src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy
author nipkow
Fri, 29 Nov 2019 15:06:04 +0100
changeset 71174 7fac205dd737
parent 71025 be8cec1abcbb
child 71192 a8ccea88b725
permissions -rw-r--r--
tuned
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
     1
(*  Title:      HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
     2
    Author:     Johannes Hölzl, TU München
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
     3
    Author:     Robert Himmelmann, TU München
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
     4
    Huge cleanup by LCP
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
     5
*)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
     6
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
     7
theory Equivalence_Lebesgue_Henstock_Integration
71025
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
     8
  imports
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
     9
    Lebesgue_Measure
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
    10
    Henstock_Kurzweil_Integration
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
    11
    Complete_Measure
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
    12
    Set_Integral
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
    13
    Homeomorphism
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70952
diff changeset
    14
    Cartesian_Euclidean_Space
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
    15
begin
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
    16
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    17
lemma le_left_mono: "x \<le> y \<Longrightarrow> y \<le> a \<longrightarrow> x \<le> (a::'a::preorder)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    18
  by (auto intro: order_trans)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    19
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    20
lemma ball_trans:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    21
  assumes "y \<in> ball z q" "r + q \<le> s" shows "ball y r \<subseteq> ball z s"
70952
f140135ff375 example applications of the 'metric' decision procedure, by Maximilian Schäffeler
immler
parents: 70817
diff changeset
    22
  using assms by metric
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    23
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    24
lemma has_integral_implies_lebesgue_measurable_cbox:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    25
  fixes f :: "'a :: euclidean_space \<Rightarrow> real"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    26
  assumes f: "(f has_integral I) (cbox x y)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    27
  shows "f \<in> lebesgue_on (cbox x y) \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    28
proof (rule cld_measure.borel_measurable_cld)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    29
  let ?L = "lebesgue_on (cbox x y)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    30
  let ?\<mu> = "emeasure ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    31
  let ?\<mu>' = "outer_measure_of ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    32
  interpret L: finite_measure ?L
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    33
  proof
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    34
    show "?\<mu> (space ?L) \<noteq> \<infinity>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    35
      by (simp add: emeasure_restrict_space space_restrict_space emeasure_lborel_cbox_eq)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    36
  qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    37
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    38
  show "cld_measure ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    39
  proof
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    40
    fix B A assume "B \<subseteq> A" "A \<in> null_sets ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    41
    then show "B \<in> sets ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    42
      using null_sets_completion_subset[OF \<open>B \<subseteq> A\<close>, of lborel]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    43
      by (auto simp add: null_sets_restrict_space sets_restrict_space_iff intro: )
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    44
  next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    45
    fix A assume "A \<subseteq> space ?L" "\<And>B. B \<in> sets ?L \<Longrightarrow> ?\<mu> B < \<infinity> \<Longrightarrow> A \<inter> B \<in> sets ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    46
    from this(1) this(2)[of "space ?L"] show "A \<in> sets ?L"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    47
      by (auto simp: Int_absorb2 less_top[symmetric])
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    48
  qed auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    49
  then interpret cld_measure ?L
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    50
    .
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    51
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    52
  have content_eq_L: "A \<in> sets borel \<Longrightarrow> A \<subseteq> cbox x y \<Longrightarrow> content A = measure ?L A" for A
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    53
    by (subst measure_restrict_space) (auto simp: measure_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    54
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    55
  fix E and a b :: real assume "E \<in> sets ?L" "a < b" "0 < ?\<mu> E" "?\<mu> E < \<infinity>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    56
  then obtain M :: real where "?\<mu> E = M" "0 < M"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    57
    by (cases "?\<mu> E") auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    58
  define e where "e = M / (4 + 2 / (b - a))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    59
  from \<open>a < b\<close> \<open>0<M\<close> have "0 < e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    60
    by (auto intro!: divide_pos_pos simp: field_simps e_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    61
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    62
  have "e < M / (3 + 2 / (b - a))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    63
    using \<open>a < b\<close> \<open>0 < M\<close>
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    64
    unfolding e_def by (intro divide_strict_left_mono add_strict_right_mono mult_pos_pos) (auto simp: field_simps)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    65
  then have "2 * e < (b - a) * (M - e * 3)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    66
    using \<open>0<M\<close> \<open>0 < e\<close> \<open>a < b\<close> by (simp add: field_simps)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    67
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    68
  have e_less_M: "e < M / 1"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    69
    unfolding e_def using \<open>a < b\<close> \<open>0<M\<close> by (intro divide_strict_left_mono) (auto simp: field_simps)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    70
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    71
  obtain d
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    72
    where "gauge d"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    73
      and integral_f: "\<forall>p. p tagged_division_of cbox x y \<and> d fine p \<longrightarrow>
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
    74
        norm ((\<Sum>(x,k) \<in> p. content k *\<^sub>R f x) - I) < e"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    75
    using \<open>0<e\<close> f unfolding has_integral by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    76
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    77
  define C where "C X m = X \<inter> {x. ball x (1/Suc m) \<subseteq> d x}" for X m
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    78
  have "incseq (C X)" for X
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    79
    unfolding C_def [abs_def]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    80
    by (intro monoI Collect_mono conj_mono imp_refl le_left_mono subset_ball divide_left_mono Int_mono) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    81
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    82
  { fix X assume "X \<subseteq> space ?L" and eq: "?\<mu>' X = ?\<mu> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    83
    have "(SUP m. outer_measure_of ?L (C X m)) = outer_measure_of ?L (\<Union>m. C X m)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    84
      using \<open>X \<subseteq> space ?L\<close> by (intro SUP_outer_measure_of_incseq \<open>incseq (C X)\<close>) (auto simp: C_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    85
    also have "(\<Union>m. C X m) = X"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    86
    proof -
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    87
      { fix x
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    88
        obtain e where "0 < e" "ball x e \<subseteq> d x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    89
          using gaugeD[OF \<open>gauge d\<close>, of x] unfolding open_contains_ball by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    90
        moreover
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    91
        obtain n where "1 / (1 + real n) < e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    92
          using reals_Archimedean[OF \<open>0<e\<close>] by (auto simp: inverse_eq_divide)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    93
        then have "ball x (1 / (1 + real n)) \<subseteq> ball x e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    94
          by (intro subset_ball) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    95
        ultimately have "\<exists>n. ball x (1 / (1 + real n)) \<subseteq> d x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    96
          by blast }
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    97
      then show ?thesis
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    98
        by (auto simp: C_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
    99
    qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   100
    finally have "(SUP m. outer_measure_of ?L (C X m)) = ?\<mu> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   101
      using eq by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   102
    also have "\<dots> > M - e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   103
      using \<open>0 < M\<close> \<open>?\<mu> E = M\<close> \<open>0<e\<close> by (auto intro!: ennreal_lessI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   104
    finally have "\<exists>m. M - e < outer_measure_of ?L (C X m)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   105
      unfolding less_SUP_iff by auto }
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   106
  note C = this
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   107
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   108
  let ?E = "{x\<in>E. f x \<le> a}" and ?F = "{x\<in>E. b \<le> f x}"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   109
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   110
  have "\<not> (?\<mu>' ?E = ?\<mu> E \<and> ?\<mu>' ?F = ?\<mu> E)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   111
  proof
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   112
    assume eq: "?\<mu>' ?E = ?\<mu> E \<and> ?\<mu>' ?F = ?\<mu> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   113
    with C[of ?E] C[of ?F] \<open>E \<in> sets ?L\<close>[THEN sets.sets_into_space] obtain ma mb
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   114
      where "M - e < outer_measure_of ?L (C ?E ma)" "M - e < outer_measure_of ?L (C ?F mb)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   115
      by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   116
    moreover define m where "m = max ma mb"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   117
    ultimately have M_minus_e: "M - e < outer_measure_of ?L (C ?E m)" "M - e < outer_measure_of ?L (C ?F m)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   118
      using
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   119
        incseqD[OF \<open>incseq (C ?E)\<close>, of ma m, THEN outer_measure_of_mono]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   120
        incseqD[OF \<open>incseq (C ?F)\<close>, of mb m, THEN outer_measure_of_mono]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   121
      by (auto intro: less_le_trans)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   122
    define d' where "d' x = d x \<inter> ball x (1 / (3 * Suc m))" for x
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   123
    have "gauge d'"
66154
bc5e6461f759 Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents: 66112
diff changeset
   124
      unfolding d'_def by (intro gauge_Int \<open>gauge d\<close> gauge_ball) auto
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   125
    then obtain p where p: "p tagged_division_of cbox x y" "d' fine p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   126
      by (rule fine_division_exists)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   127
    then have "d fine p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   128
      unfolding d'_def[abs_def] fine_def by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   129
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   130
    define s where "s = {(x::'a, k). k \<inter> (C ?E m) \<noteq> {} \<and> k \<inter> (C ?F m) \<noteq> {}}"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   131
    define T where "T E k = (SOME x. x \<in> k \<inter> C E m)" for E k
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   132
    let ?A = "(\<lambda>(x, k). (T ?E k, k)) ` (p \<inter> s) \<union> (p - s)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   133
    let ?B = "(\<lambda>(x, k). (T ?F k, k)) ` (p \<inter> s) \<union> (p - s)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   134
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   135
    { fix X assume X_eq: "X = ?E \<or> X = ?F"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   136
      let ?T = "(\<lambda>(x, k). (T X k, k))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   137
      let ?p = "?T ` (p \<inter> s) \<union> (p - s)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   138
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   139
      have in_s: "(x, k) \<in> s \<Longrightarrow> T X k \<in> k \<inter> C X m" for x k
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   140
        using someI_ex[of "\<lambda>x. x \<in> k \<inter> C X m"] X_eq unfolding ex_in_conv by (auto simp: T_def s_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   141
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   142
      { fix x k assume "(x, k) \<in> p" "(x, k) \<in> s"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   143
        have k: "k \<subseteq> ball x (1 / (3 * Suc m))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   144
          using \<open>d' fine p\<close>[THEN fineD, OF \<open>(x, k) \<in> p\<close>] by (auto simp: d'_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   145
        then have "x \<in> ball (T X k) (1 / (3 * Suc m))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   146
          using in_s[OF \<open>(x, k) \<in> s\<close>] by (auto simp: C_def subset_eq dist_commute)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   147
        then have "ball x (1 / (3 * Suc m)) \<subseteq> ball (T X k) (1 / Suc m)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
   148
          by (rule ball_trans) (auto simp: field_split_simps)
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   149
        with k in_s[OF \<open>(x, k) \<in> s\<close>] have "k \<subseteq> d (T X k)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   150
          by (auto simp: C_def) }
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   151
      then have "d fine ?p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   152
        using \<open>d fine p\<close> by (auto intro!: fineI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   153
      moreover
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   154
      have "?p tagged_division_of cbox x y"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   155
      proof (rule tagged_division_ofI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   156
        show "finite ?p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   157
          using p(1) by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   158
      next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   159
        fix z k assume *: "(z, k) \<in> ?p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   160
        then consider "(z, k) \<in> p" "(z, k) \<notin> s"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   161
          | x' where "(x', k) \<in> p" "(x', k) \<in> s" "z = T X k"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   162
          by (auto simp: T_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   163
        then have "z \<in> k \<and> k \<subseteq> cbox x y \<and> (\<exists>a b. k = cbox a b)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   164
          using p(1) by cases (auto dest: in_s)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   165
        then show "z \<in> k" "k \<subseteq> cbox x y" "\<exists>a b. k = cbox a b"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   166
          by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   167
      next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   168
        fix z k z' k' assume "(z, k) \<in> ?p" "(z', k') \<in> ?p" "(z, k) \<noteq> (z', k')"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   169
        with tagged_division_ofD(5)[OF p(1), of _ k _ k']
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   170
        show "interior k \<inter> interior k' = {}"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   171
          by (auto simp: T_def dest: in_s)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   172
      next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   173
        have "{k. \<exists>x. (x, k) \<in> ?p} = {k. \<exists>x. (x, k) \<in> p}"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   174
          by (auto simp: T_def image_iff Bex_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   175
        then show "\<Union>{k. \<exists>x. (x, k) \<in> ?p} = cbox x y"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   176
          using p(1) by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   177
      qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   178
      ultimately have I: "norm ((\<Sum>(x,k) \<in> ?p. content k *\<^sub>R f x) - I) < e"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   179
        using integral_f by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   180
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   181
      have "(\<Sum>(x,k) \<in> ?p. content k *\<^sub>R f x) =
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   182
        (\<Sum>(x,k) \<in> ?T ` (p \<inter> s). content k *\<^sub>R f x) + (\<Sum>(x,k) \<in> p - s. content k *\<^sub>R f x)"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   183
        using p(1)[THEN tagged_division_ofD(1)]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   184
        by (safe intro!: sum.union_inter_neutral) (auto simp: s_def T_def)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   185
      also have "(\<Sum>(x,k) \<in> ?T ` (p \<inter> s). content k *\<^sub>R f x) = (\<Sum>(x,k) \<in> p \<inter> s. content k *\<^sub>R f (T X k))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   186
      proof (subst sum.reindex_nontrivial, safe)
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   187
        fix x1 x2 k assume 1: "(x1, k) \<in> p" "(x1, k) \<in> s" and 2: "(x2, k) \<in> p" "(x2, k) \<in> s"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   188
          and eq: "content k *\<^sub>R f (T X k) \<noteq> 0"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   189
        with tagged_division_ofD(5)[OF p(1), of x1 k x2 k] tagged_division_ofD(4)[OF p(1), of x1 k]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   190
        show "x1 = x2"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   191
          by (auto simp: content_eq_0_interior)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   192
      qed (use p in \<open>auto intro!: sum.cong\<close>)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   193
      finally have eq: "(\<Sum>(x,k) \<in> ?p. content k *\<^sub>R f x) =
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   194
        (\<Sum>(x,k) \<in> p \<inter> s. content k *\<^sub>R f (T X k)) + (\<Sum>(x,k) \<in> p - s. content k *\<^sub>R f x)" .
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   195
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   196
      have in_T: "(x, k) \<in> s \<Longrightarrow> T X k \<in> X" for x k
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   197
        using in_s[of x k] by (auto simp: C_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   198
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   199
      note I eq in_T }
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   200
    note parts = this
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   201
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   202
    have p_in_L: "(x, k) \<in> p \<Longrightarrow> k \<in> sets ?L" for x k
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   203
      using tagged_division_ofD(3, 4)[OF p(1), of x k] by (auto simp: sets_restrict_space)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   204
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   205
    have [simp]: "finite p"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   206
      using tagged_division_ofD(1)[OF p(1)] .
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   207
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   208
    have "(M - 3*e) * (b - a) \<le> (\<Sum>(x,k) \<in> p \<inter> s. content k) * (b - a)"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   209
    proof (intro mult_right_mono)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   210
      have fin: "?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}}) < \<infinity>" for X
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   211
        using \<open>?\<mu> E < \<infinity>\<close> by (rule le_less_trans[rotated]) (auto intro!: emeasure_mono \<open>E \<in> sets ?L\<close>)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   212
      have sets: "(E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}}) \<in> sets ?L" for X
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   213
        using tagged_division_ofD(1)[OF p(1)] by (intro sets.Diff \<open>E \<in> sets ?L\<close> sets.finite_Union sets.Int) (auto intro: p_in_L)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   214
      { fix X assume "X \<subseteq> E" "M - e < ?\<mu>' (C X m)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   215
        have "M - e \<le> ?\<mu>' (C X m)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   216
          by (rule less_imp_le) fact
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   217
        also have "\<dots> \<le> ?\<mu>' (E - (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}}))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   218
        proof (intro outer_measure_of_mono subsetI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   219
          fix v assume "v \<in> C X m"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   220
          then have "v \<in> cbox x y" "v \<in> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   221
            using \<open>E \<subseteq> space ?L\<close> \<open>X \<subseteq> E\<close> by (auto simp: space_restrict_space C_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   222
          then obtain z k where "(z, k) \<in> p" "v \<in> k"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   223
            using tagged_division_ofD(6)[OF p(1), symmetric] by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   224
          then show "v \<in> E - E \<inter> (\<Union>{k\<in>snd`p. k \<inter> C X m = {}})"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   225
            using \<open>v \<in> C X m\<close> \<open>v \<in> E\<close> by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   226
        qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   227
        also have "\<dots> = ?\<mu> E - ?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}})"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   228
          using \<open>E \<in> sets ?L\<close> fin[of X] sets[of X] by (auto intro!: emeasure_Diff)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   229
        finally have "?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}}) \<le> e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   230
          using \<open>0 < e\<close> e_less_M apply (cases "?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C X m = {}})")
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   231
          by (auto simp add: \<open>?\<mu> E = M\<close> ennreal_minus ennreal_le_iff2)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   232
        note this }
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   233
      note upper_bound = this
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   234
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   235
      have "?\<mu> (E \<inter> \<Union>(snd`(p - s))) =
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   236
        ?\<mu> ((E \<inter> \<Union>{k\<in>snd`p. k \<inter> C ?E m = {}}) \<union> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C ?F m = {}}))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   237
        by (intro arg_cong[where f="?\<mu>"]) (auto simp: s_def image_def Bex_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   238
      also have "\<dots> \<le> ?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C ?E m = {}}) + ?\<mu> (E \<inter> \<Union>{k\<in>snd`p. k \<inter> C ?F m = {}})"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   239
        using sets[of ?E] sets[of ?F] M_minus_e by (intro emeasure_subadditive) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   240
      also have "\<dots> \<le> e + ennreal e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   241
        using upper_bound[of ?E] upper_bound[of ?F] M_minus_e by (intro add_mono) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   242
      finally have "?\<mu> E - 2*e \<le> ?\<mu> (E - (E \<inter> \<Union>(snd`(p - s))))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   243
        using \<open>0 < e\<close> \<open>E \<in> sets ?L\<close> tagged_division_ofD(1)[OF p(1)]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   244
        by (subst emeasure_Diff)
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68120
diff changeset
   245
           (auto simp: top_unique simp flip: ennreal_plus
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   246
                 intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: p_in_L)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   247
      also have "\<dots> \<le> ?\<mu> (\<Union>x\<in>p \<inter> s. snd x)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   248
      proof (safe intro!: emeasure_mono subsetI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   249
        fix v assume "v \<in> E" and not: "v \<notin> (\<Union>x\<in>p \<inter> s. snd x)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   250
        then have "v \<in> cbox x y"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   251
          using \<open>E \<subseteq> space ?L\<close> by (auto simp: space_restrict_space)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   252
        then obtain z k where "(z, k) \<in> p" "v \<in> k"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   253
          using tagged_division_ofD(6)[OF p(1), symmetric] by auto
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
   254
        with not show "v \<in> \<Union>(snd ` (p - s))"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   255
          by (auto intro!: bexI[of _ "(z, k)"] elim: ballE[of _ _ "(z, k)"])
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   256
      qed (auto intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: p_in_L)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   257
      also have "\<dots> = measure ?L (\<Union>x\<in>p \<inter> s. snd x)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   258
        by (auto intro!: emeasure_eq_ennreal_measure)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   259
      finally have "M - 2 * e \<le> measure ?L (\<Union>x\<in>p \<inter> s. snd x)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   260
        unfolding \<open>?\<mu> E = M\<close> using \<open>0 < e\<close> by (simp add: ennreal_minus)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   261
      also have "measure ?L (\<Union>x\<in>p \<inter> s. snd x) = content (\<Union>x\<in>p \<inter> s. snd x)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   262
        using tagged_division_ofD(1,3,4) [OF p(1)]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   263
        by (intro content_eq_L[symmetric])
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   264
           (fastforce intro!: sets.finite_UN UN_least del: subsetI)+
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   265
      also have "content (\<Union>x\<in>p \<inter> s. snd x) \<le> (\<Sum>k\<in>p \<inter> s. content (snd k))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   266
        using p(1) by (auto simp: emeasure_lborel_cbox_eq intro!: measure_subadditive_finite
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   267
                            dest!: p(1)[THEN tagged_division_ofD(4)])
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   268
      finally show "M - 3 * e \<le> (\<Sum>(x, y)\<in>p \<inter> s. content y)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   269
        using \<open>0 < e\<close> by (simp add: split_beta)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   270
    qed (use \<open>a < b\<close> in auto)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   271
    also have "\<dots> = (\<Sum>(x,k) \<in> p \<inter> s. content k * (b - a))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   272
      by (simp add: sum_distrib_right split_beta')
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   273
    also have "\<dots> \<le> (\<Sum>(x,k) \<in> p \<inter> s. content k * (f (T ?F k) - f (T ?E k)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   274
      using parts(3) by (auto intro!: sum_mono mult_left_mono diff_mono)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   275
    also have "\<dots> = (\<Sum>(x,k) \<in> p \<inter> s. content k * f (T ?F k)) - (\<Sum>(x,k) \<in> p \<inter> s. content k * f (T ?E k))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   276
      by (auto intro!: sum.cong simp: field_simps sum_subtractf[symmetric])
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   277
    also have "\<dots> = (\<Sum>(x,k) \<in> ?B. content k *\<^sub>R f x) - (\<Sum>(x,k) \<in> ?A. content k *\<^sub>R f x)"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   278
      by (subst (1 2) parts) auto
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
   279
    also have "\<dots> \<le> norm ((\<Sum>(x,k) \<in> ?B. content k *\<^sub>R f x) - (\<Sum>(x,k) \<in> ?A. content k *\<^sub>R f x))"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   280
      by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   281
    also have "\<dots> \<le> e + e"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   282
      using parts(1)[of ?E] parts(1)[of ?F] by (intro norm_diff_triangle_le[of _ I]) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   283
    finally show False
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   284
      using \<open>2 * e < (b - a) * (M - e * 3)\<close> by (auto simp: field_simps)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   285
  qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   286
  moreover have "?\<mu>' ?E \<le> ?\<mu> E" "?\<mu>' ?F \<le> ?\<mu> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   287
    unfolding outer_measure_of_eq[OF \<open>E \<in> sets ?L\<close>, symmetric] by (auto intro!: outer_measure_of_mono)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   288
  ultimately show "min (?\<mu>' ?E) (?\<mu>' ?F) < ?\<mu> E"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   289
    unfolding min_less_iff_disj by (auto simp: less_le)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   290
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   291
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   292
lemma has_integral_implies_lebesgue_measurable_real:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   293
  fixes f :: "'a :: euclidean_space \<Rightarrow> real"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   294
  assumes f: "(f has_integral I) \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   295
  shows "(\<lambda>x. f x * indicator \<Omega> x) \<in> lebesgue \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   296
proof -
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   297
  define B :: "nat \<Rightarrow> 'a set" where "B n = cbox (- real n *\<^sub>R One) (real n *\<^sub>R One)" for n
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   298
  show "(\<lambda>x. f x * indicator \<Omega> x) \<in> lebesgue \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   299
  proof (rule measurable_piecewise_restrict)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
   300
    have "(\<Union>n. box (- real n *\<^sub>R One) (real n *\<^sub>R One)) \<subseteq> \<Union>(B ` UNIV)"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   301
      unfolding B_def by (intro UN_mono box_subset_cbox order_refl)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
   302
    then show "countable (range B)" "space lebesgue \<subseteq> \<Union>(B ` UNIV)"
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   303
      by (auto simp: B_def UN_box_eq_UNIV)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   304
  next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   305
    fix \<Omega>' assume "\<Omega>' \<in> range B"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   306
    then obtain n where \<Omega>': "\<Omega>' = B n" by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   307
    then show "\<Omega>' \<inter> space lebesgue \<in> sets lebesgue"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   308
      by (auto simp: B_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   309
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   310
    have "f integrable_on \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   311
      using f by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   312
    then have "(\<lambda>x. f x * indicator \<Omega> x) integrable_on \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   313
      by (auto simp: integrable_on_def cong: has_integral_cong)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   314
    then have "(\<lambda>x. f x * indicator \<Omega> x) integrable_on (\<Omega> \<union> B n)"
66552
507a42c0a0ff last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents: 66513
diff changeset
   315
      by (rule integrable_on_superset) auto
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   316
    then have "(\<lambda>x. f x * indicator \<Omega> x) integrable_on B n"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   317
      unfolding B_def by (rule integrable_on_subcbox) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   318
    then show "(\<lambda>x. f x * indicator \<Omega> x) \<in> lebesgue_on \<Omega>' \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   319
      unfolding B_def \<Omega>' by (auto intro: has_integral_implies_lebesgue_measurable_cbox simp: integrable_on_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   320
  qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   321
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   322
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   323
lemma has_integral_implies_lebesgue_measurable:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   324
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   325
  assumes f: "(f has_integral I) \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   326
  shows "(\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> lebesgue \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   327
proof (intro borel_measurable_euclidean_space[where 'c='b, THEN iffD2] ballI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   328
  fix i :: "'b" assume "i \<in> Basis"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   329
  have "(\<lambda>x. (f x \<bullet> i) * indicator \<Omega> x) \<in> borel_measurable (completion lborel)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   330
    using has_integral_linear[OF f bounded_linear_inner_left, of i]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   331
    by (intro has_integral_implies_lebesgue_measurable_real) (auto simp: comp_def)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   332
  then show "(\<lambda>x. indicator \<Omega> x *\<^sub>R f x \<bullet> i) \<in> borel_measurable (completion lborel)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   333
    by (simp add: ac_simps)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   334
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   335
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69508
diff changeset
   336
subsection \<open>Equivalence Lebesgue integral on \<^const>\<open>lborel\<close> and HK-integral\<close>
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   337
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   338
lemma has_integral_measure_lborel:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   339
  fixes A :: "'a::euclidean_space set"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   340
  assumes A[measurable]: "A \<in> sets borel" and finite: "emeasure lborel A < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   341
  shows "((\<lambda>x. 1) has_integral measure lborel A) A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   342
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   343
  { fix l u :: 'a
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   344
    have "((\<lambda>x. 1) has_integral measure lborel (box l u)) (box l u)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   345
    proof cases
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   346
      assume "\<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   347
      then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   348
        apply simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   349
        apply (subst has_integral_restrict[symmetric, OF box_subset_cbox])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   350
        apply (subst has_integral_spike_interior_eq[where g="\<lambda>_. 1"])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   351
        using has_integral_const[of "1::real" l u]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   352
        apply (simp_all add: inner_diff_left[symmetric] content_cbox_cases)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   353
        done
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   354
    next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   355
      assume "\<not> (\<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   356
      then have "box l u = {}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   357
        unfolding box_eq_empty by (auto simp: not_le intro: less_imp_le)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   358
      then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   359
        by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   360
    qed }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   361
  note has_integral_box = this
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   362
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   363
  { fix a b :: 'a let ?M = "\<lambda>A. measure lborel (A \<inter> box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   364
    have "Int_stable  (range (\<lambda>(a, b). box a b))"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   365
      by (auto simp: Int_stable_def box_Int_box)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   366
    moreover have "(range (\<lambda>(a, b). box a b)) \<subseteq> Pow UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   367
      by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   368
    moreover have "A \<in> sigma_sets UNIV (range (\<lambda>(a, b). box a b))"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   369
       using A unfolding borel_eq_box by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   370
    ultimately have "((\<lambda>x. 1) has_integral ?M A) (A \<inter> box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   371
    proof (induction rule: sigma_sets_induct_disjoint)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   372
      case (basic A) then show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   373
        by (auto simp: box_Int_box has_integral_box)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   374
    next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   375
      case empty then show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   376
        by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   377
    next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   378
      case (compl A)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   379
      then have [measurable]: "A \<in> sets borel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   380
        by (simp add: borel_eq_box)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   381
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   382
      have "((\<lambda>x. 1) has_integral ?M (box a b)) (box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   383
        by (simp add: has_integral_box)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   384
      moreover have "((\<lambda>x. if x \<in> A \<inter> box a b then 1 else 0) has_integral ?M A) (box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   385
        by (subst has_integral_restrict) (auto intro: compl)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   386
      ultimately have "((\<lambda>x. 1 - (if x \<in> A \<inter> box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   387
        by (rule has_integral_diff)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   388
      then have "((\<lambda>x. (if x \<in> (UNIV - A) \<inter> box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   389
        by (rule has_integral_cong[THEN iffD1, rotated 1]) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   390
      then have "((\<lambda>x. 1) has_integral ?M (box a b) - ?M A) ((UNIV - A) \<inter> box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   391
        by (subst (asm) has_integral_restrict) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   392
      also have "?M (box a b) - ?M A = ?M (UNIV - A)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   393
        by (subst measure_Diff[symmetric]) (auto simp: emeasure_lborel_box_eq Diff_Int_distrib2)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   394
      finally show ?case .
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   395
    next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   396
      case (union F)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   397
      then have [measurable]: "\<And>i. F i \<in> sets borel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   398
        by (simp add: borel_eq_box subset_eq)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
   399
      have "((\<lambda>x. if x \<in> \<Union>(F ` UNIV) \<inter> box a b then 1 else 0) has_integral ?M (\<Union>i. F i)) (box a b)"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   400
      proof (rule has_integral_monotone_convergence_increasing)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   401
        let ?f = "\<lambda>k x. \<Sum>i<k. if x \<in> F i \<inter> box a b then 1 else 0 :: real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   402
        show "\<And>k. (?f k has_integral (\<Sum>i<k. ?M (F i))) (box a b)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   403
          using union.IH by (auto intro!: has_integral_sum simp del: Int_iff)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   404
        show "\<And>k x. ?f k x \<le> ?f (Suc k) x"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   405
          by (intro sum_mono2) auto
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   406
        from union(1) have *: "\<And>x i j. x \<in> F i \<Longrightarrow> x \<in> F j \<longleftrightarrow> j = i"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   407
          by (auto simp add: disjoint_family_on_def)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
   408
        show "\<And>x. (\<lambda>k. ?f k x) \<longlonglongrightarrow> (if x \<in> \<Union>(F ` UNIV) \<inter> box a b then 1 else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   409
          apply (auto simp: * sum.If_cases Iio_Int_singleton)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   410
          apply (rule_tac k="Suc xa" in LIMSEQ_offset)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   411
          apply simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   412
          done
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   413
        have *: "emeasure lborel ((\<Union>x. F x) \<inter> box a b) \<le> emeasure lborel (box a b)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   414
          by (intro emeasure_mono) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   415
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   416
        with union(1) show "(\<lambda>k. \<Sum>i<k. ?M (F i)) \<longlonglongrightarrow> ?M (\<Union>i. F i)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   417
          unfolding sums_def[symmetric] UN_extend_simps
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   418
          by (intro measure_UNION) (auto simp: disjoint_family_on_def emeasure_lborel_box_eq top_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   419
      qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   420
      then show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   421
        by (subst (asm) has_integral_restrict) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   422
    qed }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   423
  note * = this
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   424
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   425
  show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   426
  proof (rule has_integral_monotone_convergence_increasing)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   427
    let ?B = "\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One) :: 'a set"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   428
    let ?f = "\<lambda>n::nat. \<lambda>x. if x \<in> A \<inter> ?B n then 1 else 0 :: real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   429
    let ?M = "\<lambda>n. measure lborel (A \<inter> ?B n)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   430
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   431
    show "\<And>n::nat. (?f n has_integral ?M n) A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   432
      using * by (subst has_integral_restrict) simp_all
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   433
    show "\<And>k x. ?f k x \<le> ?f (Suc k) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   434
      by (auto simp: box_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   435
    { fix x assume "x \<in> A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   436
      moreover have "(\<lambda>k. indicator (A \<inter> ?B k) x :: real) \<longlonglongrightarrow> indicator (\<Union>k::nat. A \<inter> ?B k) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   437
        by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def box_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   438
      ultimately show "(\<lambda>k. if x \<in> A \<inter> ?B k then 1 else 0::real) \<longlonglongrightarrow> 1"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   439
        by (simp add: indicator_def UN_box_eq_UNIV) }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   440
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   441
    have "(\<lambda>n. emeasure lborel (A \<inter> ?B n)) \<longlonglongrightarrow> emeasure lborel (\<Union>n::nat. A \<inter> ?B n)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   442
      by (intro Lim_emeasure_incseq) (auto simp: incseq_def box_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   443
    also have "(\<lambda>n. emeasure lborel (A \<inter> ?B n)) = (\<lambda>n. measure lborel (A \<inter> ?B n))"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   444
    proof (intro ext emeasure_eq_ennreal_measure)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   445
      fix n have "emeasure lborel (A \<inter> ?B n) \<le> emeasure lborel (?B n)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   446
        by (intro emeasure_mono) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   447
      then show "emeasure lborel (A \<inter> ?B n) \<noteq> top"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   448
        by (auto simp: top_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   449
    qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   450
    finally show "(\<lambda>n. measure lborel (A \<inter> ?B n)) \<longlonglongrightarrow> measure lborel A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   451
      using emeasure_eq_ennreal_measure[of lborel A] finite
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   452
      by (simp add: UN_box_eq_UNIV less_top)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   453
  qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   454
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   455
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   456
lemma nn_integral_has_integral:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   457
  fixes f::"'a::euclidean_space \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   458
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) = ennreal r" "0 \<le> r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   459
  shows "(f has_integral r) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   460
using f proof (induct f arbitrary: r rule: borel_measurable_induct_real)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   461
  case (set A)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   462
  then have "((\<lambda>x. 1) has_integral measure lborel A) A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   463
    by (intro has_integral_measure_lborel) (auto simp: ennreal_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   464
  with set show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   465
    by (simp add: ennreal_indicator measure_def) (simp add: indicator_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   466
next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   467
  case (mult g c)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   468
  then have "ennreal c * (\<integral>\<^sup>+ x. g x \<partial>lborel) = ennreal r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   469
    by (subst nn_integral_cmult[symmetric]) (auto simp: ennreal_mult)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   470
  with \<open>0 \<le> r\<close> \<open>0 \<le> c\<close>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   471
  obtain r' where "(c = 0 \<and> r = 0) \<or> (0 \<le> r' \<and> (\<integral>\<^sup>+ x. ennreal (g x) \<partial>lborel) = ennreal r' \<and> r = c * r')"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   472
    by (cases "\<integral>\<^sup>+ x. ennreal (g x) \<partial>lborel" rule: ennreal_cases)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   473
       (auto split: if_split_asm simp: ennreal_mult_top ennreal_mult[symmetric])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   474
  with mult show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   475
    by (auto intro!: has_integral_cmult_real)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   476
next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   477
  case (add g h)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   478
  then have "(\<integral>\<^sup>+ x. h x + g x \<partial>lborel) = (\<integral>\<^sup>+ x. h x \<partial>lborel) + (\<integral>\<^sup>+ x. g x \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   479
    by (simp add: nn_integral_add)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   480
  with add obtain a b where "0 \<le> a" "0 \<le> b" "(\<integral>\<^sup>+ x. h x \<partial>lborel) = ennreal a" "(\<integral>\<^sup>+ x. g x \<partial>lborel) = ennreal b" "r = a + b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   481
    by (cases "\<integral>\<^sup>+ x. h x \<partial>lborel" "\<integral>\<^sup>+ x. g x \<partial>lborel" rule: ennreal2_cases)
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68120
diff changeset
   482
       (auto simp: add_top nn_integral_add top_add simp flip: ennreal_plus)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   483
  with add show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   484
    by (auto intro!: has_integral_add)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   485
next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   486
  case (seq U)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   487
  note seq(1)[measurable] and f[measurable]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   488
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   489
  { fix i x
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   490
    have "U i x \<le> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   491
      using seq(5)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   492
      apply (rule LIMSEQ_le_const)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   493
      using seq(4)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   494
      apply (auto intro!: exI[of _ i] simp: incseq_def le_fun_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   495
      done }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   496
  note U_le_f = this
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   497
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   498
  { fix i
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   499
    have "(\<integral>\<^sup>+x. U i x \<partial>lborel) \<le> (\<integral>\<^sup>+x. f x \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   500
      using seq(2) f(2) U_le_f by (intro nn_integral_mono) simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   501
    then obtain p where "(\<integral>\<^sup>+x. U i x \<partial>lborel) = ennreal p" "p \<le> r" "0 \<le> p"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   502
      using seq(6) \<open>0\<le>r\<close> by (cases "\<integral>\<^sup>+x. U i x \<partial>lborel" rule: ennreal_cases) (auto simp: top_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   503
    moreover note seq
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   504
    ultimately have "\<exists>p. (\<integral>\<^sup>+x. U i x \<partial>lborel) = ennreal p \<and> 0 \<le> p \<and> p \<le> r \<and> (U i has_integral p) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   505
      by auto }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   506
  then obtain p where p: "\<And>i. (\<integral>\<^sup>+x. ennreal (U i x) \<partial>lborel) = ennreal (p i)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   507
    and bnd: "\<And>i. p i \<le> r" "\<And>i. 0 \<le> p i"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   508
    and U_int: "\<And>i.(U i has_integral (p i)) UNIV" by metis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   509
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   510
  have int_eq: "\<And>i. integral UNIV (U i) = p i" using U_int by (rule integral_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   511
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   512
  have *: "f integrable_on UNIV \<and> (\<lambda>k. integral UNIV (U k)) \<longlonglongrightarrow> integral UNIV f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   513
  proof (rule monotone_convergence_increasing)
66408
46cfd348c373 general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents: 66344
diff changeset
   514
    show "\<And>k. U k integrable_on UNIV" using U_int by auto
46cfd348c373 general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents: 66344
diff changeset
   515
    show "\<And>k x. x\<in>UNIV \<Longrightarrow> U k x \<le> U (Suc k) x" using \<open>incseq U\<close> by (auto simp: incseq_def le_fun_def)
46cfd348c373 general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents: 66344
diff changeset
   516
    then show "bounded (range (\<lambda>k. integral UNIV (U k)))"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   517
      using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r])
66408
46cfd348c373 general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents: 66344
diff changeset
   518
    show "\<And>x. x\<in>UNIV \<Longrightarrow> (\<lambda>k. U k x) \<longlonglongrightarrow> f x"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   519
      using seq by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   520
  qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   521
  moreover have "(\<lambda>i. (\<integral>\<^sup>+x. U i x \<partial>lborel)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. f x \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   522
    using seq f(2) U_le_f by (intro nn_integral_dominated_convergence[where w=f]) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   523
  ultimately have "integral UNIV f = r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   524
    by (auto simp add: bnd int_eq p seq intro: LIMSEQ_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   525
  with * show ?case
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   526
    by (simp add: has_integral_integral)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   527
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   528
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   529
lemma nn_integral_lborel_eq_integral:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   530
  fixes f::"'a::euclidean_space \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   531
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   532
  shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = integral UNIV f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   533
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   534
  from f(3) obtain r where r: "(\<integral>\<^sup>+x. f x \<partial>lborel) = ennreal r" "0 \<le> r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   535
    by (cases "\<integral>\<^sup>+x. f x \<partial>lborel" rule: ennreal_cases) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   536
  then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   537
    using nn_integral_has_integral[OF f(1,2) r] by (simp add: integral_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   538
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   539
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   540
lemma nn_integral_integrable_on:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   541
  fixes f::"'a::euclidean_space \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   542
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   543
  shows "f integrable_on UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   544
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   545
  from f(3) obtain r where r: "(\<integral>\<^sup>+x. f x \<partial>lborel) = ennreal r" "0 \<le> r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   546
    by (cases "\<integral>\<^sup>+x. f x \<partial>lborel" rule: ennreal_cases) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   547
  then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   548
    by (intro has_integral_integrable[where i=r] nn_integral_has_integral[where r=r] f)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   549
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   550
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   551
lemma nn_integral_has_integral_lborel:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   552
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   553
  assumes f_borel: "f \<in> borel_measurable borel" and nonneg: "\<And>x. 0 \<le> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   554
  assumes I: "(f has_integral I) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   555
  shows "integral\<^sup>N lborel f = I"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   556
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   557
  from f_borel have "(\<lambda>x. ennreal (f x)) \<in> borel_measurable lborel" by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
   558
  from borel_measurable_implies_simple_function_sequence'[OF this]
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
   559
  obtain F where F: "\<And>i. simple_function lborel (F i)" "incseq F"
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
   560
                 "\<And>i x. F i x < top" "\<And>x. (SUP i. F i x) = ennreal (f x)"
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
   561
    by blast
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
   562
  then have [measurable]: "\<And>i. F i \<in> borel_measurable lborel"
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
   563
    by (metis borel_measurable_simple_function)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   564
  let ?B = "\<lambda>i::nat. box (- (real i *\<^sub>R One)) (real i *\<^sub>R One) :: 'a set"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   565
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   566
  have "0 \<le> I"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   567
    using I by (rule has_integral_nonneg) (simp add: nonneg)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   568
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   569
  have F_le_f: "enn2real (F i x) \<le> f x" for i x
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   570
    using F(3,4)[where x=x] nonneg SUP_upper[of i UNIV "\<lambda>i. F i x"]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   571
    by (cases "F i x" rule: ennreal_cases) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   572
  let ?F = "\<lambda>i x. F i x * indicator (?B i) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   573
  have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>lborel) = (SUP i. integral\<^sup>N lborel (\<lambda>x. ?F i x))"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   574
  proof (subst nn_integral_monotone_convergence_SUP[symmetric])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   575
    { fix x
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   576
      obtain j where j: "x \<in> ?B j"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   577
        using UN_box_eq_UNIV by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   578
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   579
      have "ennreal (f x) = (SUP i. F i x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   580
        using F(4)[of x] nonneg[of x] by (simp add: max_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   581
      also have "\<dots> = (SUP i. ?F i x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   582
      proof (rule SUP_eq)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   583
        fix i show "\<exists>j\<in>UNIV. F i x \<le> ?F j x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   584
          using j F(2)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   585
          by (intro bexI[of _ "max i j"])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   586
             (auto split: split_max split_indicator simp: incseq_def le_fun_def box_def)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   587
      qed (auto intro!: F split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   588
      finally have "ennreal (f x) =  (SUP i. ?F i x)" . }
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   589
    then show "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>lborel) = (\<integral>\<^sup>+ x. (SUP i. ?F i x) \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   590
      by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   591
  qed (insert F, auto simp: incseq_def le_fun_def box_def split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   592
  also have "\<dots> \<le> ennreal I"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   593
  proof (rule SUP_least)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   594
    fix i :: nat
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   595
    have finite_F: "(\<integral>\<^sup>+ x. ennreal (enn2real (F i x) * indicator (?B i) x) \<partial>lborel) < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   596
    proof (rule nn_integral_bound_simple_function)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   597
      have "emeasure lborel {x \<in> space lborel. ennreal (enn2real (F i x) * indicator (?B i) x) \<noteq> 0} \<le>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   598
        emeasure lborel (?B i)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   599
        by (intro emeasure_mono)  (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   600
      then show "emeasure lborel {x \<in> space lborel. ennreal (enn2real (F i x) * indicator (?B i) x) \<noteq> 0} < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   601
        by (auto simp: less_top[symmetric] top_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   602
    qed (auto split: split_indicator
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   603
              intro!: F simple_function_compose1[where g="enn2real"] simple_function_ennreal)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   604
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   605
    have int_F: "(\<lambda>x. enn2real (F i x) * indicator (?B i) x) integrable_on UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   606
      using F(4) finite_F
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   607
      by (intro nn_integral_integrable_on) (auto split: split_indicator simp: enn2real_nonneg)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   608
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   609
    have "(\<integral>\<^sup>+ x. F i x * indicator (?B i) x \<partial>lborel) =
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   610
      (\<integral>\<^sup>+ x. ennreal (enn2real (F i x) * indicator (?B i) x) \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   611
      using F(3,4)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   612
      by (intro nn_integral_cong) (auto simp: image_iff eq_commute split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   613
    also have "\<dots> = ennreal (integral UNIV (\<lambda>x. enn2real (F i x) * indicator (?B i) x))"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   614
      using F
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   615
      by (intro nn_integral_lborel_eq_integral[OF _ _ finite_F])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   616
         (auto split: split_indicator intro: enn2real_nonneg)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   617
    also have "\<dots> \<le> ennreal I"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   618
      by (auto intro!: has_integral_le[OF integrable_integral[OF int_F] I] nonneg F_le_f
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   619
               simp: \<open>0 \<le> I\<close> split: split_indicator )
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   620
    finally show "(\<integral>\<^sup>+ x. F i x * indicator (?B i) x \<partial>lborel) \<le> ennreal I" .
