
(polynomial_conv r)  | 
|
609  | 
val th2 = (rewr_conv divide_inverse then_conv polynomial_mul_conv)  | 
|
610  | 
(Thm.rhs_of th1)  | 
|
611  | 
in transitive th1 th2  | 
|
612  | 
end  | 
|
| 23252 | 613  | 
else  | 
614  | 
if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm  | 
|
615  | 
then  | 
|
616  | 
let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r)  | 
|
617  | 
val f = if opr aconvc add_tm then polynomial_add_conv  | 
|
618  | 
else if opr aconvc mul_tm then polynomial_mul_conv  | 
|
619  | 
else polynomial_sub_conv  | 
|
620  | 
in transitive th1 (f (concl th1))  | 
|
621  | 
end  | 
|
622  | 
else reflexive tm  | 
|
623  | 
end  | 
|
624  | 
end;  | 
|
625  | 
in  | 
|
626  | 
   {main = polynomial_conv,
 | 
|
627  | 
add = polynomial_add_conv,  | 
|
628  | 
mul = polynomial_mul_conv,  | 
|
629  | 
pow = polynomial_pow_conv,  | 
|
630  | 
neg = polynomial_neg_conv,  | 
|
631  | 
sub = polynomial_sub_conv}  | 
|
632  | 
end  | 
|
633  | 
end;  | 
|
634  | 
||
| 35410 | 635  | 
val nat_exp_ss =  | 
636  | 
  HOL_basic_ss addsimps (@{thms nat_number} @ @{thms nat_arith} @ @{thms arith_simps} @ @{thms rel_simps})
 | 
|
637  | 
    addsimps [@{thm Let_def}, @{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc}];
 | 
|
| 23252 | 638  | 
|
| 35408 | 639  | 
fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;  | 
| 27222 | 640  | 
|
| 30866 | 641  | 
fun semiring_normalizers_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, 
 | 
| 
23407
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
642  | 
                                     {conv, dest_const, mk_const, is_const}) ord =
 | 
| 23252 | 643  | 
let  | 
644  | 
val pow_conv =  | 
|
645  | 
arg_conv (Simplifier.rewrite nat_exp_ss)  | 
|
646  | 
then_conv Simplifier.rewrite  | 
|
647  | 
(HOL_basic_ss addsimps [nth (snd semiring) 31, nth (snd semiring) 34])  | 
|
| 
23330
 
01c09922ce59
Conversion for computation on constants now depends on the context
 
chaieb 
parents: 
23259 
diff
changeset
 | 
648  | 
then_conv conv ctxt  | 
| 
 
01c09922ce59
Conversion for computation on constants now depends on the context
 
chaieb 
parents: 
23259 
diff
changeset
 | 
649  | 
val dat = (is_const, conv ctxt, conv ctxt, pow_conv)  | 
| 30866 | 650  | 
in semiring_normalizers_conv vars semiring ring field dat ord end;  | 
| 27222 | 651  | 
|
| 30866 | 652  | 
fun semiring_normalize_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord =
 | 
653  | 
 #main (semiring_normalizers_ord_wrapper ctxt ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal},{conv = conv, dest_const = dest_const, mk_const = mk_const, is_const = is_const}) ord);
 | 
|
| 23252 | 654  | 
|
| 
23407
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
655  | 
fun semiring_normalize_wrapper ctxt data =  | 
| 
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
656  | 
semiring_normalize_ord_wrapper ctxt data simple_cterm_ord;  | 
| 
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
657  | 
|
| 
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
658  | 
fun semiring_normalize_ord_conv ctxt ord tm =  | 
| 23252 | 659  | 
(case NormalizerData.match ctxt tm of  | 
660  | 
NONE => reflexive tm  | 
|
| 
23407
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
661  | 
| SOME res => semiring_normalize_ord_wrapper ctxt res ord tm);  | 
| 
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
662  | 
|
| 23252 | 663  | 
|
| 
23407
 
0e4452fcbeb8
normalizer conversions depend on the proof context; added functions for conversion and wrapper that sill depend on the variable ordering (_ord)
 
chaieb 
parents: 
23330 
diff
changeset
 | 
664  | 
fun semiring_normalize_conv ctxt = semiring_normalize_ord_conv ctxt simple_cterm_ord;  | 
| 23252 | 665  | 
|
666  | 
fun semiring_normalize_tac ctxt = SUBGOAL (fn (goal, i) =>  | 
|
667  | 
rtac (semiring_normalize_conv ctxt  | 
|
668  | 
(cterm_of (ProofContext.theory_of ctxt) (fst (Logic.dest_equals goal)))) i);  | 
|
669  | 
end;  |