doc-src/TutorialI/CTL/CTL.thy
author nipkow
Wed, 04 Oct 2000 17:35:45 +0200
changeset 10149 7cfdf6a330a0
parent 10133 e187dacd248f
child 10159 a72ddfdbfca0
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
     1
(*<*)theory CTL = Base:(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
     3
subsection{*Computation tree logic---CTL*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     5
text{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     6
The semantics of PDL only needs transitive reflexive closure.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     7
Let us now be a bit more adventurous and introduce a new temporal operator
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     8
that goes beyond transitive reflexive closure. We extend the datatype
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     9
@{text formula} by a new constructor
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    10
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    11
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | EF formula(*>*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    17
                  | AF formula
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    18
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    20
which stands for "always in the future":
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    21
on all paths, at some point the formula holds. 
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    22
Introducing the notion of paths (in @{term M})
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    23
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    24
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    25
constdefs Paths :: "state \<Rightarrow> (nat \<Rightarrow> state)set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    26
         "Paths s \<equiv> {p. s = p 0 \<and> (\<forall>i. (p i, p(i+1)) \<in> M)}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    27
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    29
allows a very succinct definition of the semantics of @{term AF}:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    30
\footnote{Do not be mislead: neither datatypes nor recursive functions can be
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    31
extended by new constructors or equations. This is just a trick of the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    32
presentation. In reality one has to define a new datatype and a new function.}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    33
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    35
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    37
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    38
"s \<Turnstile> Atom a  =  (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    39
"s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    41
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    44
"s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    45
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    47
Model checking @{term AF} involves a function which
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    48
is just large enough to warrant a separate definition:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    49
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    50
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    51
constdefs af :: "state set \<Rightarrow> state set \<Rightarrow> state set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
         "af A T \<equiv> A \<union> {s. \<forall>t. (s, t) \<in> M \<longrightarrow> t \<in> T}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    53
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    54
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    55
This function is monotone in its second argument (and also its first, but
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    56
that is irrelevant), and hence @{term"af A"} has a least fixpoint.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    57
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    58
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    59
lemma mono_af: "mono(af A)";
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    60
apply(simp add: mono_def af_def)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    61
by(blast);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    62
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    63
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    64
Now we can define @{term "mc(AF f)"} as the least set @{term T} that contains
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    65
@{term"mc f"} and all states all of whose direct successors are in @{term T}:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    66
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    67
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    68
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    69
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    70
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    71
"mc(Neg f)   = -mc f"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    72
"mc(And f g) = mc f \<inter> mc g"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    73
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    74
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ^^ T)"(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    75
"mc(AF f)    = lfp(af(mc f))";
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    76
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    77
lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ^^ T)"
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    78
apply(rule monoI)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    79
by(blast)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    80
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    81
lemma EF_lemma:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
  "lfp(\<lambda>T. A \<union> M^-1 ^^ T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    83
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    84
 apply(rule subsetI);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    85
 apply(simp)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    86
 apply(erule Lfp.induct)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    87
  apply(rule mono_ef)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    88
 apply(simp)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    89
 apply(blast intro: r_into_rtrancl rtrancl_trans);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    90
apply(rule subsetI)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    91
apply(simp, clarify)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    92
apply(erule converse_rtrancl_induct)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    93
 apply(rule ssubst[OF lfp_Tarski[OF mono_ef]])
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    94
 apply(blast)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    95
apply(rule ssubst[OF lfp_Tarski[OF mono_ef]])
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    96
by(blast)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    97
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    98
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    99
theorem lfp_subset_AF:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   100
"lfp(af A) \<subseteq> {s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A}";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   101
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   102
apply(erule Lfp.induct[OF _ mono_af]);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   103
apply(simp add: af_def Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   104
apply(erule disjE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   105
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   106
apply(clarify);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   107
apply(erule_tac x = "p 1" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   108
apply(clarsimp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   109
apply(erule_tac x = "\<lambda>i. p(i+1)" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   110
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   111
by(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   112
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   113
text{*
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   114
The opposite direction is proved by contradiction: if some state
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   115
{term s} is not in @{term"lfp(af A)"}, then we can construct an
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   116
infinite @{term A}-avoiding path starting from @{term s}. The reason is
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   117
that by unfolding @{term"lfp"} we find that if @{term s} is not in
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   118
@{term"lfp(af A)"}, then @{term s} is not in @{term A} and there is a
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   119
direct successor of @{term s} that is again not in @{term"lfp(af
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   120
A)"}. Iterating this argument yields the promised infinite
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   121
@{term A}-avoiding path. Let us formalize this sketch.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   122
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   123
The one-step argument in the above sketch
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   124
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   125
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   126
lemma not_in_lfp_afD:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   127
 "s \<notin> lfp(af A) \<Longrightarrow> s \<notin> A \<and> (\<exists> t. (s,t)\<in>M \<and> t \<notin> lfp(af A))";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   128
apply(erule swap);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   129
apply(rule ssubst[OF lfp_Tarski[OF mono_af]]);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   130
by(simp add:af_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   131
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   132
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   133
is proved by a variant of contraposition (@{thm[source]swap}:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   134
@{thm swap[no_vars]}), i.e.\ assuming the negation of the conclusion
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   135
and proving @{term"s : lfp(af A)"}. Unfolding @{term lfp} once and
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   136
simplifying with the definition of @{term af} finishes the proof.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   137
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   138
Now we iterate this process. The following construction of the desired
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   139