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   621
  qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   622
  finally have "(\<integral>\<^sup>+ x. ennreal (f x) \<partial>lborel) < \<infinity>"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   623
    by (auto simp: less_top[symmetric] top_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   624
  from nn_integral_lborel_eq_integral[OF assms(1,2) this] I show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   625
    by (simp add: integral_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   626
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   627
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   628
lemma has_integral_iff_emeasure_lborel:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   629
  fixes A :: "'a::euclidean_space set"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   630
  assumes A[measurable]: "A \<in> sets borel" and [simp]: "0 \<le> r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   631
  shows "((\<lambda>x. 1) has_integral r) A \<longleftrightarrow> emeasure lborel A = ennreal r"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   632
proof (cases "emeasure lborel A = \<infinity>")
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   633
  case emeasure_A: True
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   634
  have "\<not> (\<lambda>x. 1::real) integrable_on A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   635
  proof
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   636
    assume int: "(\<lambda>x. 1::real) integrable_on A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   637
    then have "(indicator A::'a \<Rightarrow> real) integrable_on UNIV"
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   638
      unfolding indicator_def[abs_def] integrable_restrict_UNIV .
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   639
    then obtain r where "((indicator A::'a\<Rightarrow>real) has_integral r) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   640
      by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   641
    from nn_integral_has_integral_lborel[OF _ _ this] emeasure_A show False
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   642
      by (simp add: ennreal_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   643
  qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   644
  with emeasure_A show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   645
    by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   646
next
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   647
  case False
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   648
  then have "((\<lambda>x. 1) has_integral measure lborel A) A"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   649
    by (simp add: has_integral_measure_lborel less_top)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   650
  with False show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   651
    by (auto simp: emeasure_eq_ennreal_measure has_integral_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   652
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   653
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   654
lemma ennreal_max_0: "ennreal (max 0 x) = ennreal x"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   655
  by (auto simp: max_def ennreal_neg)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   656
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   657
lemma has_integral_integral_real:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   658
  fixes f::"'a::euclidean_space \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   659
  assumes f: "integrable lborel f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   660
  shows "(f has_integral (integral\<^sup>L lborel f)) UNIV"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   661
proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   662
  from integrableE[OF f] obtain r q
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   663
    where "0 \<le> r" "0 \<le> q"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   664
      and r: "(\<integral>\<^sup>+ x. ennreal (max 0 (f x)) \<partial>lborel) = ennreal r"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   665
      and q: "(\<integral>\<^sup>+ x. ennreal (max 0 (- f x)) \<partial>lborel) = ennreal q"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   666
      and f: "f \<in> borel_measurable lborel" and eq: "integral\<^sup>L lborel f = r - q"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   667
    unfolding ennreal_max_0 by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   668
  then have "((\<lambda>x. max 0 (f x)) has_integral r) UNIV" "((\<lambda>x. max 0 (- f x)) has_integral q) UNIV"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   669
    using nn_integral_has_integral[OF _ _ r] nn_integral_has_integral[OF _ _ q] by auto
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   670
  note has_integral_diff[OF this]
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   671
  moreover have "(\<lambda>x. max 0 (f x) - max 0 (- f x)) = f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   672
    by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   673
  ultimately show ?thesis
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   674
    by (simp add: eq)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   675
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   676
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   677
lemma has_integral_AE:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   678
  assumes ae: "AE x in lborel. x \<in> \<Omega> \<longrightarrow> f x = g x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   679
  shows "(f has_integral x) \<Omega> = (g has_integral x) \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   680
proof -
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   681
  from ae obtain N
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   682
    where N: "N \<in> sets borel" "emeasure lborel N = 0" "{x. \<not> (x \<in> \<Omega> \<longrightarrow> f x = g x)} \<subseteq> N"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   683
    by (auto elim!: AE_E)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   684
  then have not_N: "AE x in lborel. x \<notin> N"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   685
    by (simp add: AE_iff_measurable)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   686
  show ?thesis
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   687
  proof (rule has_integral_spike_eq[symmetric])
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   688
    show "\<And>x. x\<in>\<Omega> - N \<Longrightarrow> f x = g x" using N(3) by auto
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   689
    show "negligible N"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   690
      unfolding negligible_def
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   691
    proof (intro allI)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   692
      fix a b :: "'a"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   693
      let ?F = "\<lambda>x::'a. if x \<in> cbox a b then indicator N x else 0 :: real"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   694
      have "integrable lborel ?F = integrable lborel (\<lambda>x::'a. 0::real)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   695
        using not_N N(1) by (intro integrable_cong_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   696
      moreover have "(LINT x|lborel. ?F x) = (LINT x::'a|lborel. 0::real)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   697
        using not_N N(1) by (intro integral_cong_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   698
      ultimately have "(?F has_integral 0) UNIV"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   699
        using has_integral_integral_real[of ?F] by simp
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   700
      then show "(indicator N has_integral (0::real)) (cbox a b)"
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   701
        unfolding has_integral_restrict_UNIV .
63940
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   702
    qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   703
  qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   704
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   705
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   706
lemma nn_integral_has_integral_lebesgue:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   707
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   708
  assumes nonneg: "\<And>x. 0 \<le> f x" and I: "(f has_integral I) \<Omega>"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   709
  shows "integral\<^sup>N lborel (\<lambda>x. indicator \<Omega> x * f x) = I"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   710
proof -
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   711
  from I have "(\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> lebesgue \<rightarrow>\<^sub>M borel"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   712
    by (rule has_integral_implies_lebesgue_measurable)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   713
  then obtain f' :: "'a \<Rightarrow> real"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   714
    where [measurable]: "f' \<in> borel \<rightarrow>\<^sub>M borel" and eq: "AE x in lborel. indicator \<Omega> x * f x = f' x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   715
    by (auto dest: completion_ex_borel_measurable_real)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   716
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   717
  from I have "((\<lambda>x. abs (indicator \<Omega> x * f x)) has_integral I) UNIV"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   718
    using nonneg by (simp add: indicator_def if_distrib[of "\<lambda>x. x * f y" for y] cong: if_cong)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   719
  also have "((\<lambda>x. abs (indicator \<Omega> x * f x)) has_integral I) UNIV \<longleftrightarrow> ((\<lambda>x. abs (f' x)) has_integral I) UNIV"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   720
    using eq by (intro has_integral_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   721
  finally have "integral\<^sup>N lborel (\<lambda>x. abs (f' x)) = I"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   722
    by (rule nn_integral_has_integral_lborel[rotated 2]) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   723
  also have "integral\<^sup>N lborel (\<lambda>x. abs (f' x)) = integral\<^sup>N lborel (\<lambda>x. abs (indicator \<Omega> x * f x))"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   724
    using eq by (intro nn_integral_cong_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   725
  finally show ?thesis
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   726
    using nonneg by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   727
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   728
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   729
lemma has_integral_iff_nn_integral_lebesgue:
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   730
  assumes f: "\<And>x. 0 \<le> f x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   731
  shows "(f has_integral r) UNIV \<longleftrightarrow> (f \<in> lebesgue \<rightarrow>\<^sub>M borel \<and> integral\<^sup>N lebesgue f = r \<and> 0 \<le> r)" (is "?I = ?N")
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   732
proof
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   733
  assume ?I
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   734
  have "0 \<le> r"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   735
    using has_integral_nonneg[OF \<open>?I\<close>] f by auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   736
  then show ?N
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   737
    using nn_integral_has_integral_lebesgue[OF f \<open>?I\<close>]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   738
      has_integral_implies_lebesgue_measurable[OF \<open>?I\<close>]
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   739
    by (auto simp: nn_integral_completion)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   740
next
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   741
  assume ?N
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   742
  then obtain f' where f': "f' \<in> borel \<rightarrow>\<^sub>M borel" "AE x in lborel. f x = f' x"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   743
    by (auto dest: completion_ex_borel_measurable_real)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   744
  moreover have "(\<integral>\<^sup>+ x. ennreal \<bar>f' x\<bar> \<partial>lborel) = (\<integral>\<^sup>+ x. ennreal \<bar>f x\<bar> \<partial>lborel)"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   745
    using f' by (intro nn_integral_cong_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   746
  moreover have "((\<lambda>x. \<bar>f' x\<bar>) has_integral r) UNIV \<longleftrightarrow> ((\<lambda>x. \<bar>f x\<bar>) has_integral r) UNIV"
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   747
    using f' by (intro has_integral_AE) auto
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   748
  moreover note nn_integral_has_integral[of "\<lambda>x. \<bar>f' x\<bar>" r] \<open>?N\<close>
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   749
  ultimately show ?I
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   750
    using f by (auto simp: nn_integral_completion)
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   751
qed
0d82c4c94014 prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
hoelzl
parents: 63886
diff changeset
   752
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   753
context
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   754
  fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   755
begin
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   756
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   757
lemma has_integral_integral_lborel:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   758
  assumes f: "integrable lborel f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   759
  shows "(f has_integral (integral\<^sup>L lborel f)) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   760
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   761
  have "((\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) has_integral (\<Sum>b\<in>Basis. integral\<^sup>L lborel (\<lambda>x. f x \<bullet> b) *\<^sub>R b)) UNIV"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   762
    using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left has_integral_integral_real) auto
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   763
  also have eq_f: "(\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) = f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   764
    by (simp add: fun_eq_iff euclidean_representation)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   765
  also have "(\<Sum>b\<in>Basis. integral\<^sup>L lborel (\<lambda>x. f x \<bullet> b) *\<^sub>R b) = integral\<^sup>L lborel f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   766
    using f by (subst (2) eq_f[symmetric]) simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   767
  finally show ?thesis .
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   768
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   769
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   770
lemma integrable_on_lborel: "integrable lborel f \<Longrightarrow> f integrable_on UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   771
  using has_integral_integral_lborel by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   772
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   773
lemma integral_lborel: "integrable lborel f \<Longrightarrow> integral UNIV f = (\<integral>x. f x \<partial>lborel)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   774
  using has_integral_integral_lborel by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   775
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   776
end
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
   777
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   778
context
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   779
begin
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   780
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   781
private lemma has_integral_integral_lebesgue_real:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   782
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   783
  assumes f: "integrable lebesgue f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   784
  shows "(f has_integral (integral\<^sup>L lebesgue f)) UNIV"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   785
proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   786
  obtain f' where f': "f' \<in> borel \<rightarrow>\<^sub>M borel" "AE x in lborel. f x = f' x"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   787
    using completion_ex_borel_measurable_real[OF borel_measurable_integrable[OF f]] by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   788
  moreover have "(\<integral>\<^sup>+ x. ennreal (norm (f x)) \<partial>lborel) = (\<integral>\<^sup>+ x. ennreal (norm (f' x)) \<partial>lborel)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   789
    using f' by (intro nn_integral_cong_AE) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   790
  ultimately have "integrable lborel f'"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   791
    using f by (auto simp: integrable_iff_bounded nn_integral_completion cong: nn_integral_cong_AE)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   792
  note has_integral_integral_real[OF this]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   793
  moreover have "integral\<^sup>L lebesgue f = integral\<^sup>L lebesgue f'"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   794
    using f' f by (intro integral_cong_AE) (auto intro: AE_completion measurable_completion)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   795
  moreover have "integral\<^sup>L lebesgue f' = integral\<^sup>L lborel f'"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   796
    using f' by (simp add: integral_completion)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   797
  moreover have "(f' has_integral integral\<^sup>L lborel f') UNIV \<longleftrightarrow> (f has_integral integral\<^sup>L lborel f') UNIV"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   798
    using f' by (intro has_integral_AE) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   799
  ultimately show ?thesis
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   800
    by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   801
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   802
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   803
lemma has_integral_integral_lebesgue:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   804
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   805
  assumes f: "integrable lebesgue f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   806
  shows "(f has_integral (integral\<^sup>L lebesgue f)) UNIV"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   807
proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   808
  have "((\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) has_integral (\<Sum>b\<in>Basis. integral\<^sup>L lebesgue (\<lambda>x. f x \<bullet> b) *\<^sub>R b)) UNIV"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
   809
    using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left has_integral_integral_lebesgue_real) auto
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   810
  also have eq_f: "(\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) = f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   811
    by (simp add: fun_eq_iff euclidean_representation)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   812
  also have "(\<Sum>b\<in>Basis. integral\<^sup>L lebesgue (\<lambda>x. f x \<bullet> b) *\<^sub>R b) = integral\<^sup>L lebesgue f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   813
    using f by (subst (2) eq_f[symmetric]) simp
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   814
  finally show ?thesis .
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   815
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   816
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   817
lemma has_integral_integral_lebesgue_on:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   818
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   819
  assumes "integrable (lebesgue_on S) f" "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   820
  shows "(f has_integral (integral\<^sup>L (lebesgue_on S) f)) S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   821
proof -
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   822
  let ?f = "\<lambda>x. if x \<in> S then f x else 0"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   823
  have "integrable lebesgue (\<lambda>x. indicat_real S x *\<^sub>R f x)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   824
    using indicator_scaleR_eq_if [of S _ f] assms
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   825
  by (metis (full_types) integrable_restrict_space sets.Int_space_eq2)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   826
  then have "integrable lebesgue ?f"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   827
    using indicator_scaleR_eq_if [of S _ f] assms by auto
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   828
  then have "(?f has_integral (integral\<^sup>L lebesgue ?f)) UNIV"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   829
    by (rule has_integral_integral_lebesgue)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   830
  then have "(f has_integral (integral\<^sup>L lebesgue ?f)) S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   831
    using has_integral_restrict_UNIV by blast
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   832
  moreover
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   833
  have "S \<inter> space lebesgue \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   834
    by (simp add: assms)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   835
  then have "(integral\<^sup>L lebesgue ?f) = (integral\<^sup>L (lebesgue_on S) f)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   836
    by (simp add: integral_restrict_space indicator_scaleR_eq_if)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   837
  ultimately show ?thesis
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   838
    by auto
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   839
qed
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   840
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   841
lemma lebesgue_integral_eq_integral:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   842
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   843
  assumes "integrable (lebesgue_on S) f" "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   844
  shows "integral\<^sup>L (lebesgue_on S) f = integral S f"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   845
  by (metis has_integral_integral_lebesgue_on assms integral_unique)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
   846
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   847
lemma integrable_on_lebesgue:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   848
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   849
  shows "integrable lebesgue f \<Longrightarrow> f integrable_on UNIV"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   850
  using has_integral_integral_lebesgue by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   851
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   852
lemma integral_lebesgue:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   853
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   854
  shows "integrable lebesgue f \<Longrightarrow> integral UNIV f = (\<integral>x. f x \<partial>lebesgue)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   855
  using has_integral_integral_lebesgue by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   856
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   857
end
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   858
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   859
subsection \<open>Absolute integrability (this is the same as Lebesgue integrability)\<close>
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   860
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   861
translations
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   862
"LBINT x. f" == "CONST lebesgue_integral CONST lborel (\<lambda>x. f)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   863
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   864
translations
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   865
"LBINT x:A. f" == "CONST set_lebesgue_integral CONST lborel A (\<lambda>x. f)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   866
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   867
lemma set_integral_reflect:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   868
  fixes S and f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   869
  shows "(LBINT x : S. f x) = (LBINT x : {x. - x \<in> S}. f (- x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   870
  unfolding set_lebesgue_integral_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   871
  by (subst lborel_integral_real_affine[where c="-1" and t=0])
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   872
     (auto intro!: Bochner_Integration.integral_cong split: split_indicator)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   873
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   874
lemma borel_integrable_atLeastAtMost':
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   875
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   876
  assumes f: "continuous_on {a..b} f"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
   877
  shows "set_integrable lborel {a..b} f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   878
  unfolding set_integrable_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   879
  by (intro borel_integrable_compact compact_Icc f)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   880
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   881
lemma integral_FTC_atLeastAtMost:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   882
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   883
  assumes "a \<le> b"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   884
    and F: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   885
    and f: "continuous_on {a .. b} f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   886
  shows "integral\<^sup>L lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x) = F b - F a"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   887
proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   888
  let ?f = "\<lambda>x. indicator {a .. b} x *\<^sub>R f x"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   889
  have "(?f has_integral (\<integral>x. ?f x \<partial>lborel)) UNIV"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   890
    using borel_integrable_atLeastAtMost'[OF f]
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   891
    unfolding set_integrable_def by (rule has_integral_integral_lborel)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   892
  moreover
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   893
  have "(f has_integral F b - F a) {a .. b}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   894
    by (intro fundamental_theorem_of_calculus ballI assms) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   895
  then have "(?f has_integral F b - F a) {a .. b}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   896
    by (subst has_integral_cong[where g=f]) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   897
  then have "(?f has_integral F b - F a) UNIV"
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   898
    by (intro has_integral_on_superset[where T=UNIV and S="{a..b}"]) auto
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   899
  ultimately show "integral\<^sup>L lborel ?f = F b - F a"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   900
    by (rule has_integral_unique)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   901
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   902
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   903
lemma set_borel_integral_eq_integral:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   904
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   905
  assumes "set_integrable lborel S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   906
  shows "f integrable_on S" "LINT x : S | lborel. f x = integral S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   907
proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   908
  let ?f = "\<lambda>x. indicator S x *\<^sub>R f x"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   909
  have "(?f has_integral LINT x : S | lborel. f x) UNIV"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
   910
    using assms has_integral_integral_lborel
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   911
    unfolding set_integrable_def set_lebesgue_integral_def by blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   912
  hence 1: "(f has_integral (set_lebesgue_integral lborel S f)) S"
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   913
    apply (subst has_integral_restrict_UNIV [symmetric])
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   914
    apply (rule has_integral_eq)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   915
    by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   916
  thus "f integrable_on S"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   917
    by (auto simp add: integrable_on_def)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   918
  with 1 have "(f has_integral (integral S f)) S"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   919
    by (intro integrable_integral, auto simp add: integrable_on_def)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   920
  thus "LINT x : S | lborel. f x = integral S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   921
    by (intro has_integral_unique [OF 1])
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   922
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   923
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   924
lemma has_integral_set_lebesgue:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   925
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   926
  assumes f: "set_integrable lebesgue S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   927
  shows "(f has_integral (LINT x:S|lebesgue. f x)) S"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
   928
  using has_integral_integral_lebesgue f
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   929
  by (fastforce simp add: set_integrable_def set_lebesgue_integral_def indicator_def if_distrib[of "\<lambda>x. x *\<^sub>R f _"] cong: if_cong)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   930
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   931
lemma set_lebesgue_integral_eq_integral:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   932
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   933
  assumes f: "set_integrable lebesgue S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   934
  shows "f integrable_on S" "LINT x:S | lebesgue. f x = integral S f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   935
  using has_integral_set_lebesgue[OF f] by (auto simp: integral_unique integrable_on_def)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   936
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
   937
lemma lmeasurable_iff_has_integral:
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
   938
  "S \<in> lmeasurable \<longleftrightarrow> ((indicator S) has_integral measure lebesgue S) UNIV"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
   939
  by (subst has_integral_iff_nn_integral_lebesgue)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
   940
     (auto simp: ennreal_indicator emeasure_eq_measure2 borel_measurable_indicator_iff intro!: fmeasurableI)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
   941
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   942
abbreviation
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   943
  absolutely_integrable_on :: "('a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}) \<Rightarrow> 'a set \<Rightarrow> bool"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   944
  (infixr "absolutely'_integrable'_on" 46)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   945
  where "f absolutely_integrable_on s \<equiv> set_integrable lebesgue s f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   946
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   947
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
   948
lemma absolutely_integrable_zero [simp]: "(\<lambda>x. 0) absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
   949
    by (simp add: set_integrable_def)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
   950
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   951
lemma absolutely_integrable_on_def:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   952
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   953
  shows "f absolutely_integrable_on S \<longleftrightarrow> f integrable_on S \<and> (\<lambda>x. norm (f x)) integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   954
proof safe
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   955
  assume f: "f absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   956
  then have nf: "integrable lebesgue (\<lambda>x. norm (indicator S x *\<^sub>R f x))"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   957
    using integrable_norm set_integrable_def by blast
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   958
  show "f integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   959
    by (rule set_lebesgue_integral_eq_integral[OF f])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   960
  have "(\<lambda>x. norm (indicator S x *\<^sub>R f x)) = (\<lambda>x. if x \<in> S then norm (f x) else 0)"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   961
    by auto
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   962
  with integrable_on_lebesgue[OF nf] show "(\<lambda>x. norm (f x)) integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   963
    by (simp add: integrable_restrict_UNIV)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   964
next
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   965
  assume f: "f integrable_on S" and nf: "(\<lambda>x. norm (f x)) integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   966
  show "f absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   967
    unfolding set_integrable_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   968
  proof (rule integrableI_bounded)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   969
    show "(\<lambda>x. indicator S x *\<^sub>R f x) \<in> borel_measurable lebesgue"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   970
      using f has_integral_implies_lebesgue_measurable[of f _ S] by (auto simp: integrable_on_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   971
    show "(\<integral>\<^sup>+ x. ennreal (norm (indicator S x *\<^sub>R f x)) \<partial>lebesgue) < \<infinity>"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
   972
      using nf nn_integral_has_integral_lebesgue[of "\<lambda>x. norm (f x)" _ S]
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   973
      by (auto simp: integrable_on_def nn_integral_completion)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   974
  qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
   975
qed
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   976
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   977
lemma integrable_on_lebesgue_on:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   978
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   979
  assumes f: "integrable (lebesgue_on S) f" and S: "S \<in> sets lebesgue"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   980
  shows "f integrable_on S"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   981
proof -
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   982
  have "integrable lebesgue (\<lambda>x. indicator S x *\<^sub>R f x)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   983
    using S f inf_top.comm_neutral integrable_restrict_space by blast
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   984
  then show ?thesis
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   985
    using absolutely_integrable_on_def set_integrable_def by blast
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   986
qed
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
   987
70380
2b0dca68c3ee More analysis / measure theory material
paulson <lp15@cam.ac.uk>
parents: 70378
diff changeset
   988
lemma absolutely_integrable_imp_integrable:
2b0dca68c3ee More analysis / measure theory material
paulson <lp15@cam.ac.uk>
parents: 70378
diff changeset
   989
  assumes "f absolutely_integrable_on S" "S \<in> sets lebesgue"
2b0dca68c3ee More analysis / measure theory material
paulson <lp15@cam.ac.uk>
parents: 70378
diff changeset
   990
  shows "integrable (lebesgue_on S) f"
2b0dca68c3ee More analysis / measure theory material
paulson <lp15@cam.ac.uk>
parents: 70378
diff changeset
   991
  by (meson assms integrable_restrict_space set_integrable_def sets.Int sets.top)
2b0dca68c3ee More analysis / measure theory material
paulson <lp15@cam.ac.uk>
parents: 70378
diff changeset
   992
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   993
lemma absolutely_integrable_on_null [intro]:
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   994
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   995
  shows "content (cbox a b) = 0 \<Longrightarrow> f absolutely_integrable_on (cbox a b)"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   996
  by (auto simp: absolutely_integrable_on_def)
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   997
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   998
lemma absolutely_integrable_on_open_interval:
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
   999
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  1000
  shows "f absolutely_integrable_on box a b \<longleftrightarrow>
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  1001
         f absolutely_integrable_on cbox a b"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  1002
  by (auto simp: integrable_on_open_interval absolutely_integrable_on_def)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  1003
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1004
lemma absolutely_integrable_restrict_UNIV:
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  1005
  "(\<lambda>x. if x \<in> S then f x else 0) absolutely_integrable_on UNIV \<longleftrightarrow> f absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  1006
    unfolding set_integrable_def
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1007
  by (intro arg_cong2[where f=integrable]) auto
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1008
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  1009
lemma absolutely_integrable_onI:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  1010
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  1011
  shows "f integrable_on S \<Longrightarrow> (\<lambda>x. norm (f x)) integrable_on S \<Longrightarrow> f absolutely_integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  1012
  unfolding absolutely_integrable_on_def by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  1013
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1014
lemma nonnegative_absolutely_integrable_1:
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1015
  fixes f :: "'a :: euclidean_space \<Rightarrow> real"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1016
  assumes f: "f integrable_on A" and "\<And>x. x \<in> A \<Longrightarrow> 0 \<le> f x"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1017
  shows "f absolutely_integrable_on A"
67980
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1018
  by (rule absolutely_integrable_onI [OF f]) (use assms in \<open>simp add: integrable_eq\<close>)
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1019
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1020
lemma absolutely_integrable_on_iff_nonneg:
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1021
  fixes f :: "'a :: euclidean_space \<Rightarrow> real"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1022
  assumes "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> f x" shows "f absolutely_integrable_on S \<longleftrightarrow> f integrable_on S"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1023
proof -
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1024
  { assume "f integrable_on S"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1025
    then have "(\<lambda>x. if x \<in> S then f x else 0) integrable_on UNIV"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1026
      by (simp add: integrable_restrict_UNIV)
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1027
    then have "(\<lambda>x. if x \<in> S then f x else 0) absolutely_integrable_on UNIV"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1028
      using \<open>f integrable_on S\<close> absolutely_integrable_restrict_UNIV assms nonnegative_absolutely_integrable_1 by blast
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1029
    then have "f absolutely_integrable_on S"
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1030
      using absolutely_integrable_restrict_UNIV by blast
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1031
  }
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1032
  then show ?thesis
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1033
    unfolding absolutely_integrable_on_def by auto
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1034
qed
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1035
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1036
lemma absolutely_integrable_on_scaleR_iff:
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1037
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1038
  shows
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1039
   "(\<lambda>x. c *\<^sub>R f x) absolutely_integrable_on S \<longleftrightarrow>
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1040
      c = 0 \<or> f absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1041
proof (cases "c=0")
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1042
  case False
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1043
  then show ?thesis
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1044
  unfolding absolutely_integrable_on_def
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1045
  by (simp add: norm_mult)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1046
qed auto
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  1047
67980
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1048
lemma absolutely_integrable_spike:
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1049
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1050
  assumes "f absolutely_integrable_on T" and S: "negligible S" "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1051
  shows "g absolutely_integrable_on T"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1052
  using assms integrable_spike
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1053
  unfolding absolutely_integrable_on_def by metis
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1054
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1055
lemma absolutely_integrable_negligible:
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1056
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1057
  assumes "negligible S"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1058
  shows "f absolutely_integrable_on S"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1059
  using assms by (simp add: absolutely_integrable_on_def integrable_negligible)
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1060
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1061
lemma absolutely_integrable_spike_eq:
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1062
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1063
  assumes "negligible S" "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1064
  shows "(f absolutely_integrable_on T \<longleftrightarrow> g absolutely_integrable_on T)"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1065
  using assms by (blast intro: absolutely_integrable_spike sym)
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1066
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1067
lemma absolutely_integrable_spike_set_eq:
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1068
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1069
  assumes "negligible {x \<in> S - T. f x \<noteq> 0}" "negligible {x \<in> T - S. f x \<noteq> 0}"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1070
  shows "(f absolutely_integrable_on S \<longleftrightarrow> f absolutely_integrable_on T)"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1071
proof -
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1072
  have "(\<lambda>x. if x \<in> S then f x else 0) absolutely_integrable_on UNIV \<longleftrightarrow>
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1073
        (\<lambda>x. if x \<in> T then f x else 0) absolutely_integrable_on UNIV"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1074
  proof (rule absolutely_integrable_spike_eq)
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1075
    show "negligible ({x \<in> S - T. f x \<noteq> 0} \<union> {x \<in> T - S. f x \<noteq> 0})"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1076
      by (rule negligible_Un [OF assms])
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1077
  qed auto
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1078
  with absolutely_integrable_restrict_UNIV show ?thesis
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1079
    by blast
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1080
qed
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1081
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1082
lemma absolutely_integrable_spike_set:
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1083
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1084
  assumes f: "f absolutely_integrable_on S" and neg: "negligible {x \<in> S - T. f x \<noteq> 0}" "negligible {x \<in> T - S. f x \<noteq> 0}"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1085
  shows "f absolutely_integrable_on T"
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1086
  using absolutely_integrable_spike_set_eq f neg by blast
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1087
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1088
lemma absolutely_integrable_reflect[simp]:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1089
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1090
  shows "(\<lambda>x. f(-x)) absolutely_integrable_on cbox (-b) (-a) \<longleftrightarrow> f absolutely_integrable_on cbox a b"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1091
  apply (auto simp: absolutely_integrable_on_def dest: integrable_reflect [THEN iffD1])
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1092
  unfolding integrable_on_def by auto
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1093
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1094
lemma absolutely_integrable_reflect_real[simp]:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1095
  fixes f :: "real \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1096
  shows "(\<lambda>x. f(-x)) absolutely_integrable_on {-b .. -a} \<longleftrightarrow> f absolutely_integrable_on {a..b::real}"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1097
  unfolding box_real[symmetric] by (rule absolutely_integrable_reflect)
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1098
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1099
lemma absolutely_integrable_on_subcbox:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1100
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1101
  shows "\<lbrakk>f absolutely_integrable_on S; cbox a b \<subseteq> S\<rbrakk> \<Longrightarrow> f absolutely_integrable_on cbox a b"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1102
  by (meson absolutely_integrable_on_def integrable_on_subcbox)
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1103
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1104
lemma absolutely_integrable_on_subinterval:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1105
  fixes f :: "real \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1106
  shows "\<lbrakk>f absolutely_integrable_on S; {a..b} \<subseteq> S\<rbrakk> \<Longrightarrow> f absolutely_integrable_on {a..b}"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1107
  using absolutely_integrable_on_subcbox by fastforce
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1108
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1109
lemma integrable_subinterval:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1110
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1111
  assumes "integrable (lebesgue_on {a..b}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1112
    and "{c..d} \<subseteq> {a..b}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1113
  shows "integrable (lebesgue_on {c..d}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1114
proof (rule absolutely_integrable_imp_integrable)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1115
  show "f absolutely_integrable_on {c..d}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1116
  proof -
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1117
    have "f integrable_on {c..d}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1118
      using assms integrable_on_lebesgue_on integrable_on_subinterval by fastforce
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1119
    moreover have "(\<lambda>x. norm (f x)) integrable_on {c..d}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1120
    proof (rule integrable_on_subinterval)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1121
      show "(\<lambda>x. norm (f x)) integrable_on {a..b}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1122
        by (simp add: assms integrable_on_lebesgue_on)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1123
    qed (use assms in auto)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1124
    ultimately show ?thesis
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1125
      by (auto simp: absolutely_integrable_on_def)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1126
  qed
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1127
qed auto
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1128
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1129
lemma indefinite_integral_continuous_real:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1130
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1131
  assumes "integrable (lebesgue_on {a..b}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1132
  shows "continuous_on {a..b} (\<lambda>x. integral\<^sup>L (lebesgue_on {a..x}) f)"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1133
proof -
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1134
  have "f integrable_on {a..b}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1135
    by (simp add: assms integrable_on_lebesgue_on)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1136
  then have "continuous_on {a..b} (\<lambda>x. integral {a..x} f)"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1137
    using indefinite_integral_continuous_1 by blast
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1138
  moreover have "integral\<^sup>L (lebesgue_on {a..x}) f = integral {a..x} f" if "a \<le> x" "x \<le> b" for x
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1139
  proof -
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1140
    have "{a..x} \<subseteq> {a..b}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1141
      using that by auto
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1142
    then have "integrable (lebesgue_on {a..x}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1143
      using integrable_subinterval assms by blast
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1144
    then show "integral\<^sup>L (lebesgue_on {a..x}) f = integral {a..x} f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1145
      by (simp add: lebesgue_integral_eq_integral)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1146
  qed
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1147
  ultimately show ?thesis
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1148
    by (metis (no_types, lifting) atLeastAtMost_iff continuous_on_cong)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1149
qed
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  1150
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1151
lemma lmeasurable_iff_integrable_on: "S \<in> lmeasurable \<longleftrightarrow> (\<lambda>x. 1::real) integrable_on S"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1152
  by (subst absolutely_integrable_on_iff_nonneg[symmetric])
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  1153
     (simp_all add: lmeasurable_iff_integrable set_integrable_def)
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1154
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1155
lemma lmeasure_integral_UNIV: "S \<in> lmeasurable \<Longrightarrow> measure lebesgue S = integral UNIV (indicator S)"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1156
  by (simp add: lmeasurable_iff_has_integral integral_unique)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1157
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1158
lemma lmeasure_integral: "S \<in> lmeasurable \<Longrightarrow> measure lebesgue S = integral S (\<lambda>x. 1::real)"
67980
a8177d098b74 a few new theorems and some fixes
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
  1159
  by (fastforce simp add: lmeasure_integral_UNIV indicator_def[abs_def] lmeasurable_iff_integrable_on)
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1160
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1161
lemma integrable_on_const: "S \<in> lmeasurable \<Longrightarrow> (\<lambda>x. c) integrable_on S"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1162
  unfolding lmeasurable_iff_integrable
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1163
  by (metis (mono_tags, lifting) integrable_eq integrable_on_scaleR_left lmeasurable_iff_integrable lmeasurable_iff_integrable_on scaleR_one)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1164
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1165
lemma integral_indicator:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1166
  assumes "(S \<inter> T) \<in> lmeasurable"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1167
  shows "integral T (indicator S) = measure lebesgue (S \<inter> T)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1168
proof -
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1169
  have "integral UNIV (indicator (S \<inter> T)) = integral UNIV (\<lambda>a. if a \<in> S \<inter> T then 1::real else 0)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1170
    by (meson indicator_def)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1171
  moreover
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1172
  have "(indicator (S \<inter> T) has_integral measure lebesgue (S \<inter> T)) UNIV"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1173
    using assms by (simp add: lmeasurable_iff_has_integral)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1174
  ultimately have "integral UNIV (\<lambda>x. if x \<in> S \<inter> T then 1 else 0) = measure lebesgue (S \<inter> T)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1175
    by (metis (no_types) integral_unique)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1176
  then show ?thesis
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1177
    using integral_restrict_Int [of UNIV "S \<inter> T" "\<lambda>x. 1::real"]
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1178
    apply (simp add: integral_restrict_Int [symmetric])
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1179
    by (meson indicator_def)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1180
qed
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1181
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1182
lemma measurable_integrable:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1183
  fixes S :: "'a::euclidean_space set"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1184
  shows "S \<in> lmeasurable \<longleftrightarrow> (indicat_real S) integrable_on UNIV"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1185
  by (auto simp: lmeasurable_iff_integrable absolutely_integrable_on_iff_nonneg [symmetric] set_integrable_def)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1186
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1187
lemma integrable_on_indicator:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1188
  fixes S :: "'a::euclidean_space set"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1189
  shows "indicat_real S integrable_on T \<longleftrightarrow> (S \<inter> T) \<in> lmeasurable"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1190
  unfolding measurable_integrable
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1191
  unfolding integrable_restrict_UNIV [of T, symmetric]
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1192
  by (fastforce simp add: indicator_def elim: integrable_eq)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  1193
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1194
lemma
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1195
  assumes \<D>: "\<D> division_of S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1196
  shows lmeasurable_division: "S \<in> lmeasurable" (is ?l)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1197
    and content_division: "(\<Sum>k\<in>\<D>. measure lebesgue k) = measure lebesgue S" (is ?m)
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1198
proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1199
  { fix d1 d2 assume *: "d1 \<in> \<D>" "d2 \<in> \<D>" "d1 \<noteq> d2"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1200
