src/FOL/ex/Nat_Class.thy
author wenzelm
Thu, 01 Dec 2011 11:54:39 +0100
changeset 45702 7df60d1aa988
parent 44605 4877c4e184e5
child 60770 240563fbf41d
permissions -rw-r--r--
updated markup conforming to ML side;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29752
ad4e3a577fd3 modernized some theory names;
wenzelm
parents: 29751
diff changeset
     1
(*  Title:      FOL/ex/Nat_Class.thy
1246
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
     2
    Author:     Markus Wenzel, TU Muenchen
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
     3
*)
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
     4
29752
ad4e3a577fd3 modernized some theory names;
wenzelm
parents: 29751
diff changeset
     5
theory Nat_Class
17245
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
     6
imports FOL
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
     7
begin
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
     8
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
     9
text {*
29753
wenzelm
parents: 29752
diff changeset
    10
  This is an abstract version of theory @{text Nat}. Instead of
17245
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    11
  axiomatizing a single type @{text nat} we define the class of all
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    12
  these types (up to isomorphism).
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    13
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    14
  Note: The @{text rec} operator had to be made \emph{monomorphic},
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    15
  because class axioms may not contain more than one type variable.
1c519a3cca59 converted to Isar theory format;
wenzelm
parents: 1322
diff changeset
    16
*}
1246
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
    17
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    18
class nat =
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    19
  fixes Zero :: 'a  ("0")
29753
wenzelm
parents: 29752
diff changeset
    20
    and Suc :: "'a \<Rightarrow> 'a"
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    21
    and rec :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    22
  assumes induct: "P(0) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> P(Suc(x))) \<Longrightarrow> P(n)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    23
    and Suc_inject: "Suc(m) = Suc(n) \<Longrightarrow> m = n"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    24
    and Suc_neq_Zero: "Suc(m) = 0 \<Longrightarrow> R"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    25
    and rec_Zero: "rec(0, a, f) = a"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    26
    and rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    27
begin
1246
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
    28
44605
4877c4e184e5 tuned document;
wenzelm
parents: 29753
diff changeset
    29
definition add :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 60)
4877c4e184e5 tuned document;
wenzelm
parents: 29753
diff changeset
    30
  where "m + n = rec(m, n, \<lambda>x y. Suc(y))"
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    31
29753
wenzelm
parents: 29752
diff changeset
    32
lemma Suc_n_not_n: "Suc(k) \<noteq> (k::'a)"
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    33
  apply (rule_tac n = k in induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    34
   apply (rule notI)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    35
   apply (erule Suc_neq_Zero)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    36
  apply (rule notI)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    37
  apply (erule notE)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    38
  apply (erule Suc_inject)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    39
  done
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    40
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    41
lemma "(k + m) + n = k + (m + n)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    42
  apply (rule induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    43
  back
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    44
  back
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    45
  back
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    46
  back
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    47
  back
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    48
  oops
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    49
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    50
lemma add_Zero [simp]: "0 + n = n"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    51
  apply (unfold add_def)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    52
  apply (rule rec_Zero)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    53
  done
1246
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
    54
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    55
lemma add_Suc [simp]: "Suc(m) + n = Suc(m + n)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    56
  apply (unfold add_def)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    57
  apply (rule rec_Suc)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    58
  done
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    59
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    60
lemma add_assoc: "(k + m) + n = k + (m + n)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    61
  apply (rule_tac n = k in induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    62
   apply simp
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    63
  apply simp
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    64
  done
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    65
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    66
lemma add_Zero_right: "m + 0 = m"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    67
  apply (rule_tac n = m in induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    68
   apply simp
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    69
  apply simp
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    70
  done
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    71
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    72
lemma add_Suc_right: "m + Suc(n) = Suc(m + n)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    73
  apply (rule_tac n = m in induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    74
   apply simp_all
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    75
  done
19819
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    76
14de4d05d275 removed obsolete ML files;
wenzelm
parents: 17274
diff changeset
    77
lemma
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    78
  assumes prem: "\<And>n. f(Suc(n)) = Suc(f(n))"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    79
  shows "f(i + j) = i + f(j)"
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    80
  apply (rule_tac n = i in induct)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    81
   apply simp
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    82
  apply (simp add: prem)
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    83
  done
1246
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
    84
706cfddca75c the NatClass demo of the axclass tutorial;
wenzelm
parents:
diff changeset
    85
end
29751
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    86
e2756594c414 eliminated old 'axclass';
wenzelm
parents: 21404
diff changeset
    87
end