path is parameterized by a predicate @{term P} that should hold along the path:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   140
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   141
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   142
consts path :: "state \<Rightarrow> (state \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> state)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   143
primrec
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   144
"path s P 0 = s"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   145
"path s P (Suc n) = (SOME t. (path s P n,t) \<in> M \<and> P t)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   146
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   147
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   148
Element @{term"n+1"} on this path is some arbitrary successor
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   149
@{term"t"} of element @{term"n"} such that @{term"P t"} holds.  Of
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   150
course, such a @{term"t"} may in general not exist, but that is of no
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   151
concern to us since we will only use @{term path} in such cases where a
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   152
suitable @{term"t"} does exist.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   153
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   154
Now we prove that if each state @{term"s"} that satisfies @{term"P"}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   155
has a successor that again satisfies @{term"P"}, then there exists an infinite @{term"P"}-path.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   156
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   157
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   158
lemma seq_lemma:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   159
"\<lbrakk> P s; \<forall>s. P s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> P t) \<rbrakk> \<Longrightarrow> \<exists>p\<in>Paths s. \<forall>i. P(p i)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   160
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   161
txt{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   162
First we rephrase the conclusion slightly because we need to prove both the path property
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   163
and the fact that @{term"P"} holds simultaneously:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   164
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   165
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   166
apply(subgoal_tac "\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(i+1)) \<in> M \<and> P(p i))");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   167
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   168
txt{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   169
From this proposition the original goal follows easily
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   170
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   171
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   172
 apply(simp add:Paths_def, blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   173
apply(rule_tac x = "path s P" in exI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   175
apply(intro strip);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   176
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   177
 apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   178
 apply(fast intro:someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   179
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   180
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   181
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   182
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   183
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   184
by(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   185
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   186
lemma seq_lemma:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   187
"\<lbrakk> P s; \<forall> s. P s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> P t) \<rbrakk> \<Longrightarrow>
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   188
 \<exists> p\<in>Paths s. \<forall> i. P(p i)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   189
apply(subgoal_tac
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   190
 "\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(Suc i))\<in>M \<and> P(p i))");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   191
 apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   192
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   193
apply(rule_tac x = "nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> P u)" in exI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   194
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   195
apply(intro strip);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   196
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   197
 apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   198
 apply(fast intro:someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   199
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   200
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   201
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   202
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   203
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   204
by(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   205
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   206
theorem AF_subset_lfp:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   207
"{s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   208
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   209
apply(erule contrapos2);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   210
apply simp;
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   211
apply(drule seq_lemma);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   212
by(auto dest:not_in_lfp_afD);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   213
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   214
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   215
(*
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   216
Second proof of opposite direction, directly by wellfounded induction
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   217
on the initial segment of M that avoids A.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   218
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   219
Avoid s A = the set of successors of s that can be reached by a finite A-avoiding path
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   220
*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   221
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   222
consts Avoid :: "state \<Rightarrow> state set \<Rightarrow> state set";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   223
inductive "Avoid s A"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   224
intros "s \<in> Avoid s A"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   225
       "\<lbrakk> t \<in> Avoid s A; t \<notin> A; (t,u) \<in> M \<rbrakk> \<Longrightarrow> u \<in> Avoid s A";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   226
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   227
(* For any infinite A-avoiding path (f) in Avoid s A,
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   228
   there is some infinite A-avoiding path (p) in Avoid s A that starts with s.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   229
*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   230
lemma ex_infinite_path[rule_format]:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   231
"t \<in> Avoid s A  \<Longrightarrow>
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   232
 \<forall>f. t = f 0 \<longrightarrow> (\<forall>i. (f i, f (Suc i)) \<in> M \<and> f i \<in> Avoid s A \<and> f i \<notin> A)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   233
                \<longrightarrow> (\<exists> p\<in>Paths s. \<forall>i. p i \<notin> A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   234
apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   235
apply(erule Avoid.induct);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   236
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   237
apply(rule allI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   238
apply(erule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> t | Suc i \<Rightarrow> f i" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   239
by(force split:nat.split);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   240
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   241
lemma Avoid_in_lfp[rule_format(no_asm)]:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   242
"\<forall>p\<in>Paths s. \<exists>i. p i \<in> A \<Longrightarrow> t \<in> Avoid s A \<longrightarrow> t \<in> lfp(af A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   243
apply(subgoal_tac "wf{(y,x). (x,y)\<in>M \<and> x \<in> Avoid s A \<and> y \<in> Avoid s A \<and> x \<notin> A}");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   244
 apply(erule_tac a = t in wf_induct);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   245
 apply(clarsimp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   246
 apply(rule ssubst [OF lfp_Tarski[OF mono_af]]);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   247
 apply(unfold af_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   248
 apply(blast intro:Avoid.intros);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   249
apply(erule contrapos2);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   250
apply(simp add:wf_iff_no_infinite_down_chain);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   251
apply(erule exE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   252
apply(rule ex_infinite_path);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   253
by(auto);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   254
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   255
theorem AF_subset_lfp:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   256
"{s. \<forall>p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   257
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   258
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   259
apply(erule Avoid_in_lfp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   260
by(rule Avoid.intros);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   261
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   262
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   263
theorem "mc f = {s. s \<Turnstile> f}";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   264
apply(induct_tac f);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   265
by(auto simp add: EF_lemma equalityI[OF lfp_subset_AF AF_subset_lfp]);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   266
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
   267
(*<*)end(*>*)