    then obtain a b c d where "d1 = cbox a b" "d2 = cbox c d"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1201
      using division_ofD(4)[OF \<D>] by blast
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1202
    with division_ofD(5)[OF \<D> *]
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1203
    have "d1 \<in> sets lborel" "d2 \<in> sets lborel" "d1 \<inter> d2 \<subseteq> (cbox a b - box a b) \<union> (cbox c d - box c d)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1204
      by auto
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1205
    moreover have "(cbox a b - box a b) \<union> (cbox c d - box c d) \<in> null_sets lborel"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1206
      by (intro null_sets.Un null_sets_cbox_Diff_box)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1207
    ultimately have "d1 \<inter> d2 \<in> null_sets lborel"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1208
      by (blast intro: null_sets_subset) }
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1209
  then show ?l ?m
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1210
    unfolding division_ofD(6)[OF \<D>, symmetric]
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1211
    using division_ofD(1,4)[OF \<D>]
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1212
    by (auto intro!: measure_Union_AE[symmetric] simp: completion.AE_iff_null_sets Int_def[symmetric] pairwise_def null_sets_def)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1213
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1214
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1215
lemma has_measure_limit:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1216
  assumes "S \<in> lmeasurable" "e > 0"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1217
  obtains B where "B > 0"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1218
    "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow> \<bar>measure lebesgue (S \<inter> cbox a b) - measure lebesgue S\<bar> < e"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1219
  using assms unfolding lmeasurable_iff_has_integral has_integral_alt'
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1220
  by (force simp: integral_indicator integrable_on_indicator)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1221
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1222
lemma lmeasurable_iff_indicator_has_integral:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1223
  fixes S :: "'a::euclidean_space set"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1224
  shows "S \<in> lmeasurable \<and> m = measure lebesgue S \<longleftrightarrow> (indicat_real S has_integral m) UNIV"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1225
  by (metis has_integral_iff lmeasurable_iff_has_integral measurable_integrable)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1226
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1227
lemma has_measure_limit_iff:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1228
  fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1229
  shows "S \<in> lmeasurable \<and> m = measure lebesgue S \<longleftrightarrow>
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1230
          (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow>
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1231
            (S \<inter> cbox a b) \<in> lmeasurable \<and> \<bar>measure lebesgue (S \<inter> cbox a b) - m\<bar> < e)" (is "?lhs = ?rhs")
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1232
proof
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1233
  assume ?lhs then show ?rhs
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1234
    by (meson has_measure_limit fmeasurable.Int lmeasurable_cbox)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1235
next
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1236
  assume RHS [rule_format]: ?rhs
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1237
  show ?lhs
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1238
    apply (simp add: lmeasurable_iff_indicator_has_integral has_integral' [where i=m])
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1239
    using RHS
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1240
    by (metis (full_types) integral_indicator integrable_integral integrable_on_indicator)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1241
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1242
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1243
subsection\<open>Applications to Negligibility\<close>
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1244
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1245
lemma negligible_iff_null_sets: "negligible S \<longleftrightarrow> S \<in> null_sets lebesgue"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1246
proof
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1247
  assume "negligible S"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1248
  then have "(indicator S has_integral (0::real)) UNIV"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1249
    by (auto simp: negligible)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1250
  then show "S \<in> null_sets lebesgue"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1251
    by (subst (asm) has_integral_iff_nn_integral_lebesgue)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1252
        (auto simp: borel_measurable_indicator_iff nn_integral_0_iff_AE AE_iff_null_sets indicator_eq_0_iff)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1253
next
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1254
  assume S: "S \<in> null_sets lebesgue"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1255
  show "negligible S"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1256
    unfolding negligible_def
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1257
  proof (safe intro!: has_integral_iff_nn_integral_lebesgue[THEN iffD2]
66112
0e640e04fc56 New theorems; stronger theorems; tidier theorems. Also some renaming
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1258
                      has_integral_restrict_UNIV[where s="cbox _ _", THEN iffD1])
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1259
    fix a b
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1260
    show "(\<lambda>x. if x \<in> cbox a b then indicator S x else 0) \<in> lebesgue \<rightarrow>\<^sub>M borel"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1261
      using S by (auto intro!: measurable_If)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1262
    then show "(\<integral>\<^sup>+ x. ennreal (if x \<in> cbox a b then indicator S x else 0) \<partial>lebesgue) = ennreal 0"
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1263
      using S[THEN AE_not_in] by (auto intro!: nn_integral_0_iff_AE[THEN iffD2])
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1264
  qed auto
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1265
qed
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1266
70378
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1267
corollary eventually_ae_filter_negligible:
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1268
  "eventually P (ae_filter lebesgue) \<longleftrightarrow> (\<exists>N. negligible N \<and> {x. \<not> P x} \<subseteq> N)"
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1269
  by (auto simp: completion.AE_iff_null_sets negligible_iff_null_sets null_sets_completion_subset)
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1270
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1271
lemma starlike_negligible:
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1272
  assumes "closed S"
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69597
diff changeset
  1273
      and eq1: "\<And>c x. (a + c *\<^sub>R x) \<in> S \<Longrightarrow> 0 \<le> c \<Longrightarrow> a + x \<in> S \<Longrightarrow> c = 1"
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1274
    shows "negligible S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1275
proof -
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66703
diff changeset
  1276
  have "negligible ((+) (-a) ` S)"
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1277
  proof (subst negligible_on_intervals, intro allI)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1278
    fix u v
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66703
diff changeset
  1279
    show "negligible ((+) (- a) ` S \<inter> cbox u v)"
70802
160eaf566bcb formally augmented corresponding rules for field_simps
haftmann
parents: 70726
diff changeset
  1280
      using \<open>closed S\<close> eq1 by (auto simp add: negligible_iff_null_sets algebra_simps
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69597
diff changeset
  1281
        intro!: closed_translation_subtract starlike_negligible_compact cong: image_cong_simp)
70802
160eaf566bcb formally augmented corresponding rules for field_simps
haftmann
parents: 70726
diff changeset
  1282
        (metis add_diff_eq diff_add_cancel scale_right_diff_distrib)
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1283
  qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1284
  then show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1285
    by (rule negligible_translation_rev)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1286
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1287
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1288
lemma starlike_negligible_strong:
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1289
  assumes "closed S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1290
      and star: "\<And>c x. \<lbrakk>0 \<le> c; c < 1; a+x \<in> S\<rbrakk> \<Longrightarrow> a + c *\<^sub>R x \<notin> S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1291
    shows "negligible S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1292
proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1293
  show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1294
  proof (rule starlike_negligible [OF \<open>closed S\<close>, of a])
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1295
    fix c x
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1296
    assume cx: "a + c *\<^sub>R x \<in> S" "0 \<le> c" "a + x \<in> S"
69508
2a4c8a2a3f8e tuned headers; ~ -> \<not>
nipkow
parents: 69325
diff changeset
  1297
    with star have "\<not> (c < 1)" by auto
2a4c8a2a3f8e tuned headers; ~ -> \<not>
nipkow
parents: 69325
diff changeset
  1298
    moreover have "\<not> (c > 1)"
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1299
      using star [of "1/c" "c *\<^sub>R x"] cx by force
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1300
    ultimately show "c = 1" by arith
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1301
  qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1302
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1303
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1304
lemma negligible_hyperplane:
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1305
  assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "negligible {x. a \<bullet> x = b}"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1306
proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1307
  obtain x where x: "a \<bullet> x \<noteq> b"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1308
    using assms
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1309
    apply auto
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1310
     apply (metis inner_eq_zero_iff inner_zero_right)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1311
    using inner_zero_right by fastforce
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1312
  show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1313
    apply (rule starlike_negligible [OF closed_hyperplane, of x])
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1314
    using x apply (auto simp: algebra_simps)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1315
    done
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1316
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1317
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1318
lemma negligible_lowdim:
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1319
  fixes S :: "'N :: euclidean_space set"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1320
  assumes "dim S < DIM('N)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1321
    shows "negligible S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1322
proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1323
  obtain a where "a \<noteq> 0" and a: "span S \<subseteq> {x. a \<bullet> x = 0}"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1324
    using lowdim_subset_hyperplane [OF assms] by blast
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1325
  have "negligible (span S)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1326
    using \<open>a \<noteq> 0\<close> a negligible_hyperplane by (blast intro: negligible_subset)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1327
  then show ?thesis
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  1328
    using span_base by (blast intro: negligible_subset)
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1329
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1330
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1331
proposition negligible_convex_frontier:
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1332
  fixes S :: "'N :: euclidean_space set"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1333
  assumes "convex S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1334
    shows "negligible(frontier S)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1335
proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1336
  have nf: "negligible(frontier S)" if "convex S" "0 \<in> S" for S :: "'N set"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1337
  proof -
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1338
    obtain B where "B \<subseteq> S" and indB: "independent B"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1339
               and spanB: "S \<subseteq> span B" and cardB: "card B = dim S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1340
      by (metis basis_exists)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1341
    consider "dim S < DIM('N)" | "dim S = DIM('N)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  1342
      using dim_subset_UNIV le_eq_less_or_eq by auto
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1343
    then show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1344
    proof cases
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1345
      case 1
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1346
      show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1347
        by (rule negligible_subset [of "closure S"])
69286
nipkow
parents: 69260
diff changeset
  1348
           (simp_all add: frontier_def negligible_lowdim 1)
63959
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1349
    next
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1350
      case 2
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1351
      obtain a where a: "a \<in> interior S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1352
        apply (rule interior_simplex_nonempty [OF indB])
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1353
          apply (simp add: indB independent_finite)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1354
         apply (simp add: cardB 2)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1355
        apply (metis \<open>B \<subseteq> S\<close> \<open>0 \<in> S\<close> \<open>convex S\<close> insert_absorb insert_subset interior_mono subset_hull)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1356
        done
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1357
      show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1358
      proof (rule starlike_negligible_strong [where a=a])
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1359
        fix c::real and x
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1360
        have eq: "a + c *\<^sub>R x = (a + x) - (1 - c) *\<^sub>R ((a + x) - a)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1361
          by (simp add: algebra_simps)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1362
        assume "0 \<le> c" "c < 1" "a + x \<in> frontier S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1363
        then show "a + c *\<^sub>R x \<notin> frontier S"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1364
          apply (clarsimp simp: frontier_def)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1365
          apply (subst eq)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1366
          apply (rule mem_interior_closure_convex_shrink [OF \<open>convex S\<close> a, of _ "1-c"], auto)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1367
          done
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1368
      qed auto
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1369
    qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1370
  qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1371
  show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1372
  proof (cases "S = {}")
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1373
    case True then show ?thesis by auto
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1374
  next
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1375
    case False
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1376
    then obtain a where "a \<in> S" by auto
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1377
    show ?thesis
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1378
      using nf [of "(\<lambda>x. -a + x) ` S"]
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1379
      by (metis \<open>a \<in> S\<close> add.left_inverse assms convex_translation_eq frontier_translation
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1380
                image_eqI negligible_translation_rev)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1381
  qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1382
qed
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1383
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1384
corollary negligible_sphere: "negligible (sphere a e)"
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1385
  using frontier_cball negligible_convex_frontier convex_cball
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1386
  by (blast intro: negligible_subset)
f77dca1abf1b HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63958
diff changeset
  1387
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1388
lemma non_negligible_UNIV [simp]: "\<not> negligible UNIV"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  1389
  unfolding negligible_iff_null_sets by (auto simp: null_sets_def)
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1390
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1391
lemma negligible_interval:
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1392
  "negligible (cbox a b) \<longleftrightarrow> box a b = {}" "negligible (box a b) \<longleftrightarrow> box a b = {}"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1393
   by (auto simp: negligible_iff_null_sets null_sets_def prod_nonneg inner_diff_left box_eq_empty
63958
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1394
                  not_le emeasure_lborel_cbox_eq emeasure_lborel_box_eq
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1395
            intro: eq_refl antisym less_imp_le)
02de4a58e210 HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents: 63957
diff changeset
  1396
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1397
proposition open_not_negligible:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1398
  assumes "open S" "S \<noteq> {}"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1399
  shows "\<not> negligible S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1400
proof
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1401
  assume neg: "negligible S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1402
  obtain a where "a \<in> S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1403
    using \<open>S \<noteq> {}\<close> by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1404
  then obtain e where "e > 0" "cball a e \<subseteq> S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1405
    using \<open>open S\<close> open_contains_cball_eq by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1406
  let ?p = "a - (e / DIM('a)) *\<^sub>R One" let ?q = "a + (e / DIM('a)) *\<^sub>R One"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1407
  have "cbox ?p ?q \<subseteq> cball a e"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1408
  proof (clarsimp simp: mem_box dist_norm)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1409
    fix x
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1410
    assume "\<forall>i\<in>Basis. ?p \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> ?q \<bullet> i"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1411
    then have ax: "\<bar>(a - x) \<bullet> i\<bar> \<le> e / real DIM('a)" if "i \<in> Basis" for i
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1412
      using that by (auto simp: algebra_simps)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1413
    have "norm (a - x) \<le> (\<Sum>i\<in>Basis. \<bar>(a - x) \<bullet> i\<bar>)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1414
      by (rule norm_le_l1)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1415
    also have "\<dots> \<le> DIM('a) * (e / real DIM('a))"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1416
      by (intro sum_bounded_above ax)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1417
    also have "\<dots> = e"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1418
      by simp
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1419
    finally show "norm (a - x) \<le> e" .
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1420
  qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1421
  then have "negligible (cbox ?p ?q)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1422
    by (meson \<open>cball a e \<subseteq> S\<close> neg negligible_subset)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1423
  with \<open>e > 0\<close> show False
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  1424
    by (simp add: negligible_interval box_eq_empty algebra_simps field_split_simps mult_le_0_iff)
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1425
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1426
68017
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1427
lemma negligible_convex_interior:
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1428
   "convex S \<Longrightarrow> (negligible S \<longleftrightarrow> interior S = {})"
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1429
  apply safe
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1430
  apply (metis interior_subset negligible_subset open_interior open_not_negligible)
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1431
   apply (metis Diff_empty closure_subset frontier_def negligible_convex_frontier negligible_subset)
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1432
  done
e99f9b3962bf three new theorems
paulson <lp15@cam.ac.uk>
parents: 67998
diff changeset
  1433
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1434
lemma measure_eq_0_null_sets: "S \<in> null_sets M \<Longrightarrow> measure M S = 0"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1435
  by (auto simp: measure_def null_sets_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1436
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1437
lemma negligible_imp_measure0: "negligible S \<Longrightarrow> measure lebesgue S = 0"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1438
  by (simp add: measure_eq_0_null_sets negligible_iff_null_sets)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1439
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1440
lemma negligible_iff_emeasure0: "S \<in> sets lebesgue \<Longrightarrow> (negligible S \<longleftrightarrow> emeasure lebesgue S = 0)"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1441
  by (auto simp: measure_eq_0_null_sets negligible_iff_null_sets)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1442
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1443
lemma negligible_iff_measure0: "S \<in> lmeasurable \<Longrightarrow> (negligible S \<longleftrightarrow> measure lebesgue S = 0)"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1444
  apply (auto simp: measure_eq_0_null_sets negligible_iff_null_sets)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1445
  by (metis completion.null_sets_outer subsetI)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1446
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1447
lemma negligible_imp_sets: "negligible S \<Longrightarrow> S \<in> sets lebesgue"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1448
  by (simp add: negligible_iff_null_sets null_setsD2)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1449
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1450
lemma negligible_imp_measurable: "negligible S \<Longrightarrow> S \<in> lmeasurable"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1451
  by (simp add: fmeasurableI_null_sets negligible_iff_null_sets)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1452
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1453
lemma negligible_iff_measure: "negligible S \<longleftrightarrow> S \<in> lmeasurable \<and> measure lebesgue S = 0"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1454
  by (fastforce simp: negligible_iff_measure0 negligible_imp_measurable dest: negligible_imp_measure0)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1455
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1456
lemma negligible_outer:
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1457
  "negligible S \<longleftrightarrow> (\<forall>e>0. \<exists>T. S \<subseteq> T \<and> T \<in> lmeasurable \<and> measure lebesgue T < e)" (is "_ = ?rhs")
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1458
proof
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1459
  assume "negligible S" then show ?rhs
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1460
    by (metis negligible_iff_measure order_refl)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1461
next
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1462
  assume ?rhs then show "negligible S"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1463
  by (meson completion.null_sets_outer negligible_iff_null_sets)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1464
qed
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1465
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1466
lemma negligible_outer_le:
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1467
     "negligible S \<longleftrightarrow> (\<forall>e>0. \<exists>T. S \<subseteq> T \<and> T \<in> lmeasurable \<and> measure lebesgue T \<le> e)" (is "_ = ?rhs")
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1468
proof
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1469
  assume "negligible S" then show ?rhs
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1470
    by (metis dual_order.strict_implies_order negligible_imp_measurable negligible_imp_measure0 order_refl)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1471
next
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1472
  assume ?rhs then show "negligible S"
68527
2f4e2aab190a Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents: 68403
diff changeset
  1473
    by (metis le_less_trans negligible_outer field_lbound_gt_zero)
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1474
qed
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1475
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1476
lemma negligible_UNIV: "negligible S \<longleftrightarrow> (indicat_real S has_integral 0) UNIV" (is "_=?rhs")
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1477
proof
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1478
  assume ?rhs
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1479
  then show "negligible S"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1480
    apply (auto simp: negligible_def has_integral_iff integrable_on_indicator)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1481
    by (metis negligible integral_unique lmeasure_integral_UNIV negligible_iff_measure0)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1482
qed (simp add: negligible)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1483
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1484
lemma sets_negligible_symdiff:
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1485
   "\<lbrakk>S \<in> sets lebesgue; negligible((S - T) \<union> (T - S))\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1486
  by (metis Diff_Diff_Int Int_Diff_Un inf_commute negligible_Un_eq negligible_imp_sets sets.Diff sets.Un)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1487
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1488
lemma lmeasurable_negligible_symdiff:
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1489
   "\<lbrakk>S \<in> lmeasurable; negligible((S - T) \<union> (T - S))\<rbrakk> \<Longrightarrow> T \<in> lmeasurable"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1490
  using integrable_spike_set_eq lmeasurable_iff_integrable_on by blast
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1491
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1492
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1493
lemma measure_Un3_negligible:
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1494
  assumes meas: "S \<in> lmeasurable" "T \<in> lmeasurable" "U \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1495
  and neg: "negligible(S \<inter> T)" "negligible(S \<inter> U)" "negligible(T \<inter> U)" and V: "S \<union> T \<union> U = V"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1496
shows "measure lebesgue V = measure lebesgue S + measure lebesgue T + measure lebesgue U"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1497
proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1498
  have [simp]: "measure lebesgue (S \<inter> T) = 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1499
    using neg(1) negligible_imp_measure0 by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1500
  have [simp]: "measure lebesgue (S \<inter> U \<union> T \<inter> U) = 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1501
    using neg(2) neg(3) negligible_Un negligible_imp_measure0 by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1502
  have "measure lebesgue V = measure lebesgue (S \<union> T \<union> U)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1503
    using V by simp
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1504
  also have "\<dots> = measure lebesgue S + measure lebesgue T + measure lebesgue U"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1505
    by (simp add: measure_Un3 meas fmeasurable.Un Int_Un_distrib2)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1506
  finally show ?thesis .
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1507
qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1508
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1509
lemma measure_translate_add:
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1510
  assumes meas: "S \<in> lmeasurable" "T \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1511
    and U: "S \<union> ((+)a ` T) = U" and neg: "negligible(S \<inter> ((+)a ` T))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1512
  shows "measure lebesgue S + measure lebesgue T = measure lebesgue U"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1513
proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1514
  have [simp]: "measure lebesgue (S \<inter> (+) a ` T) = 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1515
    using neg negligible_imp_measure0 by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1516
  have "measure lebesgue (S \<union> ((+)a ` T)) = measure lebesgue S + measure lebesgue T"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1517
    by (simp add: measure_Un3 meas measurable_translation measure_translation fmeasurable.Un)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1518
  then show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1519
    using U by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1520
qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  1521
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1522
lemma measure_negligible_symdiff:
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1523
  assumes S: "S \<in> lmeasurable"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1524
    and neg: "negligible (S - T \<union> (T - S))"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1525
  shows "measure lebesgue T = measure lebesgue S"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1526
proof -
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1527
  have "measure lebesgue (S - T) = 0"
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1528
    using neg negligible_Un_eq negligible_imp_measure0 by blast
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1529
  then show ?thesis
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1530
    by (metis S Un_commute add.right_neutral lmeasurable_negligible_symdiff measure_Un2 neg negligible_Un_eq negligible_imp_measure0)
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1531
qed
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1532
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1533
lemma measure_closure:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1534
  assumes "bounded S" and neg: "negligible (frontier S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1535
  shows "measure lebesgue (closure S) = measure lebesgue S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1536
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1537
  have "measure lebesgue (frontier S) = 0"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1538
    by (metis neg negligible_imp_measure0)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1539
  then show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1540
    by (metis assms lmeasurable_iff_integrable_on eq_iff_diff_eq_0 has_integral_interior integrable_on_def integral_unique lmeasurable_interior lmeasure_integral measure_frontier)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1541
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1542
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1543
lemma measure_interior:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1544
   "\<lbrakk>bounded S; negligible(frontier S)\<rbrakk> \<Longrightarrow> measure lebesgue (interior S) = measure lebesgue S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1545
  using measure_closure measure_frontier negligible_imp_measure0 by fastforce
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1546
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1547
lemma measurable_Jordan:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1548
  assumes "bounded S" and neg: "negligible (frontier S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1549
  shows "S \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1550
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1551
  have "closure S \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1552
    by (metis lmeasurable_closure \<open>bounded S\<close>)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1553
  moreover have "interior S \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1554
    by (simp add: lmeasurable_interior \<open>bounded S\<close>)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1555
  moreover have "interior S \<subseteq> S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1556
    by (simp add: interior_subset)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1557
  ultimately show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1558
    using assms by (metis (full_types) closure_subset completion.complete_sets_sandwich_fmeasurable measure_closure measure_interior)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1559
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1560
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  1561
lemma measurable_convex: "\<lbrakk>convex S; bounded S\<rbrakk> \<Longrightarrow> S \<in> lmeasurable"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  1562
  by (simp add: measurable_Jordan negligible_convex_frontier)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  1563
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1564
subsection\<open>Negligibility of image under non-injective linear map\<close>
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1565
67986
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1566
lemma negligible_Union_nat:
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1567
  assumes "\<And>n::nat. negligible(S n)"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1568
  shows "negligible(\<Union>n. S n)"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1569
proof -
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1570
  have "negligible (\<Union>m\<le>k. S m)" for k
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1571
    using assms by blast
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1572
  then have 0:  "integral UNIV (indicat_real (\<Union>m\<le>k. S m)) = 0"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1573
    and 1: "(indicat_real (\<Union>m\<le>k. S m)) integrable_on UNIV" for k
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1574
    by (auto simp: negligible has_integral_iff)
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1575
  have 2: "\<And>k x. indicat_real (\<Union>m\<le>k. S m) x \<le> (indicat_real (\<Union>m\<le>Suc k. S m) x)"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1576
    by (simp add: indicator_def)
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1577
  have 3: "\<And>x. (\<lambda>k. indicat_real (\<Union>m\<le>k. S m) x) \<longlonglongrightarrow> (indicat_real (\<Union>n. S n) x)"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70271
diff changeset
  1578
    by (force simp: indicator_def eventually_sequentially intro: tendsto_eventually)
67986
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1579
  have 4: "bounded (range (\<lambda>k. integral UNIV (indicat_real (\<Union>m\<le>k. S m))))"
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69597
diff changeset
  1580
    by (simp add: 0)
67986
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1581
  have *: "indicat_real (\<Union>n. S n) integrable_on UNIV \<and>
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1582
        (\<lambda>k. integral UNIV (indicat_real (\<Union>m\<le>k. S m))) \<longlonglongrightarrow> (integral UNIV (indicat_real (\<Union>n. S n)))"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1583
    by (intro monotone_convergence_increasing 1 2 3 4)
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1584
  then have "integral UNIV (indicat_real (\<Union>n. S n)) = (0::real)"
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1585
    using LIMSEQ_unique by (auto simp: 0)
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1586
  then show ?thesis
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1587
    using * by (simp add: negligible_UNIV has_integral_iff)
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1588
qed
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 67984
diff changeset
  1589
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1590
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1591
lemma negligible_linear_singular_image:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1592
  fixes f :: "'n::euclidean_space \<Rightarrow> 'n"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1593
  assumes "linear f" "\<not> inj f"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1594
  shows "negligible (f ` S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1595
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1596
  obtain a where "a \<noteq> 0" "\<And>S. f ` S \<subseteq> {x. a \<bullet> x = 0}"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1597
    using assms linear_singular_image_hyperplane by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1598
  then show "negligible (f ` S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1599
    by (metis negligible_hyperplane negligible_subset)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1600
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1601
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1602
lemma measure_negligible_finite_Union:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1603
  assumes "finite \<F>"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1604
    and meas: "\<And>S. S \<in> \<F> \<Longrightarrow> S \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1605
    and djointish: "pairwise (\<lambda>S T. negligible (S \<inter> T)) \<F>"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1606
  shows "measure lebesgue (\<Union>\<F>) = (\<Sum>S\<in>\<F>. measure lebesgue S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1607
  using assms
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1608
proof (induction)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1609
  case empty
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1610
  then show ?case
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1611
    by auto
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1612
next
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1613
  case (insert S \<F>)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1614
  then have "S \<in> lmeasurable" "\<Union>\<F> \<in> lmeasurable" "pairwise (\<lambda>S T. negligible (S \<inter> T)) \<F>"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1615
    by (simp_all add: fmeasurable.finite_Union insert.hyps(1) insert.prems(1) pairwise_insert subsetI)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1616
  then show ?case
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1617
  proof (simp add: measure_Un3 insert)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1618
    have *: "\<And>T. T \<in> (\<inter>) S ` \<F> \<Longrightarrow> negligible T"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1619
      using insert by (force simp: pairwise_def)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1620
    have "negligible(S \<inter> \<Union>\<F>)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1621
      unfolding Int_Union
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1622
      by (rule negligible_Union) (simp_all add: * insert.hyps(1))
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1623
    then show "measure lebesgue (S \<inter> \<Union>\<F>) = 0"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1624
      using negligible_imp_measure0 by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1625
  qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1626
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1627
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1628
lemma measure_negligible_finite_Union_image:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1629
  assumes "finite S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1630
    and meas: "\<And>x. x \<in> S \<Longrightarrow> f x \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1631
    and djointish: "pairwise (\<lambda>x y. negligible (f x \<inter> f y)) S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1632
  shows "measure lebesgue (\<Union>(f ` S)) = (\<Sum>x\<in>S. measure lebesgue (f x))"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1633
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1634
  have "measure lebesgue (\<Union>(f ` S)) = sum (measure lebesgue) (f ` S)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1635
    using assms by (auto simp: pairwise_mono pairwise_image intro: measure_negligible_finite_Union)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1636
  also have "\<dots> = sum (measure lebesgue \<circ> f) S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1637
    using djointish [unfolded pairwise_def] by (metis inf.idem negligible_imp_measure0 sum.reindex_nontrivial [OF \<open>finite S\<close>])
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1638
  also have "\<dots> = (\<Sum>x\<in>S. measure lebesgue (f x))"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1639
    by simp
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1640
  finally show ?thesis .
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1641
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1642
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1643
subsection \<open>Negligibility of a Lipschitz image of a negligible set\<close>
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  1644
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1645
text\<open>The bound will be eliminated by a sort of onion argument\<close>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1646
lemma locally_Lipschitz_negl_bounded:
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1647
  fixes f :: "'M::euclidean_space \<Rightarrow> 'N::euclidean_space"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1648
  assumes MleN: "DIM('M) \<le> DIM('N)" "0 < B" "bounded S" "negligible S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1649
      and lips: "\<And>x. x \<in> S
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1650
                      \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1651
                              (\<forall>y \<in> S \<inter> T. norm(f y - f x) \<le> B * norm(y - x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1652
  shows "negligible (f ` S)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1653
  unfolding negligible_iff_null_sets
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1654
proof (clarsimp simp: completion.null_sets_outer)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1655
  fix e::real
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1656
  assume "0 < e"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1657
  have "S \<in> lmeasurable"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1658
    using \<open>negligible S\<close> by (simp add: negligible_iff_null_sets fmeasurableI_null_sets)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1659
  then have "S \<in> sets lebesgue"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1660
    by blast
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1661
  have e22: "0 < e/2 / (2 * B * real DIM('M)) ^ DIM('N)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  1662
    using \<open>0 < e\<close> \<open>0 < B\<close> by (simp add: field_split_simps)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1663
  obtain T where "open T" "S \<subseteq> T" "(T - S) \<in> lmeasurable"
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1664
                 "measure lebesgue (T - S) < e/2 / (2 * B * DIM('M)) ^ DIM('N)"
70378
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1665
    using sets_lebesgue_outer_open [OF \<open>S \<in> sets lebesgue\<close> e22]
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  1666
    by (metis emeasure_eq_measure2 ennreal_leI linorder_not_le)
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1667
  then have T: "measure lebesgue T \<le> e/2 / (2 * B * DIM('M)) ^ DIM('N)"
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1668
    using \<open>negligible S\<close> by (simp add: measure_Diff_null_set negligible_iff_null_sets)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1669
  have "\<exists>r. 0 < r \<and> r \<le> 1/2 \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1670
            (x \<in> S \<longrightarrow> (\<forall>y. norm(y - x) < r
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1671
                       \<longrightarrow> y \<in> T \<and> (y \<in> S \<longrightarrow> norm(f y - f x) \<le> B * norm(y - x))))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1672
        for x
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1673
  proof (cases "x \<in> S")
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1674
    case True
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1675
    obtain U where "open U" "x \<in> U" and U: "\<And>y. y \<in> S \<inter> U \<Longrightarrow> norm(f y - f x) \<le> B * norm(y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1676
      using lips [OF \<open>x \<in> S\<close>] by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1677
    have "x \<in> T \<inter> U"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1678
      using \<open>S \<subseteq> T\<close> \<open>x \<in> U\<close> \<open>x \<in> S\<close> by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1679
    then obtain \<epsilon> where "0 < \<epsilon>" "ball x \<epsilon> \<subseteq> T \<inter> U"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1680
      by (metis \<open>open T\<close> \<open>open U\<close> openE open_Int)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1681
    then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1682
      apply (rule_tac x="min (1/2) \<epsilon>" in exI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1683
      apply (simp del: divide_const_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1684
      apply (intro allI impI conjI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1685
       apply (metis dist_commute dist_norm mem_ball subsetCE)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1686
      by (metis Int_iff subsetCE U dist_norm mem_ball norm_minus_commute)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1687
  next
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1688
    case False
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1689
    then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1690
      by (rule_tac x="1/4" in exI) auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1691
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1692
  then obtain R where R12: "\<And>x. 0 < R x \<and> R x \<le> 1/2"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1693
                and RT: "\<And>x y. \<lbrakk>x \<in> S; norm(y - x) < R x\<rbrakk> \<Longrightarrow> y \<in> T"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1694
                and RB: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S; norm(y - x) < R x\<rbrakk> \<Longrightarrow> norm(f y - f x) \<le> B * norm(y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1695
    by metis+
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1696
  then have gaugeR: "gauge (\<lambda>x. ball x (R x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1697
    by (simp add: gauge_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1698
  obtain c where c: "S \<subseteq> cbox (-c *\<^sub>R One) (c *\<^sub>R One)" "box (-c *\<^sub>R One:: 'M) (c *\<^sub>R One) \<noteq> {}"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1699
  proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1700
    obtain B where B: "\<And>x. x \<in> S \<Longrightarrow> norm x \<le> B"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1701
      using \<open>bounded S\<close> bounded_iff by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1702
    show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1703
      apply (rule_tac c = "abs B + 1" in that)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1704
      using norm_bound_Basis_le Basis_le_norm
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1705
       apply (fastforce simp: box_eq_empty mem_box dest!: B intro: order_trans)+
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1706
      done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1707
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1708
  obtain \<D> where "countable \<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1709
     and Dsub: "\<Union>\<D> \<subseteq> cbox (-c *\<^sub>R One) (c *\<^sub>R One)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1710
     and cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> interior K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1711
     and pw:   "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1712
     and Ksub: "\<And>K. K \<in> \<D> \<Longrightarrow> \<exists>x \<in> S \<inter> K. K \<subseteq> (\<lambda>x. ball x (R x)) x"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1713
     and exN:  "\<And>u v. cbox u v \<in> \<D> \<Longrightarrow> \<exists>n. \<forall>i \<in> Basis. v \<bullet> i - u \<bullet> i = (2*c) / 2^n"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1714
     and "S \<subseteq> \<Union>\<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1715
    using covering_lemma [OF c gaugeR]  by force
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1716
  have "\<exists>u v z. K = cbox u v \<and> box u v \<noteq> {} \<and> z \<in> S \<and> z \<in> cbox u v \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1717
                cbox u v \<subseteq> ball z (R z)" if "K \<in> \<D>" for K
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1718
  proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1719
    obtain u v where "K = cbox u v"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1720
      using \<open>K \<in> \<D>\<close> cbox by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1721
    with that show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1722
      apply (rule_tac x=u in exI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1723
      apply (rule_tac x=v in exI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1724
      apply (metis Int_iff interior_cbox cbox Ksub)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1725
      done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1726
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1727
  then obtain uf vf zf
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1728
    where uvz: "\<And>K. K \<in> \<D> \<Longrightarrow>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1729
                K = cbox (uf K) (vf K) \<and> box (uf K) (vf K) \<noteq> {} \<and> zf K \<in> S \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1730
                zf K \<in> cbox (uf K) (vf K) \<and> cbox (uf K) (vf K) \<subseteq> ball (zf K) (R (zf K))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1731
    by metis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1732
  define prj1 where "prj1 \<equiv> \<lambda>x::'M. x \<bullet> (SOME i. i \<in> Basis)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1733
  define fbx where "fbx \<equiv> \<lambda>D. cbox (f(zf D) - (B * DIM('M) * (prj1(vf D - uf D))) *\<^sub>R One::'N)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1734
                                    (f(zf D) + (B * DIM('M) * prj1(vf D - uf D)) *\<^sub>R One)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1735
  have vu_pos: "0 < prj1 (vf X - uf X)" if "X \<in> \<D>" for X
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1736
    using uvz [OF that] by (simp add: prj1_def box_ne_empty SOME_Basis inner_diff_left)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1737
  have prj1_idem: "prj1 (vf X - uf X) = (vf X - uf X) \<bullet> i" if  "X \<in> \<D>" "i \<in> Basis" for X i
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1738
  proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1739
    have "cbox (uf X) (vf X) \<in> \<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1740
      using uvz \<open>X \<in> \<D>\<close> by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1741
    with exN obtain n where "\<And>i. i \<in> Basis \<Longrightarrow> vf X \<bullet> i - uf X \<bullet> i = (2*c) / 2^n"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1742
      by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1743
    then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1744
      by (simp add: \<open>i \<in> Basis\<close> SOME_Basis inner_diff prj1_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1745
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1746
  have countbl: "countable (fbx ` \<D>)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1747
    using \<open>countable \<D>\<close> by blast
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1748
  have "(\<Sum>k\<in>fbx`\<D>'. measure lebesgue k) \<le> e/2" if "\<D>' \<subseteq> \<D>" "finite \<D>'" for \<D>'
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1749
  proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1750
    have BM_ge0: "0 \<le> B * (DIM('M) * prj1 (vf X - uf X))" if "X \<in> \<D>'" for X
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1751
      using \<open>0 < B\<close> \<open>\<D>' \<subseteq> \<D>\<close> that vu_pos by fastforce
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1752
    have "{} \<notin> \<D>'"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1753
      using cbox \<open>\<D>' \<subseteq> \<D>\<close> interior_empty by blast
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1754
    have "(\<Sum>k\<in>fbx`\<D>'. measure lebesgue k) \<le> sum (measure lebesgue o fbx) \<D>'"
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1755
      by (rule sum_image_le [OF \<open>finite \<D>'\<close>]) (force simp: fbx_def)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1756
    also have "\<dots> \<le> (\<Sum>X\<in>\<D>'. (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1757
    proof (rule sum_mono)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1758
      fix X assume "X \<in> \<D>'"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1759
      then have "X \<in> \<D>" using \<open>\<D>' \<subseteq> \<D>\<close> by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1760
      then have ufvf: "cbox (uf X) (vf X) = X"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1761
        using uvz by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1762
      have "prj1 (vf X - uf X) ^ DIM('M) = (\<Prod>i::'M \<in> Basis. prj1 (vf X - uf X))"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1763
        by (rule prod_constant [symmetric])
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1764
      also have "\<dots> = (\<Prod>i\<in>Basis. vf X \<bullet> i - uf X \<bullet> i)"
67970
8c012a49293a A couple of new results
paulson <lp15@cam.ac.uk>
parents: 67613
diff changeset
  1765
        apply (rule prod.cong [OF refl])
8c012a49293a A couple of new results
paulson <lp15@cam.ac.uk>
parents: 67613
diff changeset
  1766
        by (simp add: \<open>X \<in> \<D>\<close> inner_diff_left prj1_idem)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1767
      finally have prj1_eq: "prj1 (vf X - uf X) ^ DIM('M) = (\<Prod>i\<in>Basis. vf X \<bullet> i - uf X \<bullet> i)" .
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1768
      have "uf X \<in> cbox (uf X) (vf X)" "vf X \<in> cbox (uf X) (vf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1769
        using uvz [OF \<open>X \<in> \<D>\<close>] by (force simp: mem_box)+
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1770
      moreover have "cbox (uf X) (vf X) \<subseteq> ball (zf X) (1/2)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1771
        by (meson R12 order_trans subset_ball uvz [OF \<open>X \<in> \<D>\<close>])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1772
      ultimately have "uf X \<in> ball (zf X) (1/2)"  "vf X \<in> ball (zf X) (1/2)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1773
        by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1774
      then have "dist (vf X) (uf X) \<le> 1"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1775
        unfolding mem_ball
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1776
        by (metis dist_commute dist_triangle_half_l dual_order.order_iff_strict)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1777
      then have 1: "prj1 (vf X - uf X) \<le> 1"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1778
        unfolding prj1_def dist_norm using Basis_le_norm SOME_Basis order_trans by fastforce
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1779
      have 0: "0 \<le> prj1 (vf X - uf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1780
        using \<open>X \<in> \<D>\<close> prj1_def vu_pos by fastforce
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1781
      have "(measure lebesgue \<circ> fbx) X \<le> (2 * B * DIM('M)) ^ DIM('N) * content (cbox (uf X) (vf X))"
71174
nipkow
parents: 71025
diff changeset
  1782
        apply (simp add: fbx_def content_cbox_cases algebra_simps BM_ge0 \<open>X \<in> \<D>'\<close>)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1783
        apply (simp add: power_mult_distrib \<open>0 < B\<close> prj1_eq [symmetric])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1784
        using MleN 0 1 uvz \<open>X \<in> \<D>\<close>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1785
        apply (fastforce simp add: box_ne_empty power_decreasing)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1786
        done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1787
      also have "\<dots> = (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1788
        by (subst (3) ufvf[symmetric]) simp
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1789
      finally show "(measure lebesgue \<circ> fbx) X \<le> (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X" .
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1790
    qed
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1791
    also have "\<dots> = (2 * B * DIM('M)) ^ DIM('N) * sum (measure lebesgue) \<D>'"
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1792
      by (simp add: sum_distrib_left)
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1793
    also have "\<dots> \<le> e/2"
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1794
    proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1795
      have div: "\<D>' division_of \<Union>\<D>'"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1796
        apply (auto simp: \<open>finite \<D>'\<close> \<open>{} \<notin> \<D>'\<close> division_of_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1797
        using cbox that apply blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1798
        using pairwise_subset [OF pw \<open>\<D>' \<subseteq> \<D>\<close>] unfolding pairwise_def apply force+
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1799
        done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1800
      have le_meaT: "measure lebesgue (\<Union>\<D>') \<le> measure lebesgue T"
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1801
      proof (rule measure_mono_fmeasurable)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1802
        show "(\<Union>\<D>') \<in> sets lebesgue"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1803
          using div lmeasurable_division by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1804
        have "\<Union>\<D>' \<subseteq> \<Union>\<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1805
          using \<open>\<D>' \<subseteq> \<D>\<close> by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1806
        also have "... \<subseteq> T"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1807
        proof (clarify)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1808
          fix x D
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1809
          assume "x \<in> D" "D \<in> \<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1810
          show "x \<in> T"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1811
            using Ksub [OF \<open>D \<in> \<D>\<close>]
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1812
            by (metis \<open>x \<in> D\<close> Int_iff dist_norm mem_ball norm_minus_commute subsetD RT)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1813
        qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1814
        finally show "\<Union>\<D>' \<subseteq> T" .
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1815
        show "T \<in> lmeasurable"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  1816
          using \<open>S \<in> lmeasurable\<close> \<open>S \<subseteq> T\<close> \<open>T - S \<in> lmeasurable\<close> fmeasurable_Diff_D by blast
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  1817
      qed
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1818
      have "sum (measure lebesgue) \<D>' = sum content \<D>'"
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1819
        using  \<open>\<D>' \<subseteq> \<D>\<close> cbox by (force intro: sum.cong)
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1820
      then have "(2 * B * DIM('M)) ^ DIM('N) * sum (measure lebesgue) \<D>' =
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1821
                 (2 * B * real DIM('M)) ^ DIM('N) * measure lebesgue (\<Union>\<D>')"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1822
        using content_division [OF div] by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1823
      also have "\<dots> \<le> (2 * B * real DIM('M)) ^ DIM('N) * measure lebesgue T"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1824
        apply (rule mult_left_mono [OF le_meaT])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1825
        using \<open>0 < B\<close>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1826
        apply (simp add: algebra_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1827
        done
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1828
      also have "\<dots> \<le> e/2"
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1829
        using T \<open>0 < B\<close> by (simp add: field_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1830
      finally show ?thesis .
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1831
    qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1832
    finally show ?thesis .
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1833
  qed
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  1834
  then have e2: "sum (measure lebesgue) \<G> \<le> e/2" if "\<G> \<subseteq> fbx ` \<D>" "finite \<G>" for \<G>
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1835
    by (metis finite_subset_image that)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1836
  show "\<exists>W\<in>lmeasurable. f ` S \<subseteq> W \<and> measure lebesgue W < e"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1837
  proof (intro bexI conjI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1838
    have "\<exists>X\<in>\<D>. f y \<in> fbx X" if "y \<in> S" for y
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1839
    proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1840
      obtain X where "y \<in> X" "X \<in> \<D>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1841
        using \<open>S \<subseteq> \<Union>\<D>\<close> \<open>y \<in> S\<close> by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1842
      then have y: "y \<in> ball(zf X) (R(zf X))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1843
        using uvz by fastforce
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1844
      have conj_le_eq: "z - b \<le> y \<and> y \<le> z + b \<longleftrightarrow> abs(y - z) \<le> b" for z y b::real
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1845
        by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1846
      have yin: "y \<in> cbox (uf X) (vf X)" and zin: "(zf X) \<in> cbox (uf X) (vf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1847
        using uvz \<open>X \<in> \<D>\<close> \<open>y \<in> X\<close> by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1848
      have "norm (y - zf X) \<le> (\<Sum>i\<in>Basis. \<bar>(y - zf X) \<bullet> i\<bar>)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1849
        by (rule norm_le_l1)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1850
      also have "\<dots> \<le> real DIM('M) * prj1 (vf X - uf X)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  1851
      proof (rule sum_bounded_above)
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1852
        fix j::'M assume j: "j \<in> Basis"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1853
        show "\<bar>(y - zf X) \<bullet> j\<bar> \<le> prj1 (vf X - uf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1854
          using yin zin j
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1855
          by (fastforce simp add: mem_box prj1_idem [OF \<open>X \<in> \<D>\<close> j] inner_diff_left)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1856
      qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1857
      finally have nole: "norm (y - zf X) \<le> DIM('M) * prj1 (vf X - uf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1858
        by simp
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1859
      have fle: "\<bar>f y \<bullet> i - f(zf X) \<bullet> i\<bar> \<le> B * DIM('M) * prj1 (vf X - uf X)" if "i \<in> Basis" for i
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1860
      proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1861
        have "\<bar>f y \<bullet> i - f (zf X) \<bullet> i\<bar> = \<bar>(f y - f (zf X)) \<bullet> i\<bar>"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1862
          by (simp add: algebra_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1863
        also have "\<dots> \<le> norm (f y - f (zf X))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1864
          by (simp add: Basis_le_norm that)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1865
        also have "\<dots> \<le> B * norm(y - zf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1866
          by (metis uvz RB \<open>X \<in> \<D>\<close> dist_commute dist_norm mem_ball \<open>y \<in> S\<close> y)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1867
        also have "\<dots> \<le> B * real DIM('M) * prj1 (vf X - uf X)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1868
          using \<open>0 < B\<close> by (simp add: nole)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1869
        finally show ?thesis .
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1870
      qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1871
      show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1872
        by (rule_tac x=X in bexI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1873
           (auto simp: fbx_def prj1_idem mem_box conj_le_eq inner_add inner_diff fle \<open>X \<in> \<D>\<close>)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1874
    qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1875
    then show "f ` S \<subseteq> (\<Union>D\<in>\<D>. fbx D)" by auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1876
  next
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1877
    have 1: "\<And>D. D \<in> \<D> \<Longrightarrow> fbx D \<in> lmeasurable"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1878
      by (auto simp: fbx_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1879
    have 2: "I' \<subseteq> \<D> \<Longrightarrow> finite I' \<Longrightarrow> measure lebesgue (\<Union>D\<in>I'. fbx D) \<le> e/2" for I'
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1880
      by (rule order_trans[OF measure_Union_le e2]) (auto simp: fbx_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1881
    show "(\<Union>D\<in>\<D>. fbx D) \<in> lmeasurable"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1882
      by (intro fmeasurable_UN_bound[OF \<open>countable \<D>\<close> 1 2])
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1883
    have "measure lebesgue (\<Union>D\<in>\<D>. fbx D) \<le> e/2"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  1884
      by (intro measure_UN_bound[OF \<open>countable \<D>\<close> 1 2])
63968
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1885
    then show "measure lebesgue (\<Union>D\<in>\<D>. fbx D) < e"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1886
      using \<open>0 < e\<close> by linarith
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1887
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1888
qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1889
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1890
proposition negligible_locally_Lipschitz_image:
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1891
  fixes f :: "'M::euclidean_space \<Rightarrow> 'N::euclidean_space"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1892
  assumes MleN: "DIM('M) \<le> DIM('N)" "negligible S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1893
      and lips: "\<And>x. x \<in> S
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1894
                      \<Longrightarrow> \<exists>T B. open T \<and> x \<in> T \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1895
                              (\<forall>y \<in> S \<inter> T. norm(f y - f x) \<le> B * norm(y - x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1896
    shows "negligible (f ` S)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1897
proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1898
  let ?S = "\<lambda>n. ({x \<in> S. norm x \<le> n \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1899
                          (\<exists>T. open T \<and> x \<in> T \<and>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1900
                               (\<forall>y\<in>S \<inter> T. norm (f y - f x) \<le> (real n + 1) * norm (y - x)))})"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1901
  have negfn: "f ` ?S n \<in> null_sets lebesgue" for n::nat
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1902
    unfolding negligible_iff_null_sets[symmetric]
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1903
    apply (rule_tac B = "real n + 1" in locally_Lipschitz_negl_bounded)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1904
    by (auto simp: MleN bounded_iff intro: negligible_subset [OF \<open>negligible S\<close>])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1905
  have "S = (\<Union>n. ?S n)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1906
  proof (intro set_eqI iffI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1907
    fix x assume "x \<in> S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1908
    with lips obtain T B where T: "open T" "x \<in> T"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1909
                           and B: "\<And>y. y \<in> S \<inter> T \<Longrightarrow> norm(f y - f x) \<le> B * norm(y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1910
      by metis+
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1911
    have no: "norm (f y - f x) \<le> (nat \<lceil>max B (norm x)\<rceil> + 1) * norm (y - x)" if "y \<in> S \<inter> T" for y
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1912
    proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1913
      have "B * norm(y - x) \<le> (nat \<lceil>max B (norm x)\<rceil> + 1) * norm (y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1914
        by (meson max.cobounded1 mult_right_mono nat_ceiling_le_eq nat_le_iff_add norm_ge_zero order_trans)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1915
      then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1916
        using B order_trans that by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1917
    qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1918
    have "x \<in> ?S (nat (ceiling (max B (norm x))))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1919
      apply (simp add: \<open>x \<in> S \<close>, rule)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1920
      using real_nat_ceiling_ge max.bounded_iff apply blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1921
      using T no
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1922
      apply (force simp: algebra_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1923
      done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1924
    then show "x \<in> (\<Union>n. ?S n)" by force
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1925
  qed auto
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1926
  then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1927
    by (rule ssubst) (auto simp: image_Union negligible_iff_null_sets intro: negfn)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1928
qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1929
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1930
corollary negligible_differentiable_image_negligible:
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1931
  fixes f :: "'M::euclidean_space \<Rightarrow> 'N::euclidean_space"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1932
  assumes MleN: "DIM('M) \<le> DIM('N)" "negligible S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1933
      and diff_f: "f differentiable_on S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1934
    shows "negligible (f ` S)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1935
proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1936
  have "\<exists>T B. open T \<and> x \<in> T \<and> (\<forall>y \<in> S \<inter> T. norm(f y - f x) \<le> B * norm(y - x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1937
        if "x \<in> S" for x
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1938
  proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1939
    obtain f' where "linear f'"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1940
      and f': "\<And>e. e>0 \<Longrightarrow>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1941
                  \<exists>d>0. \<forall>y\<in>S. norm (y - x) < d \<longrightarrow>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1942
                              norm (f y - f x - f' (y - x)) \<le> e * norm (y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1943
      using diff_f \<open>x \<in> S\<close>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1944
      by (auto simp: linear_linear differentiable_on_def differentiable_def has_derivative_within_alt)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1945
    obtain B where "B > 0" and B: "\<forall>x. norm (f' x) \<le> B * norm x"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1946
      using linear_bounded_pos \<open>linear f'\<close> by blast
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1947
    obtain d where "d>0"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1948
              and d: "\<And>y. \<lbrakk>y \<in> S; norm (y - x) < d\<rbrakk> \<Longrightarrow>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1949
                          norm (f y - f x - f' (y - x)) \<le> norm (y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1950
      using f' [of 1] by (force simp:)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1951
    have *: "norm (f y - f x) \<le> (B + 1) * norm (y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1952
              if "y \<in> S" "norm (y - x) < d" for y
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1953
    proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1954
      have "norm (f y - f x) -B *  norm (y - x) \<le> norm (f y - f x) - norm (f' (y - x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1955
        by (simp add: B)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1956
      also have "\<dots> \<le> norm (f y - f x - f' (y - x))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1957
        by (rule norm_triangle_ineq2)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1958
      also have "... \<le> norm (y - x)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1959
        by (rule d [OF that])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1960
      finally show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1961
        by (simp add: algebra_simps)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1962
    qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1963
    show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1964
      apply (rule_tac x="ball x d" in exI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1965
      apply (rule_tac x="B+1" in exI)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1966
      using \<open>d>0\<close>
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1967
      apply (auto simp: dist_norm norm_minus_commute intro!: *)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1968
      done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1969
  qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1970
  with negligible_locally_Lipschitz_image assms show ?thesis by metis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1971
qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1972
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1973
corollary negligible_differentiable_image_lowdim:
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1974
  fixes f :: "'M::euclidean_space \<Rightarrow> 'N::euclidean_space"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1975
  assumes MlessN: "DIM('M) < DIM('N)" and diff_f: "f differentiable_on S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1976
    shows "negligible (f ` S)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1977
proof -
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1978
  have "x \<le> DIM('M) \<Longrightarrow> x \<le> DIM('N)" for x
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1979
    using MlessN by linarith
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1980
  obtain lift :: "'M * real \<Rightarrow> 'N" and drop :: "'N \<Rightarrow> 'M * real" and j :: 'N
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1981
    where "linear lift" "linear drop" and dropl [simp]: "\<And>z. drop (lift z) = z"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1982
      and "j \<in> Basis" and j: "\<And>x. lift(x,0) \<bullet> j = 0"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1983
    using lowerdim_embeddings [OF MlessN] by metis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1984
  have "negligible {x. x\<bullet>j = 0}"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1985
    by (metis \<open>j \<in> Basis\<close> negligible_standard_hyperplane)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1986
  then have neg0S: "negligible ((\<lambda>x. lift (x, 0)) ` S)"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1987
    apply (rule negligible_subset)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1988
    by (simp add: image_subsetI j)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1989
  have diff_f': "f \<circ> fst \<circ> drop differentiable_on (\<lambda>x. lift (x, 0)) ` S"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1990
    using diff_f
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1991
    apply (clarsimp simp add: differentiable_on_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1992
    apply (intro differentiable_chain_within linear_imp_differentiable [OF \<open>linear drop\<close>]
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1993
             linear_imp_differentiable [OF fst_linear])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1994
    apply (force simp: image_comp o_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1995
    done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1996
  have "f = (f o fst o drop o (\<lambda>x. lift (x, 0)))"
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1997
    by (simp add: o_def)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1998
  then show ?thesis
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  1999
    apply (rule ssubst)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  2000
    apply (subst image_comp [symmetric])
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  2001
    apply (metis negligible_differentiable_image_negligible order_refl diff_f' neg0S)
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  2002
    done
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  2003
qed
4359400adfe7 HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
hoelzl
parents: 63959
diff changeset
  2004
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2005
subsection\<open>Measurability of countable unions and intersections of various kinds.\<close>
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2006
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2007
lemma
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2008
  assumes S: "\<And>n. S n \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2009
    and leB: "\<And>n. measure lebesgue (S n) \<le> B"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2010
    and nest: "\<And>n. S n \<subseteq> S(Suc n)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2011
  shows measurable_nested_Union: "(\<Union>n. S n) \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2012
  and measure_nested_Union:  "(\<lambda>n. measure lebesgue (S n)) \<longlonglongrightarrow> measure lebesgue (\<Union>n. S n)" (is ?Lim)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2013
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2014
  have 1: "\<And>n. (indicat_real (S n)) integrable_on UNIV"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2015
    using S measurable_integrable by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2016
  have 2: "\<And>n x::'a. indicat_real (S n) x \<le> (indicat_real (S (Suc n)) x)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2017
    by (simp add: indicator_leI nest rev_subsetD)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  2018
  have 3: "\<And>x. (\<lambda>n. indicat_real (S n) x) \<longlonglongrightarrow> (indicat_real (\<Union>(S ` UNIV)) x)"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70271
diff changeset
  2019
    apply (rule tendsto_eventually)
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2020
    apply (simp add: indicator_def)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2021
    by (metis eventually_sequentiallyI lift_Suc_mono_le nest subsetCE)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2022
  have 4: "bounded (range (\<lambda>n. integral UNIV (indicat_real (S n))))"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2023
    using leB by (auto simp: lmeasure_integral_UNIV [symmetric] S bounded_iff)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2024
  have "(\<Union>n. S n) \<in> lmeasurable \<and> ?Lim"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2025
    apply (simp add: lmeasure_integral_UNIV S cong: conj_cong)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2026
    apply (simp add: measurable_integrable)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2027
    apply (rule monotone_convergence_increasing [OF 1 2 3 4])
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2028
    done
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2029
  then show "(\<Union>n. S n) \<in> lmeasurable" "?Lim"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2030
    by auto
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2031
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2032
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2033
lemma
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2034
  assumes S: "\<And>n. S n \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2035
    and djointish: "pairwise (\<lambda>m n. negligible (S m \<inter> S n)) UNIV"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2036
    and leB: "\<And>n. (\<Sum>k\<le>n. measure lebesgue (S k)) \<le> B"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2037
  shows measurable_countable_negligible_Union: "(\<Union>n. S n) \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2038
  and   measure_countable_negligible_Union:    "(\<lambda>n. (measure lebesgue (S n))) sums measure lebesgue (\<Union>n. S n)" (is ?Sums)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2039
proof -
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2040
  have 1: "\<Union> (S ` {..n}) \<in> lmeasurable" for n
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2041
    using S by blast
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2042
  have 2: "measure lebesgue (\<Union> (S ` {..n})) \<le> B" for n
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2043
  proof -
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2044
    have "measure lebesgue (\<Union> (S ` {..n})) \<le> (\<Sum>k\<le>n. measure lebesgue (S k))"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2045
      by (simp add: S fmeasurableD measure_UNION_le)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2046
    with leB show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2047
      using order_trans by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2048
  qed
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2049
  have 3: "\<And>n. \<Union> (S ` {..n}) \<subseteq> \<Union> (S ` {..Suc n})"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2050
    by (simp add: SUP_subset_mono)
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2051
  have eqS: "(\<Union>n. S n) = (\<Union>n. \<Union> (S ` {..n}))"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2052
    using atLeastAtMost_iff by blast
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2053
  also have "(\<Union>n. \<Union> (S ` {..n})) \<in> lmeasurable"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2054
    by (intro measurable_nested_Union [OF 1 2] 3)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2055
  finally show "(\<Union>n. S n) \<in> lmeasurable" .
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2056
  have eqm: "(\<Sum>i\<le>n. measure lebesgue (S i)) = measure lebesgue (\<Union> (S ` {..n}))" for n
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2057
    using assms by (simp add: measure_negligible_finite_Union_image pairwise_mono)
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2058
  have "(\<lambda>n. (measure lebesgue (S n))) sums measure lebesgue (\<Union>n. \<Union> (S ` {..n}))"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2059
    by (simp add: sums_def' eqm atLeast0AtMost) (intro measure_nested_Union [OF 1 2] 3)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2060
  then show ?Sums
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2061
    by (simp add: eqS)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2062
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2063
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2064
lemma negligible_countable_Union [intro]:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2065
  assumes "countable \<F>" and meas: "\<And>S. S \<in> \<F> \<Longrightarrow> negligible S"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2066
  shows "negligible (\<Union>\<F>)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2067
proof (cases "\<F> = {}")
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2068
  case False
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2069
  then show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2070
    by (metis from_nat_into range_from_nat_into assms negligible_Union_nat)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2071
qed simp
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2072
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2073
lemma
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2074
  assumes S: "\<And>n. (S n) \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2075
    and djointish: "pairwise (\<lambda>m n. negligible (S m \<inter> S n)) UNIV"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2076
    and bo: "bounded (\<Union>n. S n)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2077
  shows measurable_countable_negligible_Union_bounded: "(\<Union>n. S n) \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2078
  and   measure_countable_negligible_Union_bounded:    "(\<lambda>n. (measure lebesgue (S n))) sums measure lebesgue (\<Union>n. S n)" (is ?Sums)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2079
proof -
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2080
  obtain a b where ab: "(\<Union>n. S n) \<subseteq> cbox a b"
68120
2f161c6910f7 tidying more messy proofs
paulson <lp15@cam.ac.uk>
parents: 68073
diff changeset
  2081
    using bo bounded_subset_cbox_symmetric by metis
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2082
  then have B: "(\<Sum>k\<le>n. measure lebesgue (S k)) \<le> measure lebesgue (cbox a b)" for n
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2083
  proof -
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2084
    have "(\<Sum>k\<le>n. measure lebesgue (S k)) = measure lebesgue (\<Union> (S ` {..n}))"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2085
      using measure_negligible_finite_Union_image [OF _ _ pairwise_subset] djointish
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2086
      by (metis S finite_atMost subset_UNIV)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2087
    also have "\<dots> \<le> measure lebesgue (cbox a b)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2088
      apply (rule measure_mono_fmeasurable)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2089
      using ab S by force+
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2090
    finally show ?thesis .
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2091
  qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2092
  show "(\<Union>n. S n) \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2093
    by (rule measurable_countable_negligible_Union [OF S djointish B])
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2094
  show ?Sums
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2095
    by (rule measure_countable_negligible_Union [OF S djointish B])
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2096
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2097
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2098
lemma measure_countable_Union_approachable:
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2099
  assumes "countable \<D>" "e > 0" and measD: "\<And>d. d \<in> \<D> \<Longrightarrow> d \<in> lmeasurable"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2100
      and B: "\<And>D'. \<lbrakk>D' \<subseteq> \<D>; finite D'\<rbrakk> \<Longrightarrow> measure lebesgue (\<Union>D') \<le> B"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2101
    obtains D' where "D' \<subseteq> \<D>" "finite D'" "measure lebesgue (\<Union>\<D>) - e < measure lebesgue (\<Union>D')"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2102
proof (cases "\<D> = {}")
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2103
  case True
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2104
  then show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2105
    by (simp add: \<open>e > 0\<close> that)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2106
next
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2107
  case False
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2108
  let ?S = "\<lambda>n. \<Union>k \<le> n. from_nat_into \<D> k"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2109
  have "(\<lambda>n. measure lebesgue (?S n)) \<longlonglongrightarrow> measure lebesgue (\<Union>n. ?S n)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2110
  proof (rule measure_nested_Union)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2111
    show "?S n \<in> lmeasurable" for n
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2112
      by (simp add: False fmeasurable.finite_UN from_nat_into measD)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2113
    show "measure lebesgue (?S n) \<le> B" for n
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2114
      by (metis (mono_tags, lifting) B False finite_atMost finite_imageI from_nat_into image_iff subsetI)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2115
    show "?S n \<subseteq> ?S (Suc n)" for n
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2116
      by force
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2117
  qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2118
  then obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> dist (measure lebesgue (?S n)) (measure lebesgue (\<Union>n. ?S n)) < e"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2119
    using metric_LIMSEQ_D \<open>e > 0\<close> by blast
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2120
  show ?thesis
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2121
  proof
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2122
    show "from_nat_into \<D> ` {..N} \<subseteq> \<D>"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2123
      by (auto simp: False from_nat_into)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2124
    have eq: "(\<Union>n. \<Union>k\<le>n. from_nat_into \<D> k) = (\<Union>\<D>)"
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2125
      using \<open>countable \<D>\<close> False
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2126
      by (auto intro: from_nat_into dest: from_nat_into_surj [OF \<open>countable \<D>\<close>])
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2127
    show "measure lebesgue (\<Union>\<D>) - e < measure lebesgue (\<Union> (from_nat_into \<D> ` {..N}))"
67989
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2128
      using N [OF order_refl]
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2129
      by (auto simp: eq algebra_simps dist_norm)
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2130
  qed auto
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2131
qed
706f86afff43 more results about measure and negligibility
paulson <lp15@cam.ac.uk>
parents: 67986
diff changeset
  2132
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2133
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2134
subsection\<open>Negligibility is a local property\<close>
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2135
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2136
lemma locally_negligible_alt:
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69661
diff changeset
  2137
    "negligible S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>U. openin (top_of_set S) U \<and> x \<in> U \<and> negligible U)"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2138
     (is "_ = ?rhs")
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2139
proof
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2140
  assume "negligible S"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2141
  then show ?rhs
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2142
    using openin_subtopology_self by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2143
next
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2144
  assume ?rhs
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69661
diff changeset
  2145
  then obtain U where ope: "\<And>x. x \<in> S \<Longrightarrow> openin (top_of_set S) (U x)"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2146
    and cov: "\<And>x. x \<in> S \<Longrightarrow> x \<in> U x"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2147
    and neg: "\<And>x. x \<in> S \<Longrightarrow> negligible (U x)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2148
    by metis
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  2149
  obtain \<F> where "\<F> \<subseteq> U ` S" "countable \<F>" and eq: "\<Union>\<F> = \<Union>(U ` S)"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2150
    using ope by (force intro: Lindelof_openin [of "U ` S" S])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2151
  then have "negligible (\<Union>\<F>)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2152
    by (metis imageE neg negligible_countable_Union subset_eq)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  2153
  with eq have "negligible (\<Union>(U ` S))"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2154
    by metis
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  2155
  moreover have "S \<subseteq> \<Union>(U ` S)"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2156
    using cov by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2157
  ultimately show "negligible S"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2158
    using negligible_subset by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2159
qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2160
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2161
lemma locally_negligible:
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2162
     "locally negligible S \<longleftrightarrow> negligible S"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2163
  unfolding locally_def
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2164
  apply safe
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2165
   apply (meson negligible_subset openin_subtopology_self locally_negligible_alt)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2166
  by (meson negligible_subset openin_imp_subset order_refl)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2167
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2168
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  2169
subsection\<open>Integral bounds\<close>
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  2170
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2171
lemma set_integral_norm_bound:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2172
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2173
  shows "set_integrable M k f \<Longrightarrow> norm (LINT x:k|M. f x) \<le> LINT x:k|M. norm (f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  2174
  using integral_norm_bound[of M "\<lambda>x. indicator k x *\<^sub>R f x"] by (simp add: set_lebesgue_integral_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  2175
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2176
lemma set_integral_finite_UN_AE:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2177
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2178
  assumes "finite I"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2179
    and ae: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> AE x in M. (x \<in> A i \<and> x \<in> A j) \<longrightarrow> i = j"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2180
    and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2181
    and f: "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2182
  shows "LINT x:(\<Union>i\<in>I. A i)|M. f x = (\<Sum>i\<in>I. LINT x:A i|M. f x)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2183
  using \<open>finite I\<close> order_refl[of I]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2184
proof (induction I rule: finite_subset_induct')
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2185
  case (insert i I')
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2186
  have "AE x in M. (\<forall>j\<in>I'. x \<in> A i \<longrightarrow> x \<notin> A j)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2187
  proof (intro AE_ball_countable[THEN iffD2] ballI)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2188
    fix j assume "j \<in> I'"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2189
    with \<open>I' \<subseteq> I\<close> \<open>i \<notin> I'\<close> have "i \<noteq> j" "j \<in> I"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2190
      by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2191
    then show "AE x in M. x \<in> A i \<longrightarrow> x \<notin> A j"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2192
      using ae[of i j] \<open>i \<in> I\<close> by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2193
  qed (use \<open>finite I'\<close> in \<open>rule countable_finite\<close>)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2194
  then have "AE x\<in>A i in M. \<forall>xa\<in>I'. x \<notin> A xa "
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2195
    by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2196
  with insert.hyps insert.IH[symmetric]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2197
  show ?case
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2198
    by (auto intro!: set_integral_Un_AE sets.finite_UN f set_integrable_UN)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  2199
qed (simp add: set_lebesgue_integral_def)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2200
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2201
lemma set_integrable_norm:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2202
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2203
  assumes f: "set_integrable M k f" shows "set_integrable M k (\<lambda>x. norm (f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  2204
  using integrable_norm f by (force simp add: set_integrable_def)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2205
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2206
lemma absolutely_integrable_bounded_variation:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2207
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2208
  assumes f: "f absolutely_integrable_on UNIV"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2209
  obtains B where "\<forall>d. d division_of (\<Union>d) \<longrightarrow> sum (\<lambda>k. norm (integral k f)) d \<le> B"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2210
proof (rule that[of "integral UNIV (\<lambda>x. norm (f x))"]; safe)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2211
  fix d :: "'a set set" assume d: "d division_of \<Union>d"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2212
  have *: "k \<in> d \<Longrightarrow> f absolutely_integrable_on k" for k
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2213
    using f[THEN set_integrable_subset, of k] division_ofD(2,4)[OF d, of k] by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2214
  note d' = division_ofD[OF d]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2215
  have "(\<Sum>k\<in>d. norm (integral k f)) = (\<Sum>k\<in>d. norm (LINT x:k|lebesgue. f x))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2216
    by (intro sum.cong refl arg_cong[where f=norm] set_lebesgue_integral_eq_integral(2)[symmetric] *)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2217
  also have "\<dots> \<le> (\<Sum>k\<in>d. LINT x:k|lebesgue. norm (f x))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2218
    by (intro sum_mono set_integral_norm_bound *)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2219
  also have "\<dots> = (\<Sum>k\<in>d. integral k (\<lambda>x. norm (f x)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2220
    by (intro sum.cong refl set_lebesgue_integral_eq_integral(2) set_integrable_norm *)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2221
  also have "\<dots> \<le> integral (\<Union>d) (\<lambda>x. norm (f x))"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2222
    using integrable_on_subdivision[OF d] assms f unfolding absolutely_integrable_on_def
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2223
    by (subst integral_combine_division_topdown[OF _ d]) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2224
  also have "\<dots> \<le> integral UNIV (\<lambda>x. norm (f x))"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2225
    using integrable_on_subdivision[OF d] assms unfolding absolutely_integrable_on_def
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2226
    by (intro integral_subset_le) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2227
  finally show "(\<Sum>k\<in>d. norm (integral k f)) \<le> integral UNIV (\<lambda>x. norm (f x))" .
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2228
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2229
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2230
lemma absdiff_norm_less:
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2231
  assumes "sum (\<lambda>x. norm (f x - g x)) s < e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2232
    and "finite s"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2233
  shows "\<bar>sum (\<lambda>x. norm(f x)) s - sum (\<lambda>x. norm(g x)) s\<bar> < e"
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2234
  unfolding sum_subtractf[symmetric]
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2235
  apply (rule le_less_trans[OF sum_abs])
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2236
  apply (rule le_less_trans[OF _ assms(1)])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2237
  apply (rule sum_mono)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2238
  apply (rule norm_triangle_ineq3)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2239
  done
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2240
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2241
proposition bounded_variation_absolutely_integrable_interval:
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2242
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2243
  assumes f: "f integrable_on cbox a b"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2244
    and *: "\<And>d. d division_of (cbox a b) \<Longrightarrow> sum (\<lambda>K. norm(integral K f)) d \<le> B"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2245
  shows "f absolutely_integrable_on cbox a b"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2246
proof -
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2247
  let ?f = "\<lambda>d. \<Sum>K\<in>d. norm (integral K f)" and ?D = "{d. d division_of (cbox a b)}"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2248
  have D_1: "?D \<noteq> {}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2249
    by (rule elementary_interval[of a b]) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2250
  have D_2: "bdd_above (?f`?D)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2251
    by (metis * mem_Collect_eq bdd_aboveI2)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2252
  note D = D_1 D_2
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  2253
  let ?S = "SUP x\<in>?D. ?f x"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2254
  have *: "\<exists>\<gamma>. gauge \<gamma> \<and>
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2255
             (\<forall>p. p tagged_division_of cbox a b \<and>
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2256
                  \<gamma> fine p \<longrightarrow>
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2257
                  norm ((\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - ?S) < e)"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2258
    if e: "e > 0" for e
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2259
  proof -
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2260
    have "?S - e/2 < ?S" using \<open>e > 0\<close> by simp
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2261
    then obtain d where d: "d division_of (cbox a b)" "?S - e/2 < (\<Sum>k\<in>d. norm (integral k f))"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2262
      unfolding less_cSUP_iff[OF D] by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2263
    note d' = division_ofD[OF this(1)]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2264
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2265
    have "\<exists>e>0. \<forall>i\<in>d. x \<notin> i \<longrightarrow> ball x e \<inter> i = {}" for x
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2266
    proof -
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2267
      have "\<exists>d'>0. \<forall>x'\<in>\<Union>{i \<in> d. x \<notin> i}. d' \<le> dist x x'"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2268
      proof (rule separate_point_closed)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2269
        show "closed (\<Union>{i \<in> d. x \<notin> i})"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2270
          using d' by force
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2271
        show "x \<notin> \<Union>{i \<in> d. x \<notin> i}"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2272
          by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2273
      qed
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2274
      then show ?thesis
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2275
        by force
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2276
    qed
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2277
    then obtain k where k: "\<And>x. 0 < k x" "\<And>i x. \<lbrakk>i \<in> d; x \<notin> i\<rbrakk> \<Longrightarrow> ball x (k x) \<inter> i = {}"
66320
9786b06c7b5a eliminated more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66294
diff changeset
  2278
      by metis
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2279
    have "e/2 > 0"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2280
      using e by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2281
    with Henstock_lemma[OF f]
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2282
    obtain \<gamma> where g: "gauge \<gamma>"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2283
      "\<And>p. \<lbrakk>p tagged_partial_division_of cbox a b; \<gamma> fine p\<rbrakk>
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2284
                \<Longrightarrow> (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2285
      by (metis (no_types, lifting))
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2286
    let ?g = "\<lambda>x. \<gamma> x \<inter> ball x (k x)"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2287
    show ?thesis
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2288
    proof (intro exI conjI allI impI)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2289
      show "gauge ?g"
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2290
        using g(1) k(1) by (auto simp: gauge_def)
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2291
    next
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2292
      fix p
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2293
      assume "p tagged_division_of (cbox a b) \<and> ?g fine p"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2294
      then have p: "p tagged_division_of cbox a b" "\<gamma> fine p" "(\<lambda>x. ball x (k x)) fine p"
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2295
        by (auto simp: fine_Int)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2296
      note p' = tagged_division_ofD[OF p(1)]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2297
      define p' where "p' = {(x,k) | x k. \<exists>i l. x \<in> i \<and> i \<in> d \<and> (x,l) \<in> p \<and> k = i \<inter> l}"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2298
      have gp': "\<gamma> fine p'"
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2299
        using p(2) by (auto simp: p'_def fine_def)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2300
      have p'': "p' tagged_division_of (cbox a b)"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2301
      proof (rule tagged_division_ofI)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2302
        show "finite p'"
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2303
        proof (rule finite_subset)
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2304
          show "p' \<subseteq> (\<lambda>(k, x, l). (x, k \<inter> l)) ` (d \<times> p)"
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2305
            by (force simp: p'_def image_iff)
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2306
          show "finite ((\<lambda>(k, x, l). (x, k \<inter> l)) ` (d \<times> p))"
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2307
            by (simp add: d'(1) p'(1))
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2308
        qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2309
      next
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2310
        fix x K
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2311
        assume "(x, K) \<in> p'"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2312
        then have "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> K = i \<inter> l"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2313
          unfolding p'_def by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2314
        then obtain i l where il: "x \<in> i" "i \<in> d" "(x, l) \<in> p" "K = i \<inter> l" by blast
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2315
        show "x \<in> K" and "K \<subseteq> cbox a b"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2316
          using p'(2-3)[OF il(3)] il by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2317
        show "\<exists>a b. K = cbox a b"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2318
          unfolding il using p'(4)[OF il(3)] d'(4)[OF il(2)] by (meson Int_interval)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2319
      next
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2320
        fix x1 K1
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2321
        assume "(x1, K1) \<in> p'"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2322
        then have "\<exists>i l. x1 \<in> i \<and> i \<in> d \<and> (x1, l) \<in> p \<and> K1 = i \<inter> l"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2323
          unfolding p'_def by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2324
        then obtain i1 l1 where il1: "x1 \<in> i1" "i1 \<in> d" "(x1, l1) \<in> p" "K1 = i1 \<inter> l1" by blast
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2325
        fix x2 K2
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2326
        assume "(x2,K2) \<in> p'"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2327
        then have "\<exists>i l. x2 \<in> i \<and> i \<in> d \<and> (x2, l) \<in> p \<and> K2 = i \<inter> l"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2328
          unfolding p'_def by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2329
        then obtain i2 l2 where il2: "x2 \<in> i2" "i2 \<in> d" "(x2, l2) \<in> p" "K2 = i2 \<inter> l2" by blast
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2330
        assume "(x1, K1) \<noteq> (x2, K2)"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2331
        then have "interior i1 \<inter> interior i2 = {} \<or> interior l1 \<inter> interior l2 = {}"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2332
          using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)]  by (auto simp: il1 il2)
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2333
        then show "interior K1 \<inter> interior K2 = {}"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2334
          unfolding il1 il2 by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2335
      next
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2336
        have *: "\<forall>(x, X) \<in> p'. X \<subseteq> cbox a b"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2337
          unfolding p'_def using d' by blast
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2338
        have "y \<in> \<Union>{K. \<exists>x. (x, K) \<in> p'}" if y: "y \<in> cbox a b" for y
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2339
        proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2340
          obtain x l where xl: "(x, l) \<in> p" "y \<in> l"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2341
            using y unfolding p'(6)[symmetric] by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2342
          obtain i where i: "i \<in> d" "y \<in> i"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2343
            using y unfolding d'(6)[symmetric] by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2344
          have "x \<in> i"
66320
9786b06c7b5a eliminated more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66294
diff changeset
  2345
            using fineD[OF p(3) xl(1)] using k(2) i xl by auto
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2346
          then show ?thesis
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2347
            unfolding p'_def by (rule_tac X="i \<inter> l" in UnionI) (use i xl in auto)
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2348
        qed
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2349
        show "\<Union>{K. \<exists>x. (x, K) \<in> p'} = cbox a b"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2350
        proof
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2351
          show "\<Union>{k. \<exists>x. (x, k) \<in> p'} \<subseteq> cbox a b"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2352
            using * by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2353
        next
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2354
          show "cbox a b \<subseteq> \<Union>{k. \<exists>x. (x, k) \<in> p'}"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2355
          proof
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2356
            fix y
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2357
            assume y: "y \<in> cbox a b"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2358
            obtain x L where xl: "(x, L) \<in> p" "y \<in> L"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2359
              using y unfolding p'(6)[symmetric] by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2360
            obtain I where i: "I \<in> d" "y \<in> I"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2361
              using y unfolding d'(6)[symmetric] by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2362
            have "x \<in> I"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2363
              using fineD[OF p(3) xl(1)] using k(2) i xl by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2364
            then show "y \<in> \<Union>{k. \<exists>x. (x, k) \<in> p'}"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2365
              apply (rule_tac X="I \<inter> L" in UnionI)
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2366
              using i xl by (auto simp: p'_def)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2367
          qed
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2368
        qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2369
      qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2370
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2371
      then have sum_less_e2: "(\<Sum>(x,K) \<in> p'. norm (content K *\<^sub>R f x - integral K f)) < e/2"
66320
9786b06c7b5a eliminated more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66294
diff changeset
  2372
        using g(2) gp' tagged_division_of_def by blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2373
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2374
      have "(x, I \<inter> L) \<in> p'" if x: "(x, L) \<in> p" "I \<in> d" and y: "y \<in> I" "y \<in> L"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2375
        for x I L y
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2376
      proof -
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2377
        have "x \<in> I"
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2378
          using fineD[OF p(3) that(1)] k(2)[OF \<open>I \<in> d\<close>] y by auto
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2379
        with x have "(\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> I \<inter> L = i \<inter> l)"
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2380
          by blast
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2381
        then have "(x, I \<inter> L) \<in> p'"
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2382
          by (simp add: p'_def)
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2383
        with y show ?thesis by auto
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2384
      qed
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2385
      moreover have "\<exists>y i l. (x, K) = (y, i \<inter> l) \<and> (y, l) \<in> p \<and> i \<in> d \<and> i \<inter> l \<noteq> {}"
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2386
        if xK: "(x,K) \<in> p'" for x K
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2387
      proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2388
        obtain i l where il: "x \<in> i" "i \<in> d" "(x, l) \<in> p" "K = i \<inter> l"
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2389
          using xK unfolding p'_def by auto
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2390
        then show ?thesis
66199
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2391
          using p'(2) by fastforce
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2392
      qed
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2393
      ultimately have p'alt: "p' = {(x, I \<inter> L) | x I L. (x,L) \<in> p \<and> I \<in> d \<and> I \<inter> L \<noteq> {}}"
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2394
        by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2395
      have sum_p': "(\<Sum>(x,K) \<in> p'. norm (integral K f)) = (\<Sum>k\<in>snd ` p'. norm (integral k f))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2396
        apply (subst sum.over_tagged_division_lemma[OF p'',of "\<lambda>k. norm (integral k f)"])
66199
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2397
         apply (auto intro: integral_null simp: content_eq_0_interior)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2398
        done
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2399
      have snd_p_div: "snd ` p division_of cbox a b"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2400
        by (rule division_of_tagged_division[OF p(1)])
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2401
      note snd_p = division_ofD[OF snd_p_div]
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2402
      have fin_d_sndp: "finite (d \<times> snd ` p)"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2403
        by (simp add: d'(1) snd_p(1))
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2404
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2405
      have *: "\<And>sni sni' sf sf'. \<lbrakk>\<bar>sf' - sni'\<bar> < e/2; ?S - e/2 < sni; sni' \<le> ?S;
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2406
                       sni \<le> sni'; sf' = sf\<rbrakk> \<Longrightarrow> \<bar>sf - ?S\<bar> < e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2407
        by arith
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2408
      show "norm ((\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - ?S) < e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2409
        unfolding real_norm_def
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2410
      proof (rule *)
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2411
        show "\<bar>(\<Sum>(x,K)\<in>p'. norm (content K *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p'. norm (integral k f))\<bar> < e/2"
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2412
          using p'' sum_less_e2 unfolding split_def by (force intro!: absdiff_norm_less)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2413
        show "(\<Sum>(x,k) \<in> p'. norm (integral k f)) \<le>?S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2414
          by (auto simp: sum_p' division_of_tagged_division[OF p''] D intro!: cSUP_upper)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2415
        show "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>(x,k) \<in> p'. norm (integral k f))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2416
        proof -
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2417
          have *: "{k \<inter> l | k l. k \<in> d \<and> l \<in> snd ` p} = (\<lambda>(k,l). k \<inter> l) ` (d \<times> snd ` p)"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2418
            by auto
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2419
          have "(\<Sum>K\<in>d. norm (integral K f)) \<le> (\<Sum>i\<in>d. \<Sum>l\<in>snd ` p. norm (integral (i \<inter> l) f))"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2420
          proof (rule sum_mono)
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2421
            fix K assume k: "K \<in> d"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2422
            from d'(4)[OF this] obtain u v where uv: "K = cbox u v" by metis
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2423
            define d' where "d' = {cbox u v \<inter> l |l. l \<in> snd ` p \<and>  cbox u v \<inter> l \<noteq> {}}"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2424
            have uvab: "cbox u v \<subseteq> cbox a b"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2425
              using d(1) k uv by blast
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2426
            have "d' division_of cbox u v"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2427
              unfolding d'_def by (rule division_inter_1 [OF snd_p_div uvab])
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2428
            moreover then have "norm (\<Sum>i\<in>d'. integral i f) \<le> (\<Sum>k\<in>d'. norm (integral k f))"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2429
              by (simp add: sum_norm_le)
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2430
            ultimately have "norm (integral K f) \<le> sum (\<lambda>k. norm (integral k f)) d'"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2431
              apply (subst integral_combine_division_topdown[of _ _ d'])
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2432
                apply (auto simp: uv intro: integrable_on_subcbox[OF assms(1) uvab])
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2433
              done
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2434
            also have "\<dots> = (\<Sum>I\<in>{K \<inter> L |L. L \<in> snd ` p}. norm (integral I f))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2435
            proof -
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2436
              have *: "norm (integral I f) = 0"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2437
                if "I \<in> {cbox u v \<inter> l |l. l \<in> snd ` p}"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2438
                  "I \<notin> {cbox u v \<inter> l |l. l \<in> snd ` p \<and> cbox u v \<inter> l \<noteq> {}}" for I
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2439
                using that by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2440
              show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2441
                apply (rule sum.mono_neutral_left)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2442
                  apply (simp add: snd_p(1))
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2443
                unfolding d'_def uv using * by auto
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2444
            qed
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2445
            also have "\<dots> = (\<Sum>l\<in>snd ` p. norm (integral (K \<inter> l) f))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2446
            proof -
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2447
              have *: "norm (integral (K \<inter> l) f) = 0"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2448
                if "l \<in> snd ` p" "y \<in> snd ` p" "l \<noteq> y" "K \<inter> l = K \<inter> y" for l y
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2449
              proof -
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2450
                have "interior (K \<inter> l) \<subseteq> interior (l \<inter> y)"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2451
                  by (metis Int_lower2 interior_mono le_inf_iff that(4))
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2452
                then have "interior (K \<inter> l) = {}"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2453
                  by (simp add: snd_p(5) that)
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2454
                moreover from d'(4)[OF k] snd_p(4)[OF that(1)]
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2455
                obtain u1 v1 u2 v2
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2456
                  where uv: "K = cbox u1 u2" "l = cbox v1 v2" by metis
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2457
                ultimately show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2458
                  using that integral_null
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2459
                  unfolding uv Int_interval content_eq_0_interior
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2460
                  by (metis (mono_tags, lifting) norm_eq_zero)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2461
              qed
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2462
              show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2463
                unfolding Setcompr_eq_image
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2464
                apply (rule sum.reindex_nontrivial [unfolded o_def])
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2465
                 apply (rule finite_imageI)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2466
                 apply (rule p')
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2467
                using * by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2468
            qed
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2469
            finally show "norm (integral K f) \<le> (\<Sum>l\<in>snd ` p. norm (integral (K \<inter> l) f))" .
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2470
          qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2471
          also have "\<dots> = (\<Sum>(i,l) \<in> d \<times> snd ` p. norm (integral (i\<inter>l) f))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2472
            by (simp add: sum.cartesian_product)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66703
diff changeset
  2473
          also have "\<dots> = (\<Sum>x \<in> d \<times> snd ` p. norm (integral (case_prod (\<inter>) x) f))"
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2474
            by (force simp: split_def intro!: sum.cong)
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2475
          also have "\<dots> = (\<Sum>k\<in>{i \<inter> l |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral k f))"
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2476
          proof -
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2477
            have eq0: " (integral (l1 \<inter> k1) f) = 0"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2478
              if "l1 \<inter> k1 = l2 \<inter> k2" "(l1, k1) \<noteq> (l2, k2)"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2479
                "l1 \<in> d" "(j1,k1) \<in> p" "l2 \<in> d" "(j2,k2) \<in> p"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2480
              for l1 l2 k1 k2 j1 j2
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2481
            proof -
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2482
              obtain u1 v1 u2 v2 where uv: "l1 = cbox u1 u2" "k1 = cbox v1 v2"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2483
                using \<open>(j1, k1) \<in> p\<close> \<open>l1 \<in> d\<close> d'(4) p'(4) by blast
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2484
              have "l1 \<noteq> l2 \<or> k1 \<noteq> k2"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2485
                using that by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2486
              then have "interior k1 \<inter> interior k2 = {} \<or> interior l1 \<inter> interior l2 = {}"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2487
                by (meson d'(5) old.prod.inject p'(5) that(3) that(4) that(5) that(6))
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2488
              moreover have "interior (l1 \<inter> k1) = interior (l2 \<inter> k2)"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2489
                by (simp add: that(1))
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2490
              ultimately have "interior(l1 \<inter> k1) = {}"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2491
                by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2492
              then show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2493
                unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2494
            qed
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2495
            show ?thesis
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2496
              unfolding *
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2497
              apply (rule sum.reindex_nontrivial [OF fin_d_sndp, symmetric, unfolded o_def])
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2498
              apply clarsimp
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2499
              by (metis eq0 fst_conv snd_conv)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2500
          qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2501
          also have "\<dots> = (\<Sum>(x,k) \<in> p'. norm (integral k f))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2502
          proof -
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2503
            have 0: "integral (ia \<inter> snd (a, b)) f = 0"
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2504
              if "ia \<inter> snd (a, b) \<notin> snd ` p'" "ia \<in> d" "(a, b) \<in> p" for ia a b
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2505
            proof -
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2506
              have "ia \<inter> b = {}"
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2507
                using that unfolding p'alt image_iff Bex_def not_ex
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2508
                apply (erule_tac x="(a, ia \<inter> b)" in allE)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2509
                apply auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2510
                done
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2511
              then show ?thesis by auto
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2512
            qed
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2513
            have 1: "\<exists>i l. snd (a, b) = i \<inter> l \<and> i \<in> d \<and> l \<in> snd ` p" if "(a, b) \<in> p'" for a b
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2514
              using that
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2515
              apply (clarsimp simp: p'_def image_iff)
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2516
              by (metis (no_types, hide_lams) snd_conv)
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2517
            show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2518
              unfolding sum_p'
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2519
              apply (rule sum.mono_neutral_right)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2520
                apply (metis * finite_imageI[OF fin_d_sndp])
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2521
              using 0 1 by auto
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2522
          qed
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2523
          finally show ?thesis .
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2524
        qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2525
        show "(\<Sum>(x,k) \<in> p'. norm (content k *\<^sub>R f x)) = (\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x))"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2526
        proof -
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2527
          let ?S = "{(x, i \<inter> l) |x i l. (x, l) \<in> p \<and> i \<in> d}"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2528
          have *: "?S = (\<lambda>(xl,i). (fst xl, snd xl \<inter> i)) ` (p \<times> d)"
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2529
            by force
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2530
          have fin_pd: "finite (p \<times> d)"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2531
            using finite_cartesian_product[OF p'(1) d'(1)] by metis
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2532
          have "(\<Sum>(x,k) \<in> p'. norm (content k *\<^sub>R f x)) = (\<Sum>(x,k) \<in> ?S. \<bar>content k\<bar> * norm (f x))"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2533
            unfolding norm_scaleR
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2534
            apply (rule sum.mono_neutral_left)
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2535
              apply (subst *)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2536
              apply (rule finite_imageI [OF fin_pd])
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2537
            unfolding p'alt apply auto
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2538
            by fastforce
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2539
          also have "\<dots> = (\<Sum>((x,l),i)\<in>p \<times> d. \<bar>content (l \<inter> i)\<bar> * norm (f x))"
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2540
          proof -
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2541
            have "\<bar>content (l1 \<inter> k1)\<bar> * norm (f x1) = 0"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2542
              if "(x1, l1) \<in> p" "(x2, l2) \<in> p" "k1 \<in> d" "k2 \<in> d"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2543
                "x1 = x2" "l1 \<inter> k1 = l2 \<inter> k2" "x1 \<noteq> x2 \<or> l1 \<noteq> l2 \<or> k1 \<noteq> k2"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2544
              for x1 l1 k1 x2 l2 k2
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2545
            proof -
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2546
              obtain u1 v1 u2 v2 where uv: "k1 = cbox u1 u2" "l1 = cbox v1 v2"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2547
                by (meson \<open>(x1, l1) \<in> p\<close> \<open>k1 \<in> d\<close> d(1) division_ofD(4) p'(4))
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2548
              have "l1 \<noteq> l2 \<or> k1 \<noteq> k2"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2549
                using that by auto
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2550
              then have "interior k1 \<inter> interior k2 = {} \<or> interior l1 \<inter> interior l2 = {}"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2551
                apply (rule disjE)
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2552
                using that p'(5) d'(5) by auto
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2553
              moreover have "interior (l1 \<inter> k1) = interior (l2 \<inter> k2)"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2554
                unfolding that ..
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2555
              ultimately have "interior (l1 \<inter> k1) = {}"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2556
                by auto
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2557
              then show "\<bar>content (l1 \<inter> k1)\<bar> * norm (f x1) = 0"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2558
                unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2559
            qed
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2560
            then show ?thesis
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2561
              unfolding *
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2562
              apply (subst sum.reindex_nontrivial [OF fin_pd])
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2563
              unfolding split_paired_all o_def split_def prod.inject
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2564
               apply force+
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2565
              done
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2566
          qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2567
          also have "\<dots> = (\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x))"
66339
1c5e521a98f1 more horrible proofs disentangled
paulson
parents: 66320
diff changeset
  2568
          proof -
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2569
            have sumeq: "(\<Sum>i\<in>d. content (l \<inter> i) * norm (f x)) = content l * norm (f x)"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2570
              if "(x, l) \<in> p" for x l
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2571
            proof -
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2572
              note xl = p'(2-4)[OF that]
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  2573
              then obtain u v where uv: "l = cbox u v" by blast
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2574
              have "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar>) = (\<Sum>k\<in>d. content (k \<inter> cbox u v))"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2575
                by (simp add: Int_commute uv)
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2576
              also have "\<dots> = sum content {k \<inter> cbox u v| k. k \<in> d}"
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2577
              proof -
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2578
                have eq0: "content (k \<inter> cbox u v) = 0"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2579
                  if "k \<in> d" "y \<in> d" "k \<noteq> y" and eq: "k \<inter> cbox u v = y \<inter> cbox u v" for k y
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2580
                proof -
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2581
                  from d'(4)[OF that(1)] d'(4)[OF that(2)]
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2582
                  obtain \<alpha> \<beta> where \<alpha>: "k \<inter> cbox u v = cbox \<alpha> \<beta>"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2583
                    by (meson Int_interval)
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2584
                  have "{} = interior ((k \<inter> y) \<inter> cbox u v)"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2585
                    by (simp add: d'(5) that)
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2586
                  also have "\<dots> = interior (y \<inter> (k \<inter> cbox u v))"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2587
                    by auto
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2588
                  also have "\<dots> = interior (k \<inter> cbox u v)"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2589
                    unfolding eq by auto
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2590
                  finally show ?thesis
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2591
                    unfolding \<alpha> content_eq_0_interior ..
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2592
                qed
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2593
                then show ?thesis
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2594
                  unfolding Setcompr_eq_image
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2595
                  apply (rule sum.reindex_nontrivial [OF \<open>finite d\<close>, unfolded o_def, symmetric])
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2596
                  by auto
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2597
              qed
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2598
              also have "\<dots> = sum content {cbox u v \<inter> k |k. k \<in> d \<and> cbox u v \<inter> k \<noteq> {}}"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2599
                apply (rule sum.mono_neutral_right)
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2600
                unfolding Setcompr_eq_image
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2601
                  apply (rule finite_imageI [OF \<open>finite d\<close>])
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2602
                 apply (fastforce simp: inf.commute)+
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2603
                done
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2604
              finally show "(\<Sum>i\<in>d. content (l \<inter> i) * norm (f x)) = content l * norm (f x)"
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2605
                unfolding sum_distrib_right[symmetric] real_scaleR_def
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2606
                apply (subst(asm) additive_content_division[OF division_inter_1[OF d(1)]])
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2607
                using xl(2)[unfolded uv] unfolding uv apply auto
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2608
                done
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2609
            qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2610
            show ?thesis
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2611
              by (subst sum_Sigma_product[symmetric]) (auto intro!: sumeq sum.cong p' d')
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2612
          qed
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2613
          finally show ?thesis .
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2614
        qed
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2615
      qed (rule d)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2616
    qed
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2617
  qed
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2618
  then show ?thesis
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2619
    using absolutely_integrable_onI [OF f has_integral_integrable] has_integral[of _ ?S]
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2620
    by blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2621
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2622
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2623
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2624
lemma bounded_variation_absolutely_integrable:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2625
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2626
  assumes "f integrable_on UNIV"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2627
    and "\<forall>d. d division_of (\<Union>d) \<longrightarrow> sum (\<lambda>k. norm (integral k f)) d \<le> B"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2628
  shows "f absolutely_integrable_on UNIV"
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  2629
proof (rule absolutely_integrable_onI, fact)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2630
  let ?f = "\<lambda>d. \<Sum>k\<in>d. norm (integral k f)" and ?D = "{d. d division_of  (\<Union>d)}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2631
  have D_1: "?D \<noteq> {}"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2632
    by (rule elementary_interval) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2633
  have D_2: "bdd_above (?f`?D)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2634
    by (intro bdd_aboveI2[where M=B] assms(2)[rule_format]) simp
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2635
  note D = D_1 D_2
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  2636
  let ?S = "SUP d\<in>?D. ?f d"
66199
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2637
  have "\<And>a b. f integrable_on cbox a b"
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2638
    using assms(1) integrable_on_subcbox by blast
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2639
  then have f_int: "\<And>a b. f absolutely_integrable_on cbox a b"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2640
    apply (rule bounded_variation_absolutely_integrable_interval[where B=B])
66199
994322c17274 Removed more "guess", etc.
paulson <lp15@cam.ac.uk>
parents: 66193
diff changeset
  2641
    using assms(2) apply blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2642
    done
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  2643
  have "((\<lambda>x. norm (f x)) has_integral ?S) UNIV"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2644
    apply (subst has_integral_alt')
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2645
    apply safe
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2646
  proof goal_cases
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2647
    case (1 a b)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2648
    show ?case
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2649
      using f_int[of a b] unfolding absolutely_integrable_on_def by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2650
  next
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2651
    case prems: (2 e)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2652
    have "\<exists>y\<in>sum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union>d}. \<not> y \<le> ?S - e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2653
    proof (rule ccontr)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2654
      assume "\<not> ?thesis"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2655
      then have "?S \<le> ?S - e"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2656
        by (intro cSUP_least[OF D(1)]) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2657
      then show False
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2658
        using prems by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2659
    qed
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2660
    then obtain d K where ddiv: "d division_of \<Union>d" and "K = (\<Sum>k\<in>d. norm (integral k f))"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  2661
      "Sup (sum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union> d}) - e < K"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2662
      by (auto simp add: image_iff not_le)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2663
    then have d: "Sup (sum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union> d}) - e
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2664
                  < (\<Sum>k\<in>d. norm (integral k f))"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2665
      by auto
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2666
    note d'=division_ofD[OF ddiv]
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2667
    have "bounded (\<Union>d)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2668
      by (rule elementary_bounded,fact)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2669
    from this[unfolded bounded_pos] obtain K where
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2670
       K: "0 < K" "\<forall>x\<in>\<Union>d. norm x \<le> K" by auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2671
    show ?case
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2672
    proof (intro conjI impI allI exI)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2673
      fix a b :: 'n
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2674
      assume ab: "ball 0 (K + 1) \<subseteq> cbox a b"
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2675
      have *: "\<And>s s1. \<lbrakk>?S - e < s1; s1 \<le> s; s < ?S + e\<rbrakk> \<Longrightarrow> \<bar>s - ?S\<bar> < e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2676
        by arith
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2677
      show "norm (integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) - ?S) < e"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2678
        unfolding real_norm_def
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2679
      proof (rule * [OF d])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2680
        have "(\<Sum>k\<in>d. norm (integral k f)) \<le> sum (\<lambda>k. integral k (\<lambda>x. norm (f x))) d"
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2681
        proof (intro sum_mono)
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2682
          fix k assume "k \<in> d"
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2683
          with d'(4) f_int show "norm (integral k f) \<le> integral k (\<lambda>x. norm (f x))"
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2684
            by (force simp: absolutely_integrable_on_def integral_norm_bound_integral)
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2685
        qed
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2686
        also have "\<dots> = integral (\<Union>d) (\<lambda>x. norm (f x))"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2687
          apply (rule integral_combine_division_bottomup[OF ddiv, symmetric])
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2688
          using absolutely_integrable_on_def d'(4) f_int by blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2689
        also have "\<dots> \<le> integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2690
        proof -
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2691
          have "\<Union>d \<subseteq> cbox a b"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2692
            using K(2) ab by fastforce
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2693
          then show ?thesis
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2694
            using integrable_on_subdivision[OF ddiv] f_int[of a b] unfolding absolutely_integrable_on_def
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2695
            by (auto intro!: integral_subset_le)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2696
        qed
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2697
        finally show "(\<Sum>k\<in>d. norm (integral k f))
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2698
                      \<le> integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0)" .
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2699
      next
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2700
        have "e/2>0"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2701
          using \<open>e > 0\<close> by auto
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2702
        moreover
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2703
        have f: "f integrable_on cbox a b" "(\<lambda>x. norm (f x)) integrable_on cbox a b"
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2704
          using f_int by (auto simp: absolutely_integrable_on_def)
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2705
        ultimately obtain d1 where "gauge d1"
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2706
           and d1: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d1 fine p\<rbrakk> \<Longrightarrow>
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2707
            norm ((\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - integral (cbox a b) (\<lambda>x. norm (f x))) < e/2"
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2708
          unfolding has_integral_integral has_integral by meson
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  2709
        obtain d2 where "gauge d2"
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2710
          and d2: "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox a b); d2 fine p\<rbrakk> \<Longrightarrow>
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2711
            (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2"
66497
18a6478a574c More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents: 66439
diff changeset
  2712
          by (blast intro: Henstock_lemma [OF f(1) \<open>e/2>0\<close>])
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2713
        obtain p where
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2714
          p: "p tagged_division_of (cbox a b)" "d1 fine p" "d2 fine p"
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2715
          by (rule fine_division_exists [OF gauge_Int [OF \<open>gauge d1\<close> \<open>gauge d2\<close>], of a b])
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  2716
            (auto simp add: fine_Int)
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2717
        have *: "\<And>sf sf' si di. \<lbrakk>sf' = sf; si \<le> ?S; \<bar>sf - si\<bar> < e/2;
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2718
                      \<bar>sf' - di\<bar> < e/2\<rbrakk> \<Longrightarrow> di < ?S + e"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2719
          by arith
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2720
        have "integral (cbox a b) (\<lambda>x. norm (f x)) < ?S + e"
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2721
        proof (rule *)
66342
d8c7ca0e01c6 more cleanup
paulson <lp15@cam.ac.uk>
parents: 66341
diff changeset
  2722
          show "\<bar>(\<Sum>(x,k)\<in>p. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p. norm (integral k f))\<bar> < e/2"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2723
            unfolding split_def
66341
1072edd475dc trying to disentangle bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66339
diff changeset
  2724
            apply (rule absdiff_norm_less)
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2725
            using d2[of p] p(1,3) apply (auto simp: tagged_division_of_def split_def)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2726
            done
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2727
          show "\<bar>(\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - integral (cbox a b) (\<lambda>x. norm(f x))\<bar> < e/2"
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2728
            using d1[OF p(1,2)] by (simp only: real_norm_def)
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2729
          show "(\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) = (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x))"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66497
diff changeset
  2730
            by (auto simp: split_paired_all sum.cong [OF refl])
66343
ff60679dc21d finally rid of finite_product_dependent
paulson <lp15@cam.ac.uk>
parents: 66342
diff changeset
  2731
          show "(\<Sum>(x,k) \<in> p. norm (integral k f)) \<le> ?S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2732
            using partial_division_of_tagged_division[of p "cbox a b"] p(1)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  2733
            apply (subst sum.over_tagged_division_lemma[OF p(1)])
66513
ca8b18baf0e0 unscrambling esp of Henstock_lemma_part1
paulson <lp15@cam.ac.uk>
parents: 66512
diff changeset
  2734
            apply (auto simp: content_eq_0_interior tagged_partial_division_of_def intro!: cSUP_upper2 D)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2735
            done
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2736
        qed
66439
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2737
        then show "integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < ?S + e"
1a93b480fec8 fixed the previous commit (henstock_lemma)
paulson <lp15@cam.ac.uk>
parents: 66408
diff changeset
  2738
          by simp
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2739
      qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2740
    qed (insert K, auto)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2741
  qed
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  2742
  then show "(\<lambda>x. norm (f x)) integrable_on UNIV"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 66154
diff changeset
  2743
    by blast
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2744
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  2745
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2746
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2747
subsection\<open>Outer and inner approximation of measurable sets by well-behaved sets.\<close>
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2748
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2749
proposition measurable_outer_intervals_bounded:
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2750
  assumes "S \<in> lmeasurable" "S \<subseteq> cbox a b" "e > 0"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2751
  obtains \<D>
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2752
  where "countable \<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2753
        "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b \<and> K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2754
        "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2755
        "\<And>u v. cbox u v \<in> \<D> \<Longrightarrow> \<exists>n. \<forall>i \<in> Basis. v \<bullet> i - u \<bullet> i = (b \<bullet> i - a \<bullet> i)/2^n"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2756
        "\<And>K. \<lbrakk>K \<in> \<D>; box a b \<noteq> {}\<rbrakk> \<Longrightarrow> interior K \<noteq> {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2757
        "S \<subseteq> \<Union>\<D>" "\<Union>\<D> \<in> lmeasurable" "measure lebesgue (\<Union>\<D>) \<le> measure lebesgue S + e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2758
proof (cases "box a b = {}")
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2759
  case True
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2760
  show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2761
  proof (cases "cbox a b = {}")
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2762
    case True
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2763
    with assms have [simp]: "S = {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2764
      by auto
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2765
    show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2766
    proof
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2767
      show "countable {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2768
        by simp
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2769
    qed (use \<open>e > 0\<close> in auto)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2770
  next
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2771
    case False
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2772
    show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2773
    proof
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2774
      show "countable {cbox a b}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2775
        by simp
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2776
      show "\<And>u v. cbox u v \<in> {cbox a b} \<Longrightarrow> \<exists>n. \<forall>i\<in>Basis. v \<bullet> i - u \<bullet> i = (b \<bullet> i - a \<bullet> i)/2 ^ n"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2777
        using False by (force simp: eq_cbox intro: exI [where x=0])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2778
      show "measure lebesgue (\<Union>{cbox a b}) \<le> measure lebesgue S + e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2779
        using assms by (simp add: sum_content.box_empty_imp [OF True])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2780
    qed (use assms \<open>cbox a b \<noteq> {}\<close> in auto)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2781
  qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2782
next
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2783
  case False
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2784
  let ?\<mu> = "measure lebesgue"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2785
  have "S \<inter> cbox a b \<in> lmeasurable"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2786
    using \<open>S \<in> lmeasurable\<close> by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2787
  then have indS_int: "(indicator S has_integral (?\<mu> S)) (cbox a b)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2788
    by (metis integral_indicator \<open>S \<subseteq> cbox a b\<close> has_integral_integrable_integral inf.orderE integrable_on_indicator)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2789
  with \<open>e > 0\<close> obtain \<gamma> where "gauge \<gamma>" and \<gamma>:
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2790
    "\<And>\<D>. \<lbrakk>\<D> tagged_division_of (cbox a b); \<gamma> fine \<D>\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K)\<in>\<D>. content(K) *\<^sub>R indicator S x) - ?\<mu> S) < e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2791
    by (force simp: has_integral)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2792
  have inteq: "integral (cbox a b) (indicat_real S) = integral UNIV (indicator S)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2793
    using assms by (metis has_integral_iff indS_int lmeasure_integral_UNIV)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2794
  obtain \<D> where \<D>: "countable \<D>"  "\<Union>\<D> \<subseteq> cbox a b"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2795
            and cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> interior K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2796
            and djointish: "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2797
            and covered: "\<And>K. K \<in> \<D> \<Longrightarrow> \<exists>x \<in> S \<inter> K. K \<subseteq> \<gamma> x"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2798
            and close: "\<And>u v. cbox u v \<in> \<D> \<Longrightarrow> \<exists>n. \<forall>i \<in> Basis. v\<bullet>i - u\<bullet>i = (b\<bullet>i - a\<bullet>i)/2^n"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2799
            and covers: "S \<subseteq> \<Union>\<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2800
    using covering_lemma [of S a b \<gamma>] \<open>gauge \<gamma>\<close> \<open>box a b \<noteq> {}\<close> assms by force
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2801
  show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2802
  proof
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2803
    show "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b \<and> K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2804
      by (meson Sup_le_iff \<D>(2) cbox interior_empty)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2805
    have negl_int: "negligible(K \<inter> L)" if "K \<in> \<D>" "L \<in> \<D>" "K \<noteq> L" for K L
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2806
    proof -
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2807
      have "interior K \<inter> interior L = {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2808
        using djointish pairwiseD that by fastforce
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2809
      moreover obtain u v x y where "K = cbox u v" "L = cbox x y"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2810
        using cbox \<open>K \<in> \<D>\<close> \<open>L \<in> \<D>\<close> by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2811
      ultimately show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2812
        by (simp add: Int_interval box_Int_box negligible_interval(1))
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2813
    qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2814
    have fincase: "\<Union>\<F> \<in> lmeasurable \<and> ?\<mu> (\<Union>\<F>) \<le> ?\<mu> S + e" if "finite \<F>" "\<F> \<subseteq> \<D>" for \<F>
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2815
    proof -
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2816
      obtain t where t: "\<And>K. K \<in> \<F> \<Longrightarrow> t K \<in> S \<inter> K \<and> K \<subseteq> \<gamma>(t K)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2817
        using covered \<open>\<F> \<subseteq> \<D>\<close> subsetD by metis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2818
      have "\<forall>K \<in> \<F>. \<forall>L \<in> \<F>. K \<noteq> L \<longrightarrow> interior K \<inter> interior L = {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2819
        using that djointish by (simp add: pairwise_def) (metis subsetD)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2820
      with cbox that \<D> have \<F>div: "\<F> division_of (\<Union>\<F>)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2821
        by (fastforce simp: division_of_def dest: cbox)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2822
      then have 1: "\<Union>\<F> \<in> lmeasurable"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2823
        by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2824
      have norme: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma> fine p\<rbrakk>
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2825
          \<Longrightarrow> norm ((\<Sum>(x,K)\<in>p. content K * indicator S x) - integral (cbox a b) (indicator S)) < e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2826
        by (auto simp: lmeasure_integral_UNIV assms inteq dest: \<gamma>)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2827
      have "\<forall>x K y L. (x,K) \<in> (\<lambda>K. (t K,K)) ` \<F> \<and> (y,L) \<in> (\<lambda>K. (t K,K)) ` \<F> \<and> (x,K) \<noteq> (y,L) \<longrightarrow>             interior K \<inter> interior L = {}"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2828
        using that djointish  by (clarsimp simp: pairwise_def) (metis subsetD)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2829
      with that \<D> have tagged: "(\<lambda>K. (t K, K)) ` \<F> tagged_partial_division_of cbox a b"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2830
        by (auto simp: tagged_partial_division_of_def dest: t cbox)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2831
      have fine: "\<gamma> fine (\<lambda>K. (t K, K)) ` \<F>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2832
        using t by (auto simp: fine_def)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2833
      have *: "y \<le> ?\<mu> S \<Longrightarrow> \<bar>x - y\<bar> \<le> e \<Longrightarrow> x \<le> ?\<mu> S + e" for x y
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2834
        by arith
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2835
      have "?\<mu> (\<Union>\<F>) \<le> ?\<mu> S + e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2836
      proof (rule *)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2837
        have "(\<Sum>K\<in>\<F>. ?\<mu> (K \<inter> S)) = ?\<mu> (\<Union>C\<in>\<F>. C \<inter> S)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2838
          apply (rule measure_negligible_finite_Union_image [OF \<open>finite \<F>\<close>, symmetric])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2839
          using \<F>div \<open>S \<in> lmeasurable\<close> apply blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2840
          unfolding pairwise_def
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2841
          by (metis inf.commute inf_sup_aci(3) negligible_Int subsetCE negl_int \<open>\<F> \<subseteq> \<D>\<close>)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2842
        also have "\<dots> = ?\<mu> (\<Union>\<F> \<inter> S)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2843
          by simp
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2844
        also have "\<dots> \<le> ?\<mu> S"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2845
          by (simp add: "1" \<open>S \<in> lmeasurable\<close> fmeasurableD measure_mono_fmeasurable sets.Int)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2846
        finally show "(\<Sum>K\<in>\<F>. ?\<mu> (K \<inter> S)) \<le> ?\<mu> S" .
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2847
      next
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2848
        have "?\<mu> (\<Union>\<F>) = sum ?\<mu> \<F>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2849
          by (metis \<F>div content_division)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2850
        also have "\<dots> = (\<Sum>K\<in>\<F>. content K)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2851
          using \<F>div by (force intro: sum.cong)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2852
        also have "\<dots> = (\<Sum>x\<in>\<F>. content x * indicator S (t x))"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2853
          using t by auto
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2854
        finally have eq1: "?\<mu> (\<Union>\<F>) = (\<Sum>x\<in>\<F>. content x * indicator S (t x))" .
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2855
        have eq2: "(\<Sum>K\<in>\<F>. ?\<mu> (K \<inter> S)) = (\<Sum>K\<in>\<F>. integral K (indicator S))"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2856
          apply (rule sum.cong [OF refl])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2857
          by (metis integral_indicator \<F>div \<open>S \<in> lmeasurable\<close> division_ofD(4) fmeasurable.Int inf.commute lmeasurable_cbox)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2858
        have "\<bar>\<Sum>(x,K)\<in>(\<lambda>K. (t K, K)) ` \<F>. content K * indicator S x - integral K (indicator S)\<bar> \<le> e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2859
          using Henstock_lemma_part1 [of "indicator S::'a\<Rightarrow>real", OF _ \<open>e > 0\<close> \<open>gauge \<gamma>\<close> _ tagged fine]
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2860
            indS_int norme by auto
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2861
        then show "\<bar>?\<mu> (\<Union>\<F>) - (\<Sum>K\<in>\<F>. ?\<mu> (K \<inter> S))\<bar> \<le> e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2862
          by (simp add: eq1 eq2 comm_monoid_add_class.sum.reindex inj_on_def sum_subtractf)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2863
      qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2864
      with 1 show ?thesis by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2865
    qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2866
    have "\<Union>\<D> \<in> lmeasurable \<and> ?\<mu> (\<Union>\<D>) \<le> ?\<mu> S + e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2867
    proof (cases "finite \<D>")
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2868
      case True
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2869
      with fincase show ?thesis
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2870
        by blast
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2871
    next
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2872
      case False
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2873
      let ?T = "from_nat_into \<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2874
      have T: "bij_betw ?T UNIV \<D>"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2875
        by (simp add: False \<D>(1) bij_betw_from_nat_into)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2876
      have TM: "\<And>n. ?T n \<in> lmeasurable"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2877
        by (metis False cbox finite.emptyI from_nat_into lmeasurable_cbox)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2878
      have TN: "\<And>m n. m \<noteq> n \<Longrightarrow> negligible (?T m \<inter> ?T n)"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2879
        by (simp add: False \<D>(1) from_nat_into infinite_imp_nonempty negl_int)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2880
      have TB: "(\<Sum>k\<le>n. ?\<mu> (?T k)) \<le> ?\<mu> S + e" for n
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2881
      proof -
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2882
        have "(\<Sum>k\<le>n. ?\<mu> (?T k)) = ?\<mu> (\<Union> (?T ` {..n}))"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2883
          by (simp add: pairwise_def TM TN measure_negligible_finite_Union_image)
69325
4b6ddc5989fc removed legacy input syntax
haftmann
parents: 69313
diff changeset
  2884
        also have "?\<mu> (\<Union> (?T ` {..n})) \<le> ?\<mu> S + e"
67990
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2885
          using fincase [of "?T ` {..n}"] T by (auto simp: bij_betw_def)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2886
        finally show ?thesis .
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2887
      qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2888
      have "\<Union>\<D> \<in> lmeasurable"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2889
        by (metis lmeasurable_compact T \<D>(2) bij_betw_def cbox compact_cbox countable_Un_Int(1) fmeasurableD fmeasurableI2 rangeI)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2890
      moreover
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2891
      have "?\<mu> (\<Union>x. from_nat_into \<D> x) \<le> ?\<mu> S + e"
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2892
      proof (rule measure_countable_Union_le [OF TM])
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2893
        show "?\<mu> (\<Union>x\<le>n. from_nat_into \<D> x) \<le> ?\<mu> S + e" for n
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2894
          by (metis (mono_tags, lifting) False fincase finite.emptyI finite_atMost finite_imageI from_nat_into imageE subsetI)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2895
      qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2896
      ultimately show ?thesis by (metis T bij_betw_def)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2897
    qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2898
    then show "\<Union>\<D> \<in> lmeasurable" "measure lebesgue (\<Union>\<D>) \<le> ?\<mu> S + e" by blast+
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2899
  qed (use \<D> cbox djointish close covers in auto)
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2900
qed
c0ebecf6e3eb some more random results
paulson <lp15@cam.ac.uk>
parents: 67989
diff changeset
  2901
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2902
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2903
subsection\<open>Transformation of measure by linear maps\<close>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2904
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2905
lemma measurable_linear_image_interval:
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2906
   "linear f \<Longrightarrow> f ` (cbox a b) \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2907
  by (metis bounded_linear_image linear_linear bounded_cbox closure_bounded_linear_image closure_cbox compact_closure lmeasurable_compact)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2908
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2909
proposition measure_linear_sufficient:
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2910
  fixes f :: "'n::euclidean_space \<Rightarrow> 'n"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2911
  assumes "linear f" and S: "S \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2912
    and im: "\<And>a b. measure lebesgue (f ` (cbox a b)) = m * measure lebesgue (cbox a b)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2913
  shows "f ` S \<in> lmeasurable \<and> m * measure lebesgue S = measure lebesgue (f ` S)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2914
  using le_less_linear [of 0 m]
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2915
proof
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2916
  assume "m < 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2917
  then show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2918
    using im [of 0 One] by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2919
next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2920
  assume "m \<ge> 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2921
  let ?\<mu> = "measure lebesgue"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2922
  show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2923
  proof (cases "inj f")
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2924
    case False
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2925
    then have "?\<mu> (f ` S) = 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2926
      using \<open>linear f\<close> negligible_imp_measure0 negligible_linear_singular_image by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2927
    then have "m * ?\<mu> (cbox 0 (One)) = 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2928
      by (metis False \<open>linear f\<close> cbox_borel content_unit im measure_completion negligible_imp_measure0 negligible_linear_singular_image sets_lborel)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2929
    then show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2930
      using \<open>linear f\<close> negligible_linear_singular_image negligible_imp_measure0 False
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2931
      by (auto simp: lmeasurable_iff_has_integral negligible_UNIV)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2932
  next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2933
    case True
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2934
    then obtain h where "linear h" and hf: "\<And>x. h (f x) = x" and fh: "\<And>x. f (h x) = x"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2935
      using \<open>linear f\<close> linear_injective_isomorphism by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2936
    have fBS: "(f ` S) \<in> lmeasurable \<and> m * ?\<mu> S = ?\<mu> (f ` S)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2937
      if "bounded S" "S \<in> lmeasurable" for S
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2938
    proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2939
      obtain a b where "S \<subseteq> cbox a b"
68120
2f161c6910f7 tidying more messy proofs
paulson <lp15@cam.ac.uk>
parents: 68073
diff changeset
  2940
        using \<open>bounded S\<close> bounded_subset_cbox_symmetric by metis
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2941
      have fUD: "(f ` \<Union>\<D>) \<in> lmeasurable \<and> ?\<mu> (f ` \<Union>\<D>) = (m * ?\<mu> (\<Union>\<D>))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2942
        if "countable \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2943
          and cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b \<and> K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2944
          and intint: "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2945
        for \<D>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2946
      proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2947
        have conv: "\<And>K. K \<in> \<D> \<Longrightarrow> convex K"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2948
          using cbox convex_box(1) by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2949
        have neg: "negligible (g ` K \<inter> g ` L)" if "linear g" "K \<in> \<D>" "L \<in> \<D>" "K \<noteq> L"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2950
          for K L and g :: "'n\<Rightarrow>'n"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2951
        proof (cases "inj g")
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2952
          case True
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2953
          have "negligible (frontier(g ` K \<inter> g ` L) \<union> interior(g ` K \<inter> g ` L))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2954
          proof (rule negligible_Un)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2955
            show "negligible (frontier (g ` K \<inter> g ` L))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2956
              by (simp add: negligible_convex_frontier convex_Int conv convex_linear_image that)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2957
          next
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2958
            have "\<forall>p N. pairwise p N = (\<forall>Na. (Na::'n set) \<in> N \<longrightarrow> (\<forall>Nb. Nb \<in> N \<and> Na \<noteq> Nb \<longrightarrow> p Na Nb))"
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2959
              by (metis pairwise_def)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2960
            then have "interior K \<inter> interior L = {}"
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2961
              using intint that(2) that(3) that(4) by presburger
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2962
            then show "negligible (interior (g ` K \<inter> g ` L))"
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  2963
              by (metis True empty_imp_negligible image_Int image_empty interior_Int interior_injective_linear_image that(1))
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2964
          qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2965
          moreover have "g ` K \<inter> g ` L \<subseteq> frontier (g ` K \<inter> g ` L) \<union> interior (g ` K \<inter> g ` L)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2966
            apply (auto simp: frontier_def)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2967
            using closure_subset contra_subsetD by fastforce+
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2968
          ultimately show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2969
            by (rule negligible_subset)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2970
        next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2971
          case False
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2972
          then show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2973
            by (simp add: negligible_Int negligible_linear_singular_image \<open>linear g\<close>)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2974
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2975
        have negf: "negligible ((f ` K) \<inter> (f ` L))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2976
        and negid: "negligible (K \<inter> L)" if "K \<in> \<D>" "L \<in> \<D>" "K \<noteq> L" for K L
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2977
          using neg [OF \<open>linear f\<close>] neg [OF linear_id] that by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2978
        show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2979
        proof (cases "finite \<D>")
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2980
          case True
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2981
          then have "?\<mu> (\<Union>x\<in>\<D>. f ` x) = (\<Sum>x\<in>\<D>. ?\<mu> (f ` x))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2982
            using \<open>linear f\<close> cbox measurable_linear_image_interval negf
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2983
            by (blast intro: measure_negligible_finite_Union_image [unfolded pairwise_def])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2984
          also have "\<dots> = (\<Sum>k\<in>\<D>. m * ?\<mu> k)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2985
            by (metis (no_types, lifting) cbox im sum.cong)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2986
          also have "\<dots> = m * ?\<mu> (\<Union>\<D>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2987
            unfolding sum_distrib_left [symmetric]
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2988
            by (metis True cbox lmeasurable_cbox measure_negligible_finite_Union [unfolded pairwise_def] negid)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2989
          finally show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2990
            by (metis True \<open>linear f\<close> cbox image_Union fmeasurable.finite_UN measurable_linear_image_interval)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2991
        next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2992
          case False
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2993
          with \<open>countable \<D>\<close> obtain X :: "nat \<Rightarrow> 'n set" where S: "bij_betw X UNIV \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2994
            using bij_betw_from_nat_into by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2995
          then have eq: "(\<Union>\<D>) = (\<Union>n. X n)" "(f ` \<Union>\<D>) = (\<Union>n. f ` X n)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2996
            by (auto simp: bij_betw_def)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2997
          have meas: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2998
            using cbox by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  2999
          with S have 1: "\<And>n. X n \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3000
            by (auto simp: bij_betw_def)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3001
          have 2: "pairwise (\<lambda>m n. negligible (X m \<inter> X n)) UNIV"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3002
            using S unfolding bij_betw_def pairwise_def by (metis injD negid range_eqI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3003
          have "bounded (\<Union>\<D>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3004
            by (meson Sup_least bounded_cbox bounded_subset cbox)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3005
          then have 3: "bounded (\<Union>n. X n)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3006
            using S unfolding bij_betw_def by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3007
          have "(\<Union>n. X n) \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3008
            by (rule measurable_countable_negligible_Union_bounded [OF 1 2 3])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3009
          with S have f1: "\<And>n. f ` (X n) \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3010
            unfolding bij_betw_def by (metis assms(1) cbox measurable_linear_image_interval rangeI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3011
          have f2: "pairwise (\<lambda>m n. negligible (f ` (X m) \<inter> f ` (X n))) UNIV"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3012
            using S unfolding bij_betw_def pairwise_def by (metis injD negf rangeI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3013
          have "bounded (\<Union>\<D>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3014
            by (meson Sup_least bounded_cbox bounded_subset cbox)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3015
          then have f3: "bounded (\<Union>n. f ` X n)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3016
            using S unfolding bij_betw_def
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3017
            by (metis bounded_linear_image linear_linear assms(1) image_Union range_composition)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3018
          have "(\<lambda>n. ?\<mu> (X n)) sums ?\<mu> (\<Union>n. X n)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3019
            by (rule measure_countable_negligible_Union_bounded [OF 1 2 3])
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3020
          have meq: "?\<mu> (\<Union>n. f ` X n) = m * ?\<mu> (\<Union>(X ` UNIV))"
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3021
          proof (rule sums_unique2 [OF measure_countable_negligible_Union_bounded [OF f1 f2 f3]])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3022
            have m: "\<And>n. ?\<mu> (f ` X n) = (m * ?\<mu> (X n))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3023
              using S unfolding bij_betw_def by (metis cbox im rangeI)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3024
            show "(\<lambda>n. ?\<mu> (f ` X n)) sums (m * ?\<mu> (\<Union>(X ` UNIV)))"
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3025
              unfolding m
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3026
              using measure_countable_negligible_Union_bounded [OF 1 2 3] sums_mult by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3027
          qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3028
          show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3029
            using measurable_countable_negligible_Union_bounded [OF f1 f2 f3] meq
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3030
            by (auto simp: eq [symmetric])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3031
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3032
      qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3033
      show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3034
        unfolding completion.fmeasurable_measure_inner_outer_le
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3035
      proof (intro conjI allI impI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3036
        fix e :: real
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3037
        assume "e > 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3038
        have 1: "cbox a b - S \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3039
          by (simp add: fmeasurable.Diff that)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3040
        have 2: "0 < e / (1 + \<bar>m\<bar>)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  3041
          using \<open>e > 0\<close> by (simp add: field_split_simps abs_add_one_gt_zero)
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3042
        obtain \<D>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3043
          where "countable \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3044
            and cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b \<and> K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3045
            and intdisj: "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3046
            and DD: "cbox a b - S \<subseteq> \<Union>\<D>" "\<Union>\<D> \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3047
            and le: "?\<mu> (\<Union>\<D>) \<le> ?\<mu> (cbox a b - S) + e/(1 + \<bar>m\<bar>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3048
          by (rule measurable_outer_intervals_bounded [of "cbox a b - S" a b "e/(1 + \<bar>m\<bar>)"]; use 1 2 pairwise_def in force)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3049
        have meq: "?\<mu> (cbox a b - S) = ?\<mu> (cbox a b) - ?\<mu> S"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3050
          by (simp add: measurable_measure_Diff \<open>S \<subseteq> cbox a b\<close> fmeasurableD that(2))
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3051
        show "\<exists>T \<in> lmeasurable. T \<subseteq> f ` S \<and> m * ?\<mu> S - e \<le> ?\<mu> T"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3052
        proof (intro bexI conjI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3053
          show "f ` (cbox a b) - f ` (\<Union>\<D>) \<subseteq> f ` S"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3054
            using \<open>cbox a b - S \<subseteq> \<Union>\<D>\<close> by force
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3055
          have "m * ?\<mu> S - e \<le> m * (?\<mu> S - e / (1 + \<bar>m\<bar>))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3056
            using \<open>m \<ge> 0\<close> \<open>e > 0\<close> by (simp add: field_simps)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3057
          also have "\<dots> \<le> ?\<mu> (f ` cbox a b) - ?\<mu> (f ` (\<Union>\<D>))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3058
            using le \<open>m \<ge> 0\<close> \<open>e > 0\<close>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3059
            apply (simp add: im fUD [OF \<open>countable \<D>\<close> cbox intdisj] right_diff_distrib [symmetric])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3060
            apply (rule mult_left_mono; simp add: algebra_simps meq)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3061
            done
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3062
          also have "\<dots> = ?\<mu> (f ` cbox a b - f ` \<Union>\<D>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3063
            apply (rule measurable_measure_Diff [symmetric])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3064
            apply (simp add: assms(1) measurable_linear_image_interval)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3065
            apply (simp add: \<open>countable \<D>\<close> cbox fUD fmeasurableD intdisj)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3066
             apply (simp add: Sup_le_iff cbox image_mono)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3067
            done
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3068
          finally show "m * ?\<mu> S - e \<le> ?\<mu> (f ` cbox a b - f ` \<Union>\<D>)" .
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3069
          show "f ` cbox a b - f ` \<Union>\<D> \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3070
            by (simp add: fUD \<open>countable \<D>\<close> \<open>linear f\<close> cbox fmeasurable.Diff intdisj measurable_linear_image_interval)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3071
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3072
      next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3073
        fix e :: real
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3074
        assume "e > 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3075
        have em: "0 < e / (1 + \<bar>m\<bar>)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  3076
          using \<open>e > 0\<close> by (simp add: field_split_simps abs_add_one_gt_zero)
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3077
        obtain \<D>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3078
          where "countable \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3079
            and cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b \<and> K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3080
            and intdisj: "pairwise (\<lambda>A B. interior A \<inter> interior B = {}) \<D>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3081
            and DD: "S \<subseteq> \<Union>\<D>" "\<Union>\<D> \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3082
            and le: "?\<mu> (\<Union>\<D>) \<le> ?\<mu> S + e/(1 + \<bar>m\<bar>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3083
          by (rule measurable_outer_intervals_bounded [of S a b "e/(1 + \<bar>m\<bar>)"]; use \<open>S \<in> lmeasurable\<close> \<open>S \<subseteq> cbox a b\<close> em in force)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3084
        show "\<exists>U \<in> lmeasurable. f ` S \<subseteq> U \<and> ?\<mu> U \<le> m * ?\<mu> S + e"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3085
        proof (intro bexI conjI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3086
          show "f ` S \<subseteq> f ` (\<Union>\<D>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3087
            by (simp add: DD(1) image_mono)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3088
          have "?\<mu> (f ` \<Union>\<D>) \<le> m * (?\<mu> S + e / (1 + \<bar>m\<bar>))"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3089
            using \<open>m \<ge> 0\<close> le mult_left_mono
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3090
            by (auto simp: fUD \<open>countable \<D>\<close> \<open>linear f\<close> cbox fmeasurable.Diff intdisj measurable_linear_image_interval)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3091
          also have "\<dots> \<le> m * ?\<mu> S + e"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3092
            using \<open>m \<ge> 0\<close> \<open>e > 0\<close> by (simp add: fUD [OF \<open>countable \<D>\<close> cbox intdisj] field_simps)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3093
          finally show "?\<mu> (f ` \<Union>\<D>) \<le> m * ?\<mu> S + e" .
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3094
          show "f ` \<Union>\<D> \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3095
            by (simp add: \<open>countable \<D>\<close> cbox fUD intdisj)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3096
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3097
      qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3098
    qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3099
    show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3100
      unfolding has_measure_limit_iff
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3101
    proof (intro allI impI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3102
      fix e :: real
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3103
      assume "e > 0"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3104
      obtain B where "B > 0" and B:
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3105
        "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow> \<bar>?\<mu> (S \<inter> cbox a b) - ?\<mu> S\<bar> < e / (1 + \<bar>m\<bar>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3106
        using has_measure_limit [OF S] \<open>e > 0\<close> by (metis abs_add_one_gt_zero zero_less_divide_iff)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3107
      obtain c d::'n where cd: "ball 0 B \<subseteq> cbox c d"
68120
2f161c6910f7 tidying more messy proofs
paulson <lp15@cam.ac.uk>
parents: 68073
diff changeset
  3108
        by (metis bounded_subset_cbox_symmetric bounded_ball)
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3109
      with B have less: "\<bar>?\<mu> (S \<inter> cbox c d) - ?\<mu> S\<bar> < e / (1 + \<bar>m\<bar>)" .
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3110
      obtain D where "D > 0" and D: "cbox c d \<subseteq> ball 0 D"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3111
        by (metis bounded_cbox bounded_subset_ballD)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3112
      obtain C where "C > 0" and C: "\<And>x. norm (f x) \<le> C * norm x"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3113
        using linear_bounded_pos \<open>linear f\<close> by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3114
      have "f ` S \<inter> cbox a b \<in> lmeasurable \<and>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3115
            \<bar>?\<mu> (f ` S \<inter> cbox a b) - m * ?\<mu> S\<bar> < e"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3116
        if "ball 0 (D*C) \<subseteq> cbox a b" for a b
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3117
      proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3118
        have "bounded (S \<inter> h ` cbox a b)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3119
          by (simp add: bounded_linear_image linear_linear \<open>linear h\<close> bounded_Int)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3120
        moreover have Shab: "S \<inter> h ` cbox a b \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3121
          by (simp add: S \<open>linear h\<close> fmeasurable.Int measurable_linear_image_interval)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3122
        moreover have fim: "f ` (S \<inter> h ` (cbox a b)) = (f ` S) \<inter> cbox a b"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3123
          by (auto simp: hf rev_image_eqI fh)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3124
        ultimately have 1: "(f ` S) \<inter> cbox a b \<in> lmeasurable"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3125
              and 2: "m * ?\<mu> (S \<inter> h ` cbox a b) = ?\<mu> ((f ` S) \<inter> cbox a b)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3126
          using fBS [of "S \<inter> (h ` (cbox a b))"] by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3127
        have *: "\<lbrakk>\<bar>z - m\<bar> < e; z \<le> w; w \<le> m\<rbrakk> \<Longrightarrow> \<bar>w - m\<bar> \<le> e"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3128
          for w z m and e::real by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3129
        have meas_adiff: "\<bar>?\<mu> (S \<inter> h ` cbox a b) - ?\<mu> S\<bar> \<le> e / (1 + \<bar>m\<bar>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3130
        proof (rule * [OF less])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3131
          show "?\<mu> (S \<inter> cbox c d) \<le> ?\<mu> (S \<inter> h ` cbox a b)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3132
          proof (rule measure_mono_fmeasurable [OF _ _ Shab])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3133
            have "f ` ball 0 D \<subseteq> ball 0 (C * D)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3134
              using C \<open>C > 0\<close>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3135
              apply (clarsimp simp: algebra_simps)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3136
              by (meson le_less_trans linordered_comm_semiring_strict_class.comm_mult_strict_left_mono)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3137
            then have "f ` ball 0 D \<subseteq> cbox a b"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3138
              by (metis mult.commute order_trans that)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3139
            have "ball 0 D \<subseteq> h ` cbox a b"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3140
              by (metis \<open>f ` ball 0 D \<subseteq> cbox a b\<close> hf image_subset_iff subsetI)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3141
            then show "S \<inter> cbox c d \<subseteq> S \<inter> h ` cbox a b"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3142
              using D by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3143
          next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3144
            show "S \<inter> cbox c d \<in> sets lebesgue"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3145
              using S fmeasurable_cbox by blast
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3146
          qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3147
        next
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3148
          show "?\<mu> (S \<inter> h ` cbox a b) \<le> ?\<mu> S"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3149
            by (simp add: S Shab fmeasurableD measure_mono_fmeasurable)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3150
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3151
        have "\<bar>?\<mu> (f ` S \<inter> cbox a b) - m * ?\<mu> S\<bar> \<le> m * e / (1 + \<bar>m\<bar>)"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3152
        proof -
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3153
          have mm: "\<bar>m\<bar> = m"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3154
            by (simp add: \<open>0 \<le> m\<close>)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3155
          then have "\<bar>?\<mu> S - ?\<mu> (S \<inter> h ` cbox a b)\<bar> * m \<le> e / (1 + m) * m"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3156
            by (metis (no_types) \<open>0 \<le> m\<close> meas_adiff abs_minus_commute mult_right_mono)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3157
          moreover have "\<forall>r. \<bar>r * m\<bar> = m * \<bar>r\<bar>"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3158
            by (metis \<open>0 \<le> m\<close> abs_mult_pos mult.commute)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3159
          ultimately show ?thesis
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3160
            apply (simp add: 2 [symmetric])
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3161
            by (metis (no_types) abs_minus_commute mult.commute right_diff_distrib' mm)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3162
        qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3163
        also have "\<dots> < e"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  3164
          using \<open>e > 0\<close> by (cases "m \<ge> 0") (simp_all add: field_simps)
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3165
        finally have "\<bar>?\<mu> (f ` S \<inter> cbox a b) - m * ?\<mu> S\<bar> < e" .
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3166
        with 1 show ?thesis by auto
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3167
      qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3168
      then show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3169
                         f ` S \<inter> cbox a b \<in> lmeasurable \<and>
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3170
                         \<bar>?\<mu> (f ` S \<inter> cbox a b) - m * ?\<mu> S\<bar> < e"
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3171
        using \<open>C>0\<close> \<open>D>0\<close> by (metis mult_zero_left real_mult_less_iff1)
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3172
    qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3173
  qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3174
qed
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3175
67984
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  3176
subsection\<open>Lemmas about absolute integrability\<close>
adc1a992c470 a few more results
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
  3177
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3178
lemma absolutely_integrable_linear:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3179
  fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3180
    and h :: "'n::euclidean_space \<Rightarrow> 'p::euclidean_space"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3181
  shows "f absolutely_integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h \<circ> f) absolutely_integrable_on s"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3182
  using integrable_bounded_linear[of h lebesgue "\<lambda>x. indicator s x *\<^sub>R f x"]
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3183
  by (simp add: linear_simps[of h] set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3184
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63968
diff changeset
  3185
lemma absolutely_integrable_sum:
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3186
  fixes f :: "'a \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3187
  assumes "finite T" and "\<And>a. a \<in> T \<Longrightarrow> (f a) absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3188
  shows "(\<lambda>x. sum (\<lambda>a. f a x) T) absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3189
  using assms by induction auto
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3190
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3191
lemma absolutely_integrable_integrable_bound:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3192
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3193
  assumes le: "\<And>x. x\<in>S \<Longrightarrow> norm (f x) \<le> g x" and f: "f integrable_on S" and g: "g integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3194
  shows "f absolutely_integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3195
    unfolding set_integrable_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3196
proof (rule Bochner_Integration.integrable_bound)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3197
  have "g absolutely_integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3198
    unfolding absolutely_integrable_on_def
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3199
  proof
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3200
    show "(\<lambda>x. norm (g x)) integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3201
      using le norm_ge_zero[of "f _"]
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  3202
      by (intro integrable_spike_finite[OF _ _ g, of "{}"])
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3203
         (auto intro!: abs_of_nonneg intro: order_trans simp del: norm_ge_zero)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3204
  qed fact
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3205
  then show "integrable lebesgue (\<lambda>x. indicat_real S x *\<^sub>R g x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3206
    by (simp add: set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3207
  show "(\<lambda>x. indicat_real S x *\<^sub>R f x) \<in> borel_measurable lebesgue"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3208
    using f by (auto intro: has_integral_implies_lebesgue_measurable simp: integrable_on_def)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3209
qed (use le in \<open>force intro!: always_eventually split: split_indicator\<close>)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3210
70271
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3211
corollary absolutely_integrable_on_const [simp]:
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3212
  fixes c :: "'a::euclidean_space"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3213
  assumes "S \<in> lmeasurable"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3214
  shows "(\<lambda>x. c) absolutely_integrable_on S"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3215
  by (metis (full_types) assms absolutely_integrable_integrable_bound integrable_on_const order_refl)
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3216
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3217
lemma absolutely_integrable_continuous:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3218
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3219
  shows "continuous_on (cbox a b) f \<Longrightarrow> f absolutely_integrable_on cbox a b"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3220
  using absolutely_integrable_integrable_bound
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3221
  by (simp add: absolutely_integrable_on_def continuous_on_norm integrable_continuous)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67981
diff changeset
  3222
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3223
lemma absolutely_integrable_continuous_real:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3224
  fixes f :: "real \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3225
  shows "continuous_on {a..b} f \<Longrightarrow> f absolutely_integrable_on {a..b}"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3226
  by (metis absolutely_integrable_continuous box_real(2))
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3227
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3228
lemma continuous_imp_integrable:
70271
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3229
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3230
  assumes "continuous_on (cbox a b) f"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3231
  shows "integrable (lebesgue_on (cbox a b)) f"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3232
proof -
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3233
  have "f absolutely_integrable_on cbox a b"
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3234
    by (simp add: absolutely_integrable_continuous assms)
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3235
  then show ?thesis
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3236
    by (simp add: integrable_restrict_space set_integrable_def)
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3237
qed
f7630118814c a few general lemmas
paulson <lp15@cam.ac.uk>
parents: 69922
diff changeset
  3238
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3239
lemma continuous_imp_integrable_real:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3240
  fixes f :: "real \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3241
  assumes "continuous_on {a..b} f"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3242
  shows "integrable (lebesgue_on {a..b}) f"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3243
  by (metis assms continuous_imp_integrable interval_cbox)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3244
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  3245
67991
53ab458395a8 more about measure
paulson <lp15@cam.ac.uk>
parents: 67990
diff changeset
  3246
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3247
subsection \<open>Componentwise\<close>
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3248
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3249
proposition absolutely_integrable_componentwise_iff:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3250
  shows "f absolutely_integrable_on A \<longleftrightarrow> (\<forall>b\<in>Basis. (\<lambda>x. f x \<bullet> b) absolutely_integrable_on A)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3251
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3252
  have *: "(\<lambda>x. norm (f x)) integrable_on A \<longleftrightarrow> (\<forall>b\<in>Basis. (\<lambda>x. norm (f x \<bullet> b)) integrable_on A)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3253
          if "f integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3254
  proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3255
    have 1: "\<And>i. \<lbrakk>(\<lambda>x. norm (f x)) integrable_on A; i \<in> Basis\<rbrakk>
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3256
                 \<Longrightarrow> (\<lambda>x. f x \<bullet> i) absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3257
      apply (rule absolutely_integrable_integrable_bound [where g = "\<lambda>x. norm(f x)"])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3258
      using Basis_le_norm integrable_component that apply fastforce+
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3259
      done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3260
    have 2: "\<forall>i\<in>Basis. (\<lambda>x. \<bar>f x \<bullet> i\<bar>) integrable_on A \<Longrightarrow> f absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3261
      apply (rule absolutely_integrable_integrable_bound [where g = "\<lambda>x. \<Sum>i\<in>Basis. norm (f x \<bullet> i)"])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3262
      using norm_le_l1 that apply (force intro: integrable_sum)+
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3263
      done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3264
    show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3265
      apply auto
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3266
       apply (metis (full_types) absolutely_integrable_on_def set_integrable_abs 1)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3267
      apply (metis (full_types) absolutely_integrable_on_def 2)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3268
      done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3269
  qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3270
  show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3271
    unfolding absolutely_integrable_on_def
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3272
    by (simp add:  integrable_componentwise_iff [symmetric] ball_conj_distrib * cong: conj_cong)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3273
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3274
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3275
lemma absolutely_integrable_componentwise:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3276
  shows "(\<And>b. b \<in> Basis \<Longrightarrow> (\<lambda>x. f x \<bullet> b) absolutely_integrable_on A) \<Longrightarrow> f absolutely_integrable_on A"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3277
  using absolutely_integrable_componentwise_iff by blast
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3278
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3279
lemma absolutely_integrable_component:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3280
  "f absolutely_integrable_on A \<Longrightarrow> (\<lambda>x. f x \<bullet> (b :: 'b :: euclidean_space)) absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3281
  by (drule absolutely_integrable_linear[OF _ bounded_linear_inner_left[of b]]) (simp add: o_def)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3282
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3283
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3284
lemma absolutely_integrable_scaleR_left:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3285
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3286
    assumes "f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3287
  shows "(\<lambda>x. c *\<^sub>R f x) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3288
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3289
  have "(\<lambda>x. c *\<^sub>R x) o f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3290
    apply (rule absolutely_integrable_linear [OF assms])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3291
    by (simp add: bounded_linear_scaleR_right)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3292
  then show ?thesis
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3293
    using assms by blast
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3294
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3295
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3296
lemma absolutely_integrable_scaleR_right:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3297
  assumes "f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3298
  shows "(\<lambda>x. f x *\<^sub>R c) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3299
  using assms by blast
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3300
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3301
lemma absolutely_integrable_norm:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3302
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3303
  assumes "f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3304
  shows "(norm o f) absolutely_integrable_on S"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3305
  using assms by (simp add: absolutely_integrable_on_def o_def)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67998
diff changeset
  3306
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3307
lemma absolutely_integrable_abs:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3308
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3309
  assumes "f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3310
  shows "(\<lambda>x. \<Sum>i\<in>Basis. \<bar>f x \<bullet> i\<bar> *\<^sub>R i) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3311
        (is "?g absolutely_integrable_on S")
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3312
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3313
  have eq: "?g =
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3314
        (\<lambda>x. \<Sum>i\<in>Basis. ((\<lambda>y. \<Sum>j\<in>Basis. if j = i then y *\<^sub>R j else 0) \<circ>
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3315
               (\<lambda>x. norm(\<Sum>j\<in>Basis. if j = i then (x \<bullet> i) *\<^sub>R j else 0)) \<circ> f) x)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3316
    by (simp add: sum.delta)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3317
  have *: "(\<lambda>y. \<Sum>j\<in>Basis. if j = i then y *\<^sub>R j else 0) \<circ>
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3318
           (\<lambda>x. norm (\<Sum>j\<in>Basis. if j = i then (x \<bullet> i) *\<^sub>R j else 0)) \<circ> f
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3319
           absolutely_integrable_on S"
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3320
        if "i \<in> Basis" for i
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3321
  proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3322
    have "bounded_linear (\<lambda>y. \<Sum>j\<in>Basis. if j = i then y *\<^sub>R j else 0)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3323
      by (simp add: linear_linear algebra_simps linearI)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3324
    moreover have "(\<lambda>x. norm (\<Sum>j\<in>Basis. if j = i then (x \<bullet> i) *\<^sub>R j else 0)) \<circ> f
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3325
                   absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3326
      unfolding o_def
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3327
      apply (rule absolutely_integrable_norm [unfolded o_def])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3328
      using assms \<open>i \<in> Basis\<close>
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3329
      apply (auto simp: algebra_simps dest: absolutely_integrable_component[where b=i])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3330
      done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3331
    ultimately show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3332
      by (subst comp_assoc) (blast intro: absolutely_integrable_linear)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3333
  qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3334
  show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3335
    apply (rule ssubst [OF eq])
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3336
    apply (rule absolutely_integrable_sum)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3337
     apply (force simp: intro!: *)+
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3338
    done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3339
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3340
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3341
lemma abs_absolutely_integrableI_1:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3342
  fixes f :: "'a :: euclidean_space \<Rightarrow> real"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3343
  assumes f: "f integrable_on A" and "(\<lambda>x. \<bar>f x\<bar>) integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3344
  shows "f absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3345
  by (rule absolutely_integrable_integrable_bound [OF _ assms]) auto
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3346
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3347
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3348
lemma abs_absolutely_integrableI:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3349
  assumes f: "f integrable_on S" and fcomp: "(\<lambda>x. \<Sum>i\<in>Basis. \<bar>f x \<bullet> i\<bar> *\<^sub>R i) integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3350
  shows "f absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3351
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3352
  have "(\<lambda>x. (f x \<bullet> i) *\<^sub>R i) absolutely_integrable_on S" if "i \<in> Basis" for i
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3353
  proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3354
    have "(\<lambda>x. \<bar>f x \<bullet> i\<bar>) integrable_on S"
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3355
      using assms integrable_component [OF fcomp, where y=i] that by simp
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3356
    then have "(\<lambda>x. f x \<bullet> i) absolutely_integrable_on S"
66703
61bf958fa1c1 more proof simplificaition
paulson <lp15@cam.ac.uk>
parents: 66552
diff changeset
  3357
      using abs_absolutely_integrableI_1 f integrable_component by blast
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3358
    then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3359
      by (rule absolutely_integrable_scaleR_right)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3360
  qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3361
  then have "(\<lambda>x. \<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3362
    by (simp add: absolutely_integrable_sum)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3363
  then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3364
    by (simp add: euclidean_representation)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3365
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3366
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3367
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3368
lemma absolutely_integrable_abs_iff:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3369
   "f absolutely_integrable_on S \<longleftrightarrow>
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3370
    f integrable_on S \<and> (\<lambda>x. \<Sum>i\<in>Basis. \<bar>f x \<bullet> i\<bar> *\<^sub>R i) integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3371
    (is "?lhs = ?rhs")
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3372
proof
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3373
  assume ?lhs then show ?rhs
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3374
    using absolutely_integrable_abs absolutely_integrable_on_def by blast
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3375
next
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3376
  assume ?rhs
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3377
  moreover
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3378
  have "(\<lambda>x. if x \<in> S then \<Sum>i\<in>Basis. \<bar>f x \<bullet> i\<bar> *\<^sub>R i else 0) = (\<lambda>x. \<Sum>i\<in>Basis. \<bar>(if x \<in> S then f x else 0) \<bullet> i\<bar> *\<^sub>R i)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3379
    by force
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3380
  ultimately show ?lhs
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3381
    by (simp only: absolutely_integrable_restrict_UNIV [of S, symmetric] integrable_restrict_UNIV [of S, symmetric] abs_absolutely_integrableI)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3382
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3383
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3384
lemma absolutely_integrable_max:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3385
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3386
  assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3387
   shows "(\<lambda>x. \<Sum>i\<in>Basis. max (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3388
            absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3389
proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3390
  have "(\<lambda>x. \<Sum>i\<in>Basis. max (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) =
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3391
        (\<lambda>x. (1/2) *\<^sub>R (f x + g x + (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i)))"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3392
  proof (rule ext)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3393
    fix x
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3394
    have "(\<Sum>i\<in>Basis. max (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) = (\<Sum>i\<in>Basis. ((f x \<bullet> i + g x \<bullet> i + \<bar>f x \<bullet> i - g x \<bullet> i\<bar>) / 2) *\<^sub>R i)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3395
      by (force intro: sum.cong)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3396
    also have "... = (1 / 2) *\<^sub>R (\<Sum>i\<in>Basis. (f x \<bullet> i + g x \<bullet> i + \<bar>f x \<bullet> i - g x \<bullet> i\<bar>) *\<^sub>R i)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3397
      by (simp add: scaleR_right.sum)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3398
    also have "... = (1 / 2) *\<^sub>R (f x + g x + (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i))"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3399
      by (simp add: sum.distrib algebra_simps euclidean_representation)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3400
    finally
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3401
    show "(\<Sum>i\<in>Basis. max (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) =
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3402
         (1 / 2) *\<^sub>R (f x + g x + (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i))" .
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3403
  qed
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3404
  moreover have "(\<lambda>x. (1 / 2) *\<^sub>R (f x + g x + (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i)))
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3405
                 absolutely_integrable_on S"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3406
    apply (intro set_integral_add absolutely_integrable_scaleR_left assms)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3407
    using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3408
    apply (simp add: algebra_simps)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3409
    done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3410
  ultimately show ?thesis by metis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3411
qed
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3412
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3413
corollary absolutely_integrable_max_1:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3414
  fixes f :: "'n::euclidean_space \<Rightarrow> real"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3415
  assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3416
   shows "(\<lambda>x. max (f x) (g x)) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3417
  using absolutely_integrable_max [OF assms] by simp
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3418
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3419
lemma absolutely_integrable_min:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3420
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3421
  assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3422
   shows "(\<lambda>x. \<Sum>i\<in>Basis. min (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3423
            absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3424
proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3425
  have "(\<lambda>x. \<Sum>i\<in>Basis. min (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) =
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3426
        (\<lambda>x. (1/2) *\<^sub>R (f x + g x - (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i)))"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3427
  proof (rule ext)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3428
    fix x
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3429
    have "(\<Sum>i\<in>Basis. min (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) = (\<Sum>i\<in>Basis. ((f x \<bullet> i + g x \<bullet> i - \<bar>f x \<bullet> i - g x \<bullet> i\<bar>) / 2) *\<^sub>R i)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3430
      by (force intro: sum.cong)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3431
    also have "... = (1 / 2) *\<^sub>R (\<Sum>i\<in>Basis. (f x \<bullet> i + g x \<bullet> i - \<bar>f x \<bullet> i - g x \<bullet> i\<bar>) *\<^sub>R i)"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3432
      by (simp add: scaleR_right.sum)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3433
    also have "... = (1 / 2) *\<^sub>R (f x + g x - (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i))"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3434
      by (simp add: sum.distrib sum_subtractf algebra_simps euclidean_representation)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3435
    finally
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3436
    show "(\<Sum>i\<in>Basis. min (f x \<bullet> i) (g x \<bullet> i) *\<^sub>R i) =
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3437
         (1 / 2) *\<^sub>R (f x + g x - (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i))" .
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3438
  qed
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3439
  moreover have "(\<lambda>x. (1 / 2) *\<^sub>R (f x + g x - (\<Sum>i\<in>Basis. \<bar>f x \<bullet> i - g x \<bullet> i\<bar> *\<^sub>R i)))
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3440
                 absolutely_integrable_on S"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3441
    apply (intro set_integral_add set_integral_diff absolutely_integrable_scaleR_left assms)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3442
    using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3443
    apply (simp add: algebra_simps)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3444
    done
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3445
  ultimately show ?thesis by metis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3446
qed
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3447
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3448
corollary absolutely_integrable_min_1:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3449
  fixes f :: "'n::euclidean_space \<Rightarrow> real"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3450
  assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3451
   shows "(\<lambda>x. min (f x) (g x)) absolutely_integrable_on S"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3452
  using absolutely_integrable_min [OF assms] by simp
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3453
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3454
lemma nonnegative_absolutely_integrable:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3455
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3456
  assumes "f integrable_on A" and comp: "\<And>x b. \<lbrakk>x \<in> A; b \<in> Basis\<rbrakk> \<Longrightarrow> 0 \<le> f x \<bullet> b"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3457
  shows "f absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3458
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3459
  have "(\<lambda>x. (f x \<bullet> i) *\<^sub>R i) absolutely_integrable_on A" if "i \<in> Basis" for i
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3460
  proof -
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3461
    have "(\<lambda>x. f x \<bullet> i) integrable_on A"
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3462
      by (simp add: assms(1) integrable_component)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3463
    then have "(\<lambda>x. f x \<bullet> i) absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3464
      by (metis that comp nonnegative_absolutely_integrable_1)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3465
    then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3466
      by (rule absolutely_integrable_scaleR_right)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3467
  qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3468
  then have "(\<lambda>x. \<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i) absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3469
    by (simp add: absolutely_integrable_sum)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3470
  then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3471
    by (simp add: euclidean_representation)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3472
qed
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3473
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3474
lemma absolutely_integrable_component_ubound:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3475
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3476
  assumes f: "f integrable_on A" and g: "g absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3477
      and comp: "\<And>x b. \<lbrakk>x \<in> A; b \<in> Basis\<rbrakk> \<Longrightarrow> f x \<bullet> b \<le> g x \<bullet> b"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3478
  shows "f absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3479
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3480
  have "(\<lambda>x. g x - (g x - f x)) absolutely_integrable_on A"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3481
    apply (rule set_integral_diff [OF g nonnegative_absolutely_integrable])
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3482
    using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def f g apply blast
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3483
    by (simp add: comp inner_diff_left)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3484
  then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3485
    by simp
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3486
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3487
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3488
lemma absolutely_integrable_component_lbound:
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3489
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3490
  assumes f: "f absolutely_integrable_on A" and g: "g integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3491
      and comp: "\<And>x b. \<lbrakk>x \<in> A; b \<in> Basis\<rbrakk> \<Longrightarrow> f x \<bullet> b \<le> g x \<bullet> b"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3492
  shows "g absolutely_integrable_on A"
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3493
proof -
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3494
  have "(\<lambda>x. f x + (g x - f x)) absolutely_integrable_on A"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  3495
    apply (rule set_integral_add [OF f nonnegative_absolutely_integrable])
66192
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3496
    using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def f g apply blast
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3497
    by (simp add: comp inner_diff_left)
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3498
  then show ?thesis
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3499
    by simp
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3500
qed
e5b84854baa4 A few renamings and several tidied-up proofs
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  3501
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3502
lemma integrable_on_1_iff:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3503
  fixes f :: "'a::euclidean_space \<Rightarrow> real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3504
  shows "f integrable_on S \<longleftrightarrow> (\<lambda>x. f x $ 1) integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3505
  by (auto simp: integrable_componentwise_iff [of f] Basis_vec_def cart_eq_inner_axis)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3506
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3507
lemma integral_on_1_eq:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3508
  fixes f :: "'a::euclidean_space \<Rightarrow> real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3509
  shows "integral S f = vec (integral S (\<lambda>x. f x $ 1))"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3510
by (cases "f integrable_on S") (simp_all add: integrable_on_1_iff vec_eq_iff not_integrable_integral)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3511
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3512
lemma absolutely_integrable_on_1_iff:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3513
  fixes f :: "'a::euclidean_space \<Rightarrow> real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3514
  shows "f absolutely_integrable_on S \<longleftrightarrow> (\<lambda>x. f x $ 1) absolutely_integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3515
  unfolding absolutely_integrable_on_def
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3516
  by (auto simp: integrable_on_1_iff norm_real)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3517
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3518
lemma absolutely_integrable_absolutely_integrable_lbound:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3519
  fixes f :: "'m::euclidean_space \<Rightarrow> real"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3520
  assumes f: "f integrable_on S" and g: "g absolutely_integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3521
    and *: "\<And>x. x \<in> S \<Longrightarrow> g x \<le> f x"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3522
  shows "f absolutely_integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3523
  by (rule absolutely_integrable_component_lbound [OF g f]) (simp add: *)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3524
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3525
lemma absolutely_integrable_absolutely_integrable_ubound:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3526
  fixes f :: "'m::euclidean_space \<Rightarrow> real"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3527
  assumes fg: "f integrable_on S" "g absolutely_integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3528
    and *: "\<And>x. x \<in> S \<Longrightarrow> f x \<le> g x"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3529
  shows "f absolutely_integrable_on S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3530
  by (rule absolutely_integrable_component_ubound [OF fg]) (simp add: *)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3531
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3532
lemma has_integral_vec1_I_cbox:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3533
  fixes f :: "real^1 \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3534
  assumes "(f has_integral y) (cbox a b)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3535
  shows "((f \<circ> vec) has_integral y) {a$1..b$1}"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3536
proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3537
  have "((\<lambda>x. f(vec x)) has_integral (1 / 1) *\<^sub>R y) ((\<lambda>x. x $ 1) ` cbox a b)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3538
  proof (rule has_integral_twiddle)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3539
    show "\<exists>w z::real^1. vec ` cbox u v = cbox w z"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3540
         "content (vec ` cbox u v :: (real^1) set) = 1 * content (cbox u v)" for u v
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3541
      unfolding vec_cbox_1_eq
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3542
      by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3543
    show "\<exists>w z. (\<lambda>x. x $ 1) ` cbox u v = cbox w z" for u v :: "real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3544
      using vec_nth_cbox_1_eq by blast
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3545
  qed (auto simp: continuous_vec assms)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3546
  then show ?thesis
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3547
    by (simp add: o_def)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3548
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3549
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3550
lemma has_integral_vec1_I:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3551
  fixes f :: "real^1 \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3552
  assumes "(f has_integral y) S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3553
  shows "(f \<circ> vec has_integral y) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3554
proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3555
  have *: "\<exists>z. ((\<lambda>x. if x \<in> (\<lambda>x. x $ 1) ` S then (f \<circ> vec) x else 0) has_integral z) {a..b} \<and> norm (z - y) < e"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3556
    if int: "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow>
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3557
                    (\<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b) \<and> norm (z - y) < e)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3558
      and B: "ball 0 B \<subseteq> {a..b}" for e B a b
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3559
  proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3560
    have [simp]: "(\<exists>y\<in>S. x = y $ 1) \<longleftrightarrow> vec x \<in> S" for x
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3561
      by force
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3562
    have B': "ball (0::real^1) B \<subseteq> cbox (vec a) (vec b)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3563
      using B by (simp add: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box norm_real subset_iff)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3564
    show ?thesis
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3565
      using int [OF B'] by (auto simp: image_iff o_def cong: if_cong dest!: has_integral_vec1_I_cbox)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3566
  qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3567
  show ?thesis
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3568
    using assms
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3569
    apply (subst has_integral_alt)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3570
    apply (subst (asm) has_integral_alt)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3571
    apply (simp add: has_integral_vec1_I_cbox split: if_split_asm)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3572
    apply (metis vector_one_nth)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3573
    apply (erule all_forward imp_forward asm_rl ex_forward conj_forward)+
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3574
    apply (blast intro!: *)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3575
    done
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3576
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3577
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3578
lemma has_integral_vec1_nth_cbox:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3579
  fixes f :: "real \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3580
  assumes "(f has_integral y) {a..b}"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3581
  shows "((\<lambda>x::real^1. f(x$1)) has_integral y) (cbox (vec a) (vec b))"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3582
proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3583
  have "((\<lambda>x::real^1. f(x$1)) has_integral (1 / 1) *\<^sub>R y) (vec ` cbox a b)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3584
  proof (rule has_integral_twiddle)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3585
    show "\<exists>w z::real. (\<lambda>x. x $ 1) ` cbox u v = cbox w z"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3586
         "content ((\<lambda>x. x $ 1) ` cbox u v) = 1 * content (cbox u v)" for u v::"real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3587
      unfolding vec_cbox_1_eq by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3588
    show "\<exists>w z::real^1. vec ` cbox u v = cbox w z" for u v :: "real"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3589
      using vec_cbox_1_eq by auto
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3590
  qed (auto simp: continuous_vec assms)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3591
  then show ?thesis
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3592
    using vec_cbox_1_eq by auto
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3593
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3594
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3595
lemma has_integral_vec1_D_cbox:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3596
  fixes f :: "real^1 \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3597
  assumes "((f \<circ> vec) has_integral y) {a$1..b$1}"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3598
  shows "(f has_integral y) (cbox a b)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3599
  by (metis (mono_tags, lifting) assms comp_apply has_integral_eq has_integral_vec1_nth_cbox vector_one_nth)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3600
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3601
lemma has_integral_vec1_D:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3602
  fixes f :: "real^1 \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3603
  assumes "((f \<circ> vec) has_integral y) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3604
  shows "(f has_integral y) S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3605
proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3606
  have *: "\<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b) \<and> norm (z - y) < e"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3607
    if int: "\<And>a b. ball 0 B \<subseteq> {a..b} \<Longrightarrow>
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3608
                             (\<exists>z. ((\<lambda>x. if x \<in> (\<lambda>x. x $ 1) ` S then (f \<circ> vec) x else 0) has_integral z) {a..b} \<and> norm (z - y) < e)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3609
      and B: "ball 0 B \<subseteq> cbox a b" for e B and a b::"real^1"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3610
  proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3611
    have B': "ball 0 B \<subseteq> {a$1..b$1}"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3612
      using B
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3613
      apply (simp add: subset_iff Basis_vec_def cart_eq_inner_axis [symmetric] mem_box)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3614
      apply (metis (full_types) norm_real vec_component)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3615
      done
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3616
    have eq: "(\<lambda>x. if vec x \<in> S then f (vec x) else 0) = (\<lambda>x. if x \<in> S then f x else 0) \<circ> vec"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3617
      by force
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3618
    have [simp]: "(\<exists>y\<in>S. x = y $ 1) \<longleftrightarrow> vec x \<in> S" for x
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3619
      by force
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3620
    show ?thesis
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3621
      using int [OF B'] by (auto simp: image_iff eq cong: if_cong dest!: has_integral_vec1_D_cbox)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3622
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3623
  show ?thesis
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3624
    using assms
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3625
    apply (subst has_integral_alt)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3626
    apply (subst (asm) has_integral_alt)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3627
    apply (simp add: has_integral_vec1_D_cbox eq_cbox split: if_split_asm, blast)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3628
    apply (intro conjI impI)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3629
     apply (metis vector_one_nth)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3630
    apply (erule thin_rl)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3631
    apply (erule all_forward imp_forward asm_rl ex_forward conj_forward)+
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3632
    using * apply blast
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3633
    done
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3634
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3635
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3636
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3637
lemma integral_vec1_eq:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3638
  fixes f :: "real^1 \<Rightarrow> 'a::real_normed_vector"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3639
  shows "integral S f = integral ((\<lambda>x. x $ 1) ` S) (f \<circ> vec)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3640
  using has_integral_vec1_I [of f] has_integral_vec1_D [of f]
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3641
  by (metis has_integral_iff not_integrable_integral)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3642
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3643
lemma absolutely_integrable_drop:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3644
  fixes f :: "real^1 \<Rightarrow> 'b::euclidean_space"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3645
  shows "f absolutely_integrable_on S \<longleftrightarrow> (f \<circ> vec) absolutely_integrable_on (\<lambda>x. x $ 1) ` S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3646
  unfolding absolutely_integrable_on_def integrable_on_def
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3647
proof safe
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3648
  fix y r
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3649
  assume "(f has_integral y) S" "((\<lambda>x. norm (f x)) has_integral r) S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3650
  then show "\<exists>y. (f \<circ> vec has_integral y) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3651
            "\<exists>y. ((\<lambda>x. norm ((f \<circ> vec) x)) has_integral y) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3652
    by (force simp: o_def dest!: has_integral_vec1_I)+
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3653
next
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3654
  fix y :: "'b" and r :: "real"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3655
  assume "(f \<circ> vec has_integral y) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3656
         "((\<lambda>x. norm ((f \<circ> vec) x)) has_integral r) ((\<lambda>x. x $ 1) ` S)"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3657
  then show "\<exists>y. (f has_integral y) S"  "\<exists>y. ((\<lambda>x. norm (f x)) has_integral y) S"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3658
    by (force simp: o_def intro: has_integral_vec1_D)+
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3659
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3660
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3661
subsection \<open>Dominated convergence\<close>
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3662
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3663
lemma dominated_convergence:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3664
  fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3665
  assumes f: "\<And>k. (f k) integrable_on S" and h: "h integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3666
    and le: "\<And>k x. x \<in> S \<Longrightarrow> norm (f k x) \<le> h x"
70378
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  3667
    and conv: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>k. f k x) \<longlonglongrightarrow> g x"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3668
  shows "g integrable_on S" "(\<lambda>k. integral S (f k)) \<longlonglongrightarrow> integral S g"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3669
proof -
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3670
  have 3: "h absolutely_integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3671
    unfolding absolutely_integrable_on_def
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3672
  proof
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3673
    show "(\<lambda>x. norm (h x)) integrable_on S"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  3674
    proof (intro integrable_spike_finite[OF _ _ h, of "{}"] ballI)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3675
      fix x assume "x \<in> S - {}" then show "norm (h x) = h x"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  3676
        by (metis Diff_empty abs_of_nonneg bot_set_def le norm_ge_zero order_trans real_norm_def)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3677
    qed auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3678
  qed fact
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3679
  have 2: "set_borel_measurable lebesgue S (f k)" for k
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3680
    unfolding set_borel_measurable_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3681
    using f by (auto intro: has_integral_implies_lebesgue_measurable simp: integrable_on_def)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3682
  then have 1: "set_borel_measurable lebesgue S g"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3683
    unfolding set_borel_measurable_def
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3684
    by (rule borel_measurable_LIMSEQ_metric) (use conv in \<open>auto split: split_indicator\<close>)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3685
  have 4: "AE x in lebesgue. (\<lambda>i. indicator S x *\<^sub>R f i x) \<longlonglongrightarrow> indicator S x *\<^sub>R g x"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3686
    "AE x in lebesgue. norm (indicator S x *\<^sub>R f k x) \<le> indicator S x *\<^sub>R h x" for k
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3687
    using conv le by (auto intro!: always_eventually split: split_indicator)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3688
  have g: "g absolutely_integrable_on S"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3689
    using 1 2 3 4 unfolding set_borel_measurable_def set_integrable_def
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3690
    by (rule integrable_dominated_convergence)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3691
  then show "g integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3692
    by (auto simp: absolutely_integrable_on_def)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3693
  have "(\<lambda>k. (LINT x:S|lebesgue. f k x)) \<longlonglongrightarrow> (LINT x:S|lebesgue. g x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3694
    unfolding set_borel_measurable_def set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3695
    using 1 2 3 4 unfolding set_borel_measurable_def set_lebesgue_integral_def set_integrable_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3696
    by (rule integral_dominated_convergence)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3697
  then show "(\<lambda>k. integral S (f k)) \<longlonglongrightarrow> integral S g"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3698
    using g absolutely_integrable_integrable_bound[OF le f h]
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3699
    by (subst (asm) (1 2) set_lebesgue_integral_eq_integral) auto
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3700
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3701
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3702
lemma has_integral_dominated_convergence:
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3703
  fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3704
  assumes "\<And>k. (f k has_integral y k) S" "h integrable_on S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3705
    "\<And>k. \<forall>x\<in>S. norm (f k x) \<le> h x" "\<forall>x\<in>S. (\<lambda>k. f k x) \<longlonglongrightarrow> g x"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3706
    and x: "y \<longlonglongrightarrow> x"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3707
  shows "(g has_integral x) S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3708
proof -
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3709
  have int_f: "\<And>k. (f k) integrable_on S"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3710
    using assms by (auto simp: integrable_on_def)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3711
  have "(g has_integral (integral S g)) S"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3712
    by (metis assms(2-4) dominated_convergence(1) has_integral_integral int_f)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3713
  moreover have "integral S g = x"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3714
  proof (rule LIMSEQ_unique)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3715
    show "(\<lambda>i. integral S (f i)) \<longlonglongrightarrow> x"
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3716
      using integral_unique[OF assms(1)] x by simp
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3717
    show "(\<lambda>i. integral S (f i)) \<longlonglongrightarrow> integral S g"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  3718
      by (metis assms(2) assms(3) assms(4) dominated_convergence(2) int_f)
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3719
  qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3720
  ultimately show ?thesis
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3721
    by simp
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3722
qed
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63940
diff changeset
  3723
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3724
lemma dominated_convergence_integrable_1:
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3725
  fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> real"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3726
  assumes f: "\<And>k. f k absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3727
    and h: "h integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3728
    and normg: "\<And>x. x \<in> S \<Longrightarrow> norm(g x) \<le> (h x)"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3729
    and lim: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>k. f k x) \<longlonglongrightarrow> g x"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3730
 shows "g integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3731
proof -
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3732
  have habs: "h absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3733
    using h normg nonnegative_absolutely_integrable_1 norm_ge_zero order_trans by blast
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3734
  let ?f = "\<lambda>n x. (min (max (- h x) (f n x)) (h x))"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3735
  have h0: "h x \<ge> 0" if "x \<in> S" for x
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3736
    using normg that by force
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3737
  have leh: "norm (?f k x) \<le> h x" if "x \<in> S" for k x
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3738
    using h0 that by force
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3739
  have limf: "(\<lambda>k. ?f k x) \<longlonglongrightarrow> g x" if "x \<in> S" for x
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3740
  proof -
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3741
    have "\<And>e y. \<bar>f y x - g x\<bar> < e \<Longrightarrow> \<bar>min (max (- h x) (f y x)) (h x) - g x\<bar> < e"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3742
      using h0 [OF that] normg [OF that] by simp
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3743
    then show ?thesis
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3744
      using lim [OF that] by (auto simp add: tendsto_iff dist_norm elim!: eventually_mono)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3745
  qed
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3746
  show ?thesis
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3747
  proof (rule dominated_convergence [of ?f S h g])
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3748
    have "(\<lambda>x. - h x) absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3749
      using habs unfolding set_integrable_def by auto
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3750
    then show "?f k integrable_on S" for k
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3751
      by (intro set_lebesgue_integral_eq_integral absolutely_integrable_min_1 absolutely_integrable_max_1 f habs)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3752
  qed (use assms leh limf in auto)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3753
qed
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3754
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3755
lemma dominated_convergence_integrable:
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3756
  fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3757
  assumes f: "\<And>k. f k absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3758
    and h: "h integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3759
    and normg: "\<And>x. x \<in> S \<Longrightarrow> norm(g x) \<le> (h x)"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3760
    and lim: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>k. f k x) \<longlonglongrightarrow> g x"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3761
  shows "g integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3762
  using f
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3763
  unfolding integrable_componentwise_iff [of g] absolutely_integrable_componentwise_iff [where f = "f k" for k]
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3764
proof clarify
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3765
  fix b :: "'m"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3766
  assume fb [rule_format]: "\<And>k. \<forall>b\<in>Basis. (\<lambda>x. f k x \<bullet> b) absolutely_integrable_on S" and b: "b \<in> Basis"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3767
  show "(\<lambda>x. g x \<bullet> b) integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3768
  proof (rule dominated_convergence_integrable_1 [OF fb h])
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3769
    fix x
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3770
    assume "x \<in> S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3771
    show "norm (g x \<bullet> b) \<le> h x"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3772
      using norm_nth_le \<open>x \<in> S\<close> b normg order.trans by blast
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3773
    show "(\<lambda>k. f k x \<bullet> b) \<longlonglongrightarrow> g x \<bullet> b"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3774
      using \<open>x \<in> S\<close> b lim tendsto_componentwise_iff by fastforce
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3775
  qed (use b in auto)
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3776
qed
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3777
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3778
lemma dominated_convergence_absolutely_integrable:
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3779
  fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3780
  assumes f: "\<And>k. f k absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3781
    and h: "h integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3782
    and normg: "\<And>x. x \<in> S \<Longrightarrow> norm(g x) \<le> (h x)"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3783
    and lim: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>k. f k x) \<longlonglongrightarrow> g x"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3784
  shows "g absolutely_integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3785
proof -
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3786
  have "g integrable_on S"
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3787
    by (rule dominated_convergence_integrable [OF assms])
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3788
  with assms show ?thesis
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3789
    by (blast intro:  absolutely_integrable_integrable_bound [where g=h])
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3790
qed
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
  3791
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3792
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3793
proposition integral_countable_UN:
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3794
  fixes f :: "real^'m \<Rightarrow> real^'n"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3795
  assumes f: "f absolutely_integrable_on (\<Union>(range s))"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3796
    and s: "\<And>m. s m \<in> sets lebesgue"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3797
  shows "\<And>n. f absolutely_integrable_on (\<Union>m\<le>n. s m)"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3798
    and "(\<lambda>n. integral (\<Union>m\<le>n. s m) f) \<longlonglongrightarrow> integral (\<Union>(s ` UNIV)) f" (is "?F \<longlonglongrightarrow> ?I")
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3799
proof -
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3800
  show fU: "f absolutely_integrable_on (\<Union>m\<le>n. s m)" for n
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3801
    using assms by (blast intro: set_integrable_subset [OF f])
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3802
  have fint: "f integrable_on (\<Union> (range s))"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3803
    using absolutely_integrable_on_def f by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3804
  let ?h = "\<lambda>x. if x \<in> \<Union>(s ` UNIV) then norm(f x) else 0"
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3805
  have "(\<lambda>n. integral UNIV (\<lambda>x. if x \<in> (\<Union>m\<le>n. s m) then f x else 0))
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3806
        \<longlonglongrightarrow> integral UNIV (\<lambda>x. if x \<in> \<Union>(s ` UNIV) then f x else 0)"
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3807
  proof (rule dominated_convergence)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3808
    show "(\<lambda>x. if x \<in> (\<Union>m\<le>n. s m) then f x else 0) integrable_on UNIV" for n
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3809
      unfolding integrable_restrict_UNIV
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3810
      using fU absolutely_integrable_on_def by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3811
    show "(\<lambda>x. if x \<in> \<Union>(s ` UNIV) then norm(f x) else 0) integrable_on UNIV"
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3812
      by (metis (no_types) absolutely_integrable_on_def f integrable_restrict_UNIV)
70378
ebd108578ab1 more new material about analysis
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  3813
    show "\<And>x. (\<lambda>n. if x \<in> (\<Union>m\<le>n. s m) then f x else 0)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69286
diff changeset
  3814
         \<longlonglongrightarrow> (if x \<in> \<Union>(s ` UNIV) then f x else 0)"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70271
diff changeset
  3815
      by (force intro: tendsto_eventually eventually_sequentiallyI)
67981
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3816
  qed auto
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3817
  then show "?F \<longlonglongrightarrow> ?I"
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3818
    by (simp only: integral_restrict_UNIV)
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3819
qed
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3820
349c639e593c more new theorems on real^1, matrices, etc.
paulson <lp15@cam.ac.uk>
parents: 67980
diff changeset
  3821
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3822
subsection \<open>Fundamental Theorem of Calculus for the Lebesgue integral\<close>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3823
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3824
text \<open>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3825
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3826
For the positive integral we replace continuity with Borel-measurability.
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3827
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3828
\<close>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3829
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  3830
lemma
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3831
  fixes f :: "real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3832
  assumes [measurable]: "f \<in> borel_measurable borel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3833
  assumes f: "\<And>x. x \<in> {a..b} \<Longrightarrow> DERIV F x :> f x" "\<And>x. x \<in> {a..b} \<Longrightarrow> 0 \<le> f x" and "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3834
  shows nn_integral_FTC_Icc: "(\<integral>\<^sup>+x. ennreal (f x) * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?nn)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3835
    and has_bochner_integral_FTC_Icc_nonneg:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3836
      "has_bochner_integral lborel (\<lambda>x. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3837
    and integral_FTC_Icc_nonneg: "(\<integral>x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?eq)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3838
    and integrable_FTC_Icc_nonneg: "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is ?int)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3839
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3840
  have *: "(\<lambda>x. f x * indicator {a..b} x) \<in> borel_measurable borel" "\<And>x. 0 \<le> f x * indicator {a..b} x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3841
    using f(2) by (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3842
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3843
  have F_mono: "a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b\<Longrightarrow> F x \<le> F y" for x y
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3844
    using f by (intro DERIV_nonneg_imp_nondecreasing[of x y F]) (auto intro: order_trans)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3845
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3846
  have "(f has_integral F b - F a) {a..b}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3847
    by (intro fundamental_theorem_of_calculus)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3848
       (auto simp: has_field_derivative_iff_has_vector_derivative[symmetric]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3849
             intro: has_field_derivative_subset[OF f(1)] \<open>a \<le> b\<close>)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3850
  then have i: "((\<lambda>x. f x * indicator {a .. b} x) has_integral F b - F a) UNIV"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3851
    unfolding indicator_def if_distrib[where f="\<lambda>x. a * x" for a]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3852
    by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3853
  then have nn: "(\<integral>\<^sup>+x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3854
    by (rule nn_integral_has_integral_lborel[OF *])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3855
  then show ?has
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3856
    by (rule has_bochner_integral_nn_integral[rotated 3]) (simp_all add: * F_mono \<open>a \<le> b\<close>)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3857
  then show ?eq ?int
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3858
    unfolding has_bochner_integral_iff by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3859
  show ?nn
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3860
    by (subst nn[symmetric])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3861
       (auto intro!: nn_integral_cong simp add: ennreal_mult f split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3862
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3863
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3864
lemma
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3865
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3866
  assumes "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3867
  assumes "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3868
  assumes cont: "continuous_on {a .. b} f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3869
  shows has_bochner_integral_FTC_Icc:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3870
      "has_bochner_integral lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x) (F b - F a)" (is ?has)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3871
    and integral_FTC_Icc: "(\<integral>x. indicator {a .. b} x *\<^sub>R f x \<partial>lborel) = F b - F a" (is ?eq)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3872
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3873
  let ?f = "\<lambda>x. indicator {a .. b} x *\<^sub>R f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3874
  have int: "integrable lborel ?f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3875
    using borel_integrable_compact[OF _ cont] by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3876
  have "(f has_integral F b - F a) {a..b}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3877
    using assms(1,2) by (intro fundamental_theorem_of_calculus) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3878
  moreover
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3879
  have "(f has_integral integral\<^sup>L lborel ?f) {a..b}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3880
    using has_integral_integral_lborel[OF int]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3881
    unfolding indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3882
    by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3883
  ultimately show ?eq
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3884
    by (auto dest: has_integral_unique)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3885
  then show ?has
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3886
    using int by (auto simp: has_bochner_integral_iff)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3887
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3888
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3889
lemma
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3890
  fixes f :: "real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3891
  assumes "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3892
  assumes deriv: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> DERIV F x :> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3893
  assumes cont: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3894
  shows has_bochner_integral_FTC_Icc_real:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3895
      "has_bochner_integral lborel (\<lambda>x. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3896
    and integral_FTC_Icc_real: "(\<integral>x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?eq)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3897
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3898
  have 1: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3899
    unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3900
    using deriv by (auto intro: DERIV_subset)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3901
  have 2: "continuous_on {a .. b} f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3902
    using cont by (intro continuous_at_imp_continuous_on) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3903
  show ?has ?eq
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3904
    using has_bochner_integral_FTC_Icc[OF \<open>a \<le> b\<close> 1 2] integral_FTC_Icc[OF \<open>a \<le> b\<close> 1 2]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3905
    by (auto simp: mult.commute)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3906
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3907
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3908
lemma nn_integral_FTC_atLeast:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3909
  fixes f :: "real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3910
  assumes f_borel: "f \<in> borel_measurable borel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3911
  assumes f: "\<And>x. a \<le> x \<Longrightarrow> DERIV F x :> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3912
  assumes nonneg: "\<And>x. a \<le> x \<Longrightarrow> 0 \<le> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3913
  assumes lim: "(F \<longlongrightarrow> T) at_top"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3914
  shows "(\<integral>\<^sup>+x. ennreal (f x) * indicator {a ..} x \<partial>lborel) = T - F a"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3915
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3916
  let ?f = "\<lambda>(i::nat) (x::real). ennreal (f x) * indicator {a..a + real i} x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3917
  let ?fR = "\<lambda>x. ennreal (f x) * indicator {a ..} x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3918
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3919
  have F_mono: "a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> F x \<le> F y" for x y
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3920
    using f nonneg by (intro DERIV_nonneg_imp_nondecreasing[of x y F]) (auto intro: order_trans)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3921
  then have F_le_T: "a \<le> x \<Longrightarrow> F x \<le> T" for x
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63945
diff changeset
  3922
    by (intro tendsto_lowerbound[OF lim])
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  3923
       (auto simp: eventually_at_top_linorder)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3924
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  3925
  have "(SUP i. ?f i x) = ?fR x" for x
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3926
  proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
66344
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  3927
    obtain n where "x - a < real n"
455ca98d9de3 final tidying up of lemma bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66343
diff changeset
  3928
      using reals_Archimedean2[of "x - a"] ..
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3929
    then have "eventually (\<lambda>n. ?f n x = ?fR x) sequentially"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3930
      by (auto intro!: eventually_sequentiallyI[where c=n] split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3931
    then show "(\<lambda>n. ?f n x) \<longlonglongrightarrow> ?fR x"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70271
diff changeset
  3932
      by (rule tendsto_eventually)
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3933
  qed (auto simp: nonneg incseq_def le_fun_def split: split_indicator)
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  3934
  then have "integral\<^sup>N lborel ?fR = (\<integral>\<^sup>+ x. (SUP i. ?f i x) \<partial>lborel)"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3935
    by simp
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  3936
  also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. ?f i x \<partial>lborel))"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3937
  proof (rule nn_integral_monotone_convergence_SUP)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3938
    show "incseq ?f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3939
      using nonneg by (auto simp: incseq_def le_fun_def split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3940
    show "\<And>i. (?f i) \<in> borel_measurable lborel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3941
      using f_borel by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3942
  qed
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68721
diff changeset
  3943
  also have "\<dots> = (SUP i. ennreal (F (a + real i) - F a))"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3944
    by (subst nn_integral_FTC_Icc[OF f_borel f nonneg]) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3945
  also have "\<dots> = T - F a"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3946
  proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3947
    have "(\<lambda>x. F (a + real x)) \<longlonglongrightarrow> T"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3948
      apply (rule filterlim_compose[OF lim filterlim_tendsto_add_at_top])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3949
      apply (rule LIMSEQ_const_iff[THEN iffD2, OF refl])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3950
      apply (rule filterlim_real_sequentially)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3951
      done
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3952
    then show "(\<lambda>n. ennreal (F (a + real n) - F a)) \<longlonglongrightarrow> ennreal (T - F a)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3953
      by (simp add: F_mono F_le_T tendsto_diff)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3954
  qed (auto simp: incseq_def intro!: ennreal_le_iff[THEN iffD2] F_mono)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3955
  finally show ?thesis .
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3956
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3957
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3958
lemma integral_power:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3959
  "a \<le> b \<Longrightarrow> (\<integral>x. x^k * indicator {a..b} x \<partial>lborel) = (b^Suc k - a^Suc k) / Suc k"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3960
proof (subst integral_FTC_Icc_real)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3961
  fix x show "DERIV (\<lambda>x. x^Suc k / Suc k) x :> x^k"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3962
    by (intro derivative_eq_intros) auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3963
qed (auto simp: field_simps simp del: of_nat_Suc)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3964
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3965
subsection \<open>Integration by parts\<close>
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3966
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3967
lemma integral_by_parts_integrable:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3968
  fixes f g F G::"real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3969
  assumes "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3970
  assumes cont_f[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3971
  assumes cont_g[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3972
  assumes [intro]: "!!x. DERIV F x :> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3973
  assumes [intro]: "!!x. DERIV G x :> g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3974
  shows  "integrable lborel (\<lambda>x.((F x) * (g x) + (f x) * (G x)) * indicator {a .. b} x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3975
  by (auto intro!: borel_integrable_atLeastAtMost continuous_intros) (auto intro!: DERIV_isCont)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3976
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3977
lemma integral_by_parts:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3978
  fixes f g F G::"real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3979
  assumes [arith]: "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3980
  assumes cont_f[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3981
  assumes cont_g[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3982
  assumes [intro]: "!!x. DERIV F x :> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3983
  assumes [intro]: "!!x. DERIV G x :> g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3984
  shows "(\<integral>x. (F x * g x) * indicator {a .. b} x \<partial>lborel)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3985
            =  F b * G b - F a * G a - \<integral>x. (f x * G x) * indicator {a .. b} x \<partial>lborel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3986
proof-
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3987
  have 0: "(\<integral>x. (F x * g x + f x * G x) * indicator {a .. b} x \<partial>lborel) = F b * G b - F a * G a"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3988
    by (rule integral_FTC_Icc_real, auto intro!: derivative_eq_intros continuous_intros)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3989
      (auto intro!: DERIV_isCont)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3990
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3991
  have "(\<integral>x. (F x * g x + f x * G x) * indicator {a .. b} x \<partial>lborel) =
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3992
    (\<integral>x. (F x * g x) * indicator {a .. b} x \<partial>lborel) + \<integral>x. (f x * G x) * indicator {a .. b} x \<partial>lborel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3993
    apply (subst Bochner_Integration.integral_add[symmetric])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3994
    apply (auto intro!: borel_integrable_atLeastAtMost continuous_intros)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3995
    by (auto intro!: DERIV_isCont Bochner_Integration.integral_cong split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3996
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3997
  thus ?thesis using 0 by auto
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3998
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  3999
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4000
lemma integral_by_parts':
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4001
  fixes f g F G::"real \<Rightarrow> real"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4002
  assumes "a \<le> b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4003
  assumes "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4004
  assumes "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4005
  assumes "!!x. DERIV F x :> f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4006
  assumes "!!x. DERIV G x :> g x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4007
  shows "(\<integral>x. indicator {a .. b} x *\<^sub>R (F x * g x) \<partial>lborel)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4008
            =  F b * G b - F a * G a - \<integral>x. indicator {a .. b} x *\<^sub>R (f x * G x) \<partial>lborel"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4009
  using integral_by_parts[OF assms] by (simp add: ac_simps)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4010
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4011
lemma has_bochner_integral_even_function:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4012
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4013
  assumes f: "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4014
  assumes even: "\<And>x. f (- x) = f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4015
  shows "has_bochner_integral lborel f (2 *\<^sub>R x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4016
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4017
  have indicator: "\<And>x::real. indicator {..0} (- x) = indicator {0..} x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4018
    by (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4019
  have "has_bochner_integral lborel (\<lambda>x. indicator {.. 0} x *\<^sub>R f x) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4020
    by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4021
       (auto simp: indicator even f)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4022
  with f have "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x + indicator {.. 0} x *\<^sub>R f x) (x + x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4023
    by (rule has_bochner_integral_add)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4024
  then have "has_bochner_integral lborel f (x + x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4025
    by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4026
       (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4027
  then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4028
    by (simp add: scaleR_2)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4029
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4030
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4031
lemma has_bochner_integral_odd_function:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4032
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4033
  assumes f: "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4034
  assumes odd: "\<And>x. f (- x) = - f x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4035
  shows "has_bochner_integral lborel f 0"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4036
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4037
  have indicator: "\<And>x::real. indicator {..0} (- x) = indicator {0..} x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4038
    by (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4039
  have "has_bochner_integral lborel (\<lambda>x. - indicator {.. 0} x *\<^sub>R f x) x"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4040
    by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4041
       (auto simp: indicator odd f)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4042
  from has_bochner_integral_minus[OF this]
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4043
  have "has_bochner_integral lborel (\<lambda>x. indicator {.. 0} x *\<^sub>R f x) (- x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4044
    by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4045
  with f have "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x + indicator {.. 0} x *\<^sub>R f x) (x + - x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4046
    by (rule has_bochner_integral_add)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4047
  then have "has_bochner_integral lborel f (x + - x)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4048
    by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4049
       (auto split: split_indicator)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4050
  then show ?thesis
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4051
    by simp
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4052
qed
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  4053
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4054
lemma has_integral_0_closure_imp_0:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4055
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4056
  assumes f: "continuous_on (closure S) f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4057
    and nonneg_interior: "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> f x"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4058
    and pos: "0 < emeasure lborel S"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4059
    and finite: "emeasure lborel S < \<infinity>"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4060
    and regular: "emeasure lborel (closure S) = emeasure lborel S"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4061
    and opn: "open S"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4062
  assumes int: "(f has_integral 0) (closure S)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4063
  assumes x: "x \<in> closure S"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4064
  shows "f x = 0"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4065
proof -
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4066
  have zero: "emeasure lborel (frontier S) = 0"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4067
    using finite closure_subset regular
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4068
    unfolding frontier_def
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4069
    by (subst emeasure_Diff) (auto simp: frontier_def interior_open \<open>open S\<close> )
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4070
  have nonneg: "0 \<le> f x" if "x \<in> closure S" for x
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4071
    using continuous_ge_on_closure[OF f that nonneg_interior] by simp
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4072
  have "0 = integral (closure S) f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4073
    by (blast intro: int sym)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4074
  also
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4075
  note intl = has_integral_integrable[OF int]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4076
  have af: "f absolutely_integrable_on (closure S)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4077
    using nonneg
66552
507a42c0a0ff last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents: 66513
diff changeset
  4078
    by (intro absolutely_integrable_onI intl integrable_eq[OF intl]) simp
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4079
  then have "integral (closure S) f = set_lebesgue_integral lebesgue (closure S) f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4080
    by (intro set_lebesgue_integral_eq_integral(2)[symmetric])
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4081
  also have "\<dots> = 0 \<longleftrightarrow> (AE x in lebesgue. indicator (closure S) x *\<^sub>R f x = 0)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  4082
    unfolding set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  4083
  proof (rule integral_nonneg_eq_0_iff_AE)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  4084
    show "integrable lebesgue (\<lambda>x. indicat_real (closure S) x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  4085
      by (metis af set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67970
diff changeset
  4086
  qed (use nonneg in \<open>auto simp: indicator_def\<close>)
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4087
  also have "\<dots> \<longleftrightarrow> (AE x in lebesgue. x \<in> {x. x \<in> closure S \<longrightarrow> f x = 0})"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4088
    by (auto simp: indicator_def)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4089
  finally have "(AE x in lebesgue. x \<in> {x. x \<in> closure S \<longrightarrow> f x = 0})" by simp
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4090
  moreover have "(AE x in lebesgue. x \<in> - frontier S)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4091
    using zero
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4092
    by (auto simp: eventually_ae_filter null_sets_def intro!: exI[where x="frontier S"])
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4093
  ultimately have ae: "AE x \<in> S in lebesgue. x \<in> {x \<in> closure S. f x = 0}" (is ?th)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4094
    by eventually_elim (use closure_subset in \<open>auto simp: \<close>)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4095
  have "closed {0::real}" by simp
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4096
  with continuous_on_closed_vimage[OF closed_closure, of S f] f
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4097
  have "closed (f -` {0} \<inter> closure S)" by blast
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4098
  then have "closed {x \<in> closure S. f x = 0}" by (auto simp: vimage_def Int_def conj_commute)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4099
  with \<open>open S\<close> have "x \<in> {x \<in> closure S. f x = 0}" if "x \<in> S" for x using ae that
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4100
    by (rule mem_closed_if_AE_lebesgue_open)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4101
  then have "f x = 0" if "x \<in> S" for x using that by auto
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4102
  from continuous_constant_on_closure[OF f this \<open>x \<in> closure S\<close>]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4103
  show "f x = 0" .
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4104
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4105
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4106
lemma has_integral_0_cbox_imp_0:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4107
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4108
  assumes f: "continuous_on (cbox a b) f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4109
    and nonneg_interior: "\<And>x. x \<in> box a b \<Longrightarrow> 0 \<le> f x"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4110
  assumes int: "(f has_integral 0) (cbox a b)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4111
  assumes ne: "box a b \<noteq> {}"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4112
  assumes x: "x \<in> cbox a b"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4113
  shows "f x = 0"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4114
proof -
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4115
  have "0 < emeasure lborel (box a b)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4116
    using ne x unfolding emeasure_lborel_box_eq
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4117
    by (force intro!: prod_pos simp: mem_box algebra_simps)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4118
  then show ?thesis using assms
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4119
    by (intro has_integral_0_closure_imp_0[of "box a b" f x])
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4120
      (auto simp: emeasure_lborel_box_eq emeasure_lborel_cbox_eq algebra_simps mem_box)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4121
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  4122
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4123
subsection\<open>Various common equivalent forms of function measurability\<close>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4124
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4125
lemma indicator_sum_eq:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4126
  fixes m::real and f :: "'a \<Rightarrow> real"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4127
  assumes "\<bar>m\<bar> \<le> 2 ^ (2*n)" "m/2^n \<le> f x" "f x < (m+1)/2^n" "m \<in> \<int>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4128
  shows   "(\<Sum>k::real | k \<in> \<int> \<and> \<bar>k\<bar> \<le> 2 ^ (2*n).
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4129
            k/2^n * indicator {y. k/2^n \<le> f y \<and> f y < (k+1)/2^n} x)  = m/2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4130
          (is "sum ?f ?S = _")
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4131
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4132
  have "sum ?f ?S = sum (\<lambda>k. k/2^n * indicator {y. k/2^n \<le> f y \<and> f y < (k+1)/2^n} x) {m}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4133
  proof (rule comm_monoid_add_class.sum.mono_neutral_right)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4134
    show "finite ?S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4135
      by (rule finite_abs_int_segment)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4136
    show "{m} \<subseteq> {k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4137
      using assms by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4138
    show "\<forall>i\<in>{k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)} - {m}. ?f i = 0"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  4139
      using assms by (auto simp: indicator_def Ints_def abs_le_iff field_split_simps)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4140
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4141
  also have "\<dots> = m/2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4142
    using assms by (auto simp: indicator_def not_less)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4143
  finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4144
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4145
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4146
lemma measurable_on_sf_limit_lemma1:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4147
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4148
  assumes "\<And>a b. {x \<in> S. a \<le> f x \<and> f x < b} \<in> sets (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4149
  obtains g where "\<And>n. g n \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4150
                  "\<And>n. finite(range (g n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4151
                  "\<And>x. (\<lambda>n. g n x) \<longlonglongrightarrow> f x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4152
proof
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4153
  show "(\<lambda>x. sum (\<lambda>k::real. k/2^n * indicator {y. k/2^n \<le> f y \<and> f y < (k+1)/2^n} x)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4154
                 {k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)}) \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4155
        (is "?g \<in> _")  for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4156
  proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4157
    have "\<And>k. \<lbrakk>k \<in> \<int>; \<bar>k\<bar> \<le> 2 ^ (2*n)\<rbrakk>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4158
         \<Longrightarrow> Measurable.pred (lebesgue_on S) (\<lambda>x. k / (2^n) \<le> f x \<and> f x < (k+1) / (2^n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4159
      using assms by (force simp: pred_def space_restrict_space)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4160
    then show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4161
      by (simp add: field_class.field_divide_inverse)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4162
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4163
  show "finite (range (?g n))" for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4164
  proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4165
    have "range (?g n) \<subseteq> (\<lambda>k. k/2^n) ` {k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4166
    proof clarify
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4167
      fix x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4168
      show "?g n x  \<in> (\<lambda>k. k/2^n) ` {k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4169
      proof (cases "\<exists>k::real. k \<in> \<int> \<and> \<bar>k\<bar> \<le> 2 ^ (2*n) \<and> k/2^n \<le> (f x) \<and> (f x) < (k+1)/2^n")
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4170
        case True
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4171
        then show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4172
          apply clarify
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4173
          by (subst indicator_sum_eq) auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4174
      next
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4175
        case False
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4176
        then have "?g n x = 0" by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4177
        then show ?thesis by force
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4178
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4179
    qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4180
    moreover have "finite ((\<lambda>k::real. (k/2^n)) ` {k \<in> \<int>. \<bar>k\<bar> \<le> 2 ^ (2*n)})"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4181
      by (simp add: finite_abs_int_segment)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4182
    ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4183
      using finite_subset by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4184
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4185
  show "(\<lambda>n. ?g n x) \<longlonglongrightarrow> f x" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4186
  proof (rule LIMSEQ_I)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4187
    fix e::real
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4188
    assume "e > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4189
    obtain N1 where N1: "\<bar>f x\<bar> < 2 ^ N1"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4190
      using real_arch_pow by fastforce
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4191
    obtain N2 where N2: "(1/2) ^ N2 < e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4192
      using real_arch_pow_inv \<open>e > 0\<close> by force
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4193
    have "norm (?g n x - f x) < e" if n: "n \<ge> max N1 N2" for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4194
    proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4195
      define m where "m \<equiv> floor(2^n * (f x))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4196
      have "1 \<le> \<bar>2^n\<bar> * e"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  4197
        using n N2 \<open>e > 0\<close> less_eq_real_def less_le_trans by (fastforce simp add: field_split_simps)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4198
      then have *: "\<lbrakk>x \<le> y; y < x + 1\<rbrakk> \<Longrightarrow> abs(x - y) < \<bar>2^n\<bar> * e" for x y::real
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4199
        by linarith
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4200
      have "\<bar>2^n\<bar> * \<bar>m/2^n - f x\<bar> = \<bar>2^n * (m/2^n - f x)\<bar>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4201
        by (simp add: abs_mult)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4202
      also have "\<dots> = \<bar>real_of_int \<lfloor>2^n * f x\<rfloor> - f x * 2^n\<bar>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4203
        by (simp add: algebra_simps m_def)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4204
      also have "\<dots> < \<bar>2^n\<bar> * e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4205
        by (rule *; simp add: mult.commute)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4206
      finally have "\<bar>2^n\<bar> * \<bar>m/2^n - f x\<bar> < \<bar>2^n\<bar> * e" .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4207
      then have me: "\<bar>m/2^n - f x\<bar> < e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4208
        by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4209
      have "\<bar>real_of_int m\<bar> \<le> 2 ^ (2*n)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4210
      proof (cases "f x < 0")
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4211
        case True
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4212
        then have "-\<lfloor>f x\<rfloor> \<le> \<lfloor>(2::real) ^ N1\<rfloor>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4213
          using N1 le_floor_iff minus_le_iff by fastforce
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4214
        with n True have "\<bar>real_of_int\<lfloor>f x\<rfloor>\<bar> \<le> 2 ^ N1"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4215
          by linarith
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4216
        also have "\<dots> \<le> 2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4217
          using n by (simp add: m_def)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4218
        finally have "\<bar>real_of_int \<lfloor>f x\<rfloor>\<bar> * 2^n \<le> 2^n * 2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4219
          by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4220
        moreover
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4221
        have "\<bar>real_of_int \<lfloor>2^n * f x\<rfloor>\<bar> \<le> \<bar>real_of_int \<lfloor>f x\<rfloor>\<bar> * 2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4222
        proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4223
          have "\<bar>real_of_int \<lfloor>2^n * f x\<rfloor>\<bar> = - (real_of_int \<lfloor>2^n * f x\<rfloor>)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4224
            using True by (simp add: abs_if mult_less_0_iff)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4225
          also have "\<dots> \<le> - (real_of_int (\<lfloor>(2::real) ^ n\<rfloor> * \<lfloor>f x\<rfloor>))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4226
            using le_mult_floor_Ints [of "(2::real)^n"] by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4227
          also have "\<dots> \<le> \<bar>real_of_int \<lfloor>f x\<rfloor>\<bar> * 2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4228
            using True
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4229
            by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4230
          finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4231
        qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4232
        ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4233
          by (metis (no_types, hide_lams) m_def order_trans power2_eq_square power_even_eq)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4234
      next
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4235
        case False
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4236
        with n N1 have "f x \<le> 2^n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4237
          by (simp add: not_less) (meson less_eq_real_def one_le_numeral order_trans power_increasing)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4238
        moreover have "0 \<le> m"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4239
          using False m_def by force
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4240
        ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4241
          by (metis abs_of_nonneg floor_mono le_floor_iff m_def of_int_0_le_iff power2_eq_square power_mult real_mult_le_cancel_iff1 zero_less_numeral mult.commute zero_less_power)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4242
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4243
      then have "?g n x = m/2^n"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  4244
        by (rule indicator_sum_eq) (auto simp add: m_def field_split_simps, linarith)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4245
      then have "norm (?g n x - f x) = norm (m/2^n - f x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4246
        by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4247
      also have "\<dots> < e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4248
        by (simp add: me)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4249
      finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4250
    qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4251
    then show "\<exists>no. \<forall>n\<ge>no. norm (?g n x - f x) < e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4252
      by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4253
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4254
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4255
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4256
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4257
lemma borel_measurable_simple_function_limit:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4258
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4259
  shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4260
         (\<exists>g. (\<forall>n. (g n) \<in> borel_measurable (lebesgue_on S)) \<and>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4261
              (\<forall>n. finite (range (g n))) \<and> (\<forall>x. (\<lambda>n. g n x) \<longlonglongrightarrow> f x))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4262
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4263
  have "\<exists>g. (\<forall>n. (g n) \<in> borel_measurable (lebesgue_on S)) \<and>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4264
            (\<forall>n. finite (range (g n))) \<and> (\<forall>x. (\<lambda>n. g n x) \<longlonglongrightarrow> f x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4265
       if f: "\<And>a i. i \<in> Basis \<Longrightarrow> {x \<in> S. f x \<bullet> i < a} \<in> sets (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4266
  proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4267
    have "\<exists>g. (\<forall>n. (g n) \<in> borel_measurable (lebesgue_on S)) \<and>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4268
                  (\<forall>n. finite(image (g n) UNIV)) \<and>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4269
                  (\<forall>x. ((\<lambda>n. g n x) \<longlonglongrightarrow> f x \<bullet> i))" if "i \<in> Basis" for i
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4270
    proof (rule measurable_on_sf_limit_lemma1 [of S "\<lambda>x. f x \<bullet> i"])
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4271
      show "{x \<in> S. a \<le> f x \<bullet> i \<and> f x \<bullet> i < b} \<in> sets (lebesgue_on S)" for a b
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4272
      proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4273
        have "{x \<in> S. a \<le> f x \<bullet> i \<and> f x \<bullet> i < b} = {x \<in> S. f x \<bullet> i < b} - {x \<in> S. a > f x \<bullet> i}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4274
          by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4275
        also have "\<dots> \<in> sets (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4276
          using f that by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4277
        finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4278
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4279
    qed blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4280
    then obtain g where g:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4281
          "\<And>i n. i \<in> Basis \<Longrightarrow> g i n \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4282
          "\<And>i n. i \<in> Basis \<Longrightarrow> finite(range (g i n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4283
          "\<And>i x. i \<in> Basis \<Longrightarrow> ((\<lambda>n. g i n x) \<longlonglongrightarrow> f x \<bullet> i)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4284
      by metis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4285
    show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4286
    proof (intro conjI allI exI)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4287
      show "(\<lambda>x. \<Sum>i\<in>Basis. g i n x *\<^sub>R i) \<in> borel_measurable (lebesgue_on S)" for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4288
        by (intro borel_measurable_sum borel_measurable_scaleR) (auto intro: g)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4289
      show "finite (range (\<lambda>x. \<Sum>i\<in>Basis. g i n x *\<^sub>R i))" for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4290
      proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4291
        have "range (\<lambda>x. \<Sum>i\<in>Basis. g i n x *\<^sub>R i) \<subseteq> (\<lambda>h. \<Sum>i\<in>Basis. h i *\<^sub>R i) ` PiE Basis (\<lambda>i. range (g i n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4292
        proof clarify
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4293
          fix x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4294
          show "(\<Sum>i\<in>Basis. g i n x *\<^sub>R i) \<in> (\<lambda>h. \<Sum>i\<in>Basis. h i *\<^sub>R i) ` (\<Pi>\<^sub>E i\<in>Basis. range (g i n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4295
            by (rule_tac x="\<lambda>i\<in>Basis. g i n x" in image_eqI) auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4296
        qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4297
        moreover have "finite(PiE Basis (\<lambda>i. range (g i n)))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4298
          by (simp add: g finite_PiE)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4299
        ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4300
          by (metis (mono_tags, lifting) finite_surj)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4301
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4302
      show "(\<lambda>n. \<Sum>i\<in>Basis. g i n x *\<^sub>R i) \<longlonglongrightarrow> f x" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4303
      proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4304
        have "(\<lambda>n. \<Sum>i\<in>Basis. g i n x *\<^sub>R i) \<longlonglongrightarrow> (\<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4305
          by (auto intro!: tendsto_sum tendsto_scaleR g)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4306
        moreover have "(\<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i) = f x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4307
          using euclidean_representation by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4308
        ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4309
          by metis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4310
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4311
    qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4312
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4313
  moreover have "f \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4314
              if meas_g: "\<And>n. g n \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4315
                 and fin: "\<And>n. finite (range (g n))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4316
                 and to_f: "\<And>x. (\<lambda>n. g n x) \<longlonglongrightarrow> f x" for  g
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4317
    by (rule borel_measurable_LIMSEQ_metric [OF meas_g to_f])
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4318
  ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4319
    using borel_measurable_vimage_halfspace_component_lt by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4320
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4321
70547
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4322
subsection \<open>Lebesgue sets and continuous images\<close>
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4323
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4324
proposition lebesgue_regular_inner:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4325
 assumes "S \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4326
 obtains K C where "negligible K" "\<And>n::nat. compact(C n)" "S = (\<Union>n. C n) \<union> K"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4327
proof -
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4328
  have "\<exists>T. closed T \<and> T \<subseteq> S \<and> (S - T) \<in> lmeasurable \<and> emeasure lebesgue (S - T) < ennreal ((1/2)^n)" for n
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4329
    using sets_lebesgue_inner_closed assms
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4330
    by (metis sets_lebesgue_inner_closed zero_less_divide_1_iff zero_less_numeral zero_less_power)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4331
  then obtain C where clo: "\<And>n. closed (C n)" and subS: "\<And>n. C n \<subseteq> S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4332
    and mea: "\<And>n. (S - C n) \<in> lmeasurable"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4333
    and less: "\<And>n. emeasure lebesgue (S - C n) < ennreal ((1/2)^n)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4334
    by metis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4335
  have "\<exists>F. (\<forall>n::nat. compact(F n)) \<and> (\<Union>n. F n) = C m" for m::nat
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4336
    by (metis clo closed_Union_compact_subsets)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4337
  then obtain D :: "[nat,nat] \<Rightarrow> 'a set" where D: "\<And>m n. compact(D m n)" "\<And>m. (\<Union>n. D m n) = C m"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4338
    by metis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4339
  let ?C = "from_nat_into (\<Union>m. range (D m))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4340
  have "countable (\<Union>m. range (D m))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4341
    by blast
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4342
  have "range (from_nat_into (\<Union>m. range (D m))) = (\<Union>m. range (D m))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4343
    using range_from_nat_into by simp
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4344
  then have CD: "\<exists>m n. ?C k = D m n"  for k
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4345
    by (metis (mono_tags, lifting) UN_iff rangeE range_eqI)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4346
  show thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4347
  proof
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4348
    show "negligible (S - (\<Union>n. C n))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4349
    proof (clarsimp simp: negligible_outer_le)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4350
      fix e :: "real"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4351
      assume "e > 0"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4352
      then obtain n where n: "(1/2)^n < e"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4353
        using real_arch_pow_inv [of e "1/2"] by auto
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4354
      show "\<exists>T. S - (\<Union>n. C n) \<subseteq> T \<and> T \<in> lmeasurable \<and> measure lebesgue T \<le> e"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4355
      proof (intro exI conjI)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4356
        show "S - (\<Union>n. C n) \<subseteq> S - C n"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4357
          by blast
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4358
        show "S - C n \<in> lmeasurable"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4359
          by (simp add: mea)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4360
        show "measure lebesgue (S - C n) \<le> e"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4361
          using less [of n] n
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4362
          by (simp add: emeasure_eq_measure2 less_le mea)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4363
      qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4364
    qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4365
    show "compact (?C n)" for n
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4366
      using CD D by metis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4367
    show "S = (\<Union>n. ?C n) \<union> (S - (\<Union>n. C n))" (is "_ = ?rhs")
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4368
    proof
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4369
      show "S \<subseteq> ?rhs"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4370
        using D by fastforce
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4371
      show "?rhs \<subseteq> S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4372
        using subS D CD by auto (metis Sup_upper range_eqI subsetCE)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4373
    qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4374
  qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4375
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4376
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4377
lemma sets_lebesgue_continuous_image:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4378
  assumes T: "T \<in> sets lebesgue" and contf: "continuous_on S f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4379
    and negim: "\<And>T. \<lbrakk>negligible T; T \<subseteq> S\<rbrakk> \<Longrightarrow> negligible(f ` T)" and "T \<subseteq> S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4380
 shows "f ` T \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4381
proof -
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4382
  obtain K C where "negligible K" and com: "\<And>n::nat. compact(C n)" and Teq: "T = (\<Union>n. C n) \<union> K"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4383
    using lebesgue_regular_inner [OF T] by metis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4384
  then have comf: "\<And>n::nat. compact(f ` C n)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4385
    by (metis Un_subset_iff Union_upper \<open>T \<subseteq> S\<close> compact_continuous_image contf continuous_on_subset rangeI)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4386
  have "((\<Union>n. f ` C n) \<union> f ` K) \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4387
  proof (rule sets.Un)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4388
    have "K \<subseteq> S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4389
      using Teq \<open>T \<subseteq> S\<close> by blast
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4390
    show "(\<Union>n. f ` C n) \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4391
    proof (rule sets.countable_Union)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4392
      show "range (\<lambda>n. f ` C n) \<subseteq> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4393
        using borel_compact comf by (auto simp: borel_compact)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4394
    qed auto
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4395
    show "f ` K \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4396
      by (simp add: \<open>K \<subseteq> S\<close> \<open>negligible K\<close> negim negligible_imp_sets)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4397
  qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4398
  then show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4399
    by (simp add: Teq image_Un image_Union)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4400
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4401
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4402
lemma differentiable_image_in_sets_lebesgue:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4403
  fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4404
  assumes S: "S \<in> sets lebesgue" and dim: "DIM('m) \<le> DIM('n)" and f: "f differentiable_on S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4405
  shows "f`S \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4406
proof (rule sets_lebesgue_continuous_image [OF S])
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4407
  show "continuous_on S f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4408
    by (meson differentiable_imp_continuous_on f)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4409
  show "\<And>T. \<lbrakk>negligible T; T \<subseteq> S\<rbrakk> \<Longrightarrow> negligible (f ` T)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4410
    using differentiable_on_subset f
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4411
    by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4412
qed auto
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4413
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4414
lemma sets_lebesgue_on_continuous_image:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4415
  assumes S: "S \<in> sets lebesgue" and X: "X \<in> sets (lebesgue_on S)" and contf: "continuous_on S f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4416
    and negim: "\<And>T. \<lbrakk>negligible T; T \<subseteq> S\<rbrakk> \<Longrightarrow> negligible(f ` T)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4417
  shows "f ` X \<in> sets (lebesgue_on (f ` S))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4418
proof -
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4419
  have "X \<subseteq> S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4420
    by (metis S X sets.Int_space_eq2 sets_restrict_space_iff)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4421
  moreover have "f ` S \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4422
    using S contf negim sets_lebesgue_continuous_image by blast
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4423
  moreover have "f ` X \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4424
    by (metis S X contf negim sets_lebesgue_continuous_image sets_restrict_space_iff space_restrict_space space_restrict_space2)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4425
  ultimately show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4426
    by (auto simp: sets_restrict_space_iff)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4427
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4428
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4429
lemma differentiable_image_in_sets_lebesgue_on:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4430
  fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4431
  assumes S: "S \<in> sets lebesgue" and X: "X \<in> sets (lebesgue_on S)" and dim: "DIM('m) \<le> DIM('n)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4432
       and f: "f differentiable_on S"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4433
     shows "f ` X \<in> sets (lebesgue_on (f`S))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4434
proof (rule sets_lebesgue_on_continuous_image [OF S X])
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4435
  show "continuous_on S f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4436
    by (meson differentiable_imp_continuous_on f)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4437
  show "\<And>T. \<lbrakk>negligible T; T \<subseteq> S\<rbrakk> \<Longrightarrow> negligible (f ` T)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4438
    using differentiable_on_subset f
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4439
    by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4440
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4441
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4442
subsection \<open>Affine lemmas\<close>
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4443
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4444
lemma borel_measurable_affine:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4445
  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4446
  assumes f: "f \<in> borel_measurable lebesgue" and "c \<noteq> 0"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4447
  shows "(\<lambda>x. f(t + c *\<^sub>R x)) \<in> borel_measurable lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4448
proof -
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4449
  { fix a b
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4450
    have "{x. f x \<in> cbox a b} \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4451
      using f cbox_borel lebesgue_measurable_vimage_borel by blast
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4452
    then have "(\<lambda>x. (x - t) /\<^sub>R c) ` {x. f x \<in> cbox a b} \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4453
    proof (rule differentiable_image_in_sets_lebesgue)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4454
      show "(\<lambda>x. (x - t) /\<^sub>R c) differentiable_on {x. f x \<in> cbox a b}"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4455
        unfolding differentiable_on_def differentiable_def
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4456
        by (rule \<open>c \<noteq> 0\<close> derivative_eq_intros strip exI | simp)+
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4457
    qed auto
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4458
    moreover
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4459
    have "{x. f(t + c *\<^sub>R x) \<in> cbox a b} = (\<lambda>x. (x-t) /\<^sub>R c) ` {x. f x \<in> cbox a b}"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4460
      using \<open>c \<noteq> 0\<close> by (auto simp: image_def)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4461
    ultimately have "{x. f(t + c *\<^sub>R x) \<in> cbox a b} \<in> sets lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4462
      by (auto simp: borel_measurable_vimage_closed_interval) }
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4463
  then show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4464
    by (subst lebesgue_on_UNIV_eq [symmetric]; auto simp: borel_measurable_vimage_closed_interval)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4465
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4466
    
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4467
lemma lebesgue_integrable_real_affine:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4468
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4469
  assumes f: "integrable lebesgue f" and "c \<noteq> 0"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4470
  shows "integrable lebesgue (\<lambda>x. f(t + c * x))"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4471
proof -
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4472
  have "(\<lambda>x. norm (f x)) \<in> borel_measurable lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4473
    by (simp add: borel_measurable_integrable f)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4474
  then show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4475
    using assms borel_measurable_affine [of f c]
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4476
    unfolding integrable_iff_bounded
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4477
    by (subst (asm) nn_integral_real_affine_lebesgue[where c=c and t=t])  (auto simp: ennreal_mult_less_top)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4478
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4479
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4480
lemma lebesgue_integrable_real_affine_iff:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4481
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4482
  shows "c \<noteq> 0 \<Longrightarrow> integrable lebesgue (\<lambda>x. f(t + c * x)) \<longleftrightarrow> integrable lebesgue f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4483
  using lebesgue_integrable_real_affine[of f c t]
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4484
        lebesgue_integrable_real_affine[of "\<lambda>x. f(t + c * x)" "1/c" "-t/c"]
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4485
  by (auto simp: field_simps)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4486
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4487
lemma\<^marker>\<open>tag important\<close> lebesgue_integral_real_affine:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4488
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space" and c :: real
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4489
  assumes c: "c \<noteq> 0" shows "(\<integral>x. f x \<partial> lebesgue) = \<bar>c\<bar> *\<^sub>R (\<integral>x. f(t + c * x) \<partial>lebesgue)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4490
proof cases
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4491
  have "(\<lambda>x. t + c * x) \<in> lebesgue \<rightarrow>\<^sub>M lebesgue"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4492
    using lebesgue_affine_measurable[where c= "\<lambda>x::real. c"] \<open>c \<noteq> 0\<close> by simp
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4493
  moreover
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4494
  assume "integrable lebesgue f"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4495
  ultimately show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4496
    by (subst lebesgue_real_affine[OF c, of t]) (auto simp: integral_density integral_distr)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4497
next
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4498
  assume "\<not> integrable lebesgue f" with c show ?thesis
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4499
    by (simp add: lebesgue_integrable_real_affine_iff not_integrable_integral_eq)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4500
qed
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4501
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4502
lemma has_bochner_integral_lebesgue_real_affine_iff:
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4503
  fixes i :: "'a :: euclidean_space"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4504
  shows "c \<noteq> 0 \<Longrightarrow>
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4505
    has_bochner_integral lebesgue f i \<longleftrightarrow>
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4506
    has_bochner_integral lebesgue (\<lambda>x. f(t + c * x)) (i /\<^sub>R \<bar>c\<bar>)"
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4507
  unfolding has_bochner_integral_iff lebesgue_integrable_real_affine_iff
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4508
  by (simp_all add: lebesgue_integral_real_affine[symmetric] divideR_right cong: conj_cong)
7ce95a5c4aa8 new material on eqiintegrable functions, etc.
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  4509
70694
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4510
lemma has_bochner_integral_reflect_real_lemma[intro]:
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4511
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4512
  assumes "has_bochner_integral (lebesgue_on {a..b}) f i"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4513
  shows "has_bochner_integral (lebesgue_on {-b..-a}) (\<lambda>x. f(-x)) i"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4514
proof -
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4515
  have eq: "indicat_real {a..b} (- x) *\<^sub>R f(- x) = indicat_real {- b..- a} x *\<^sub>R f(- x)" for x
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4516
    by (auto simp: indicator_def)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4517
  have i: "has_bochner_integral lebesgue (\<lambda>x. indicator {a..b} x *\<^sub>R f x) i"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4518
    using assms by (auto simp: has_bochner_integral_restrict_space)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4519
  then have "has_bochner_integral lebesgue (\<lambda>x. indicator {-b..-a} x *\<^sub>R f(-x)) i"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4520
    using has_bochner_integral_lebesgue_real_affine_iff [of "-1" "(\<lambda>x. indicator {a..b} x *\<^sub>R f x)" i 0]
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4521
    by (auto simp: eq)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4522
  then show ?thesis
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4523
    by (auto simp: has_bochner_integral_restrict_space)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4524
qed
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  4525
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4526
lemma has_bochner_integral_reflect_real[simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4527
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4528
  shows "has_bochner_integral (lebesgue_on {-b..-a}) (\<lambda>x. f(-x)) i \<longleftrightarrow> has_bochner_integral (lebesgue_on {a..b}) f i"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4529
  by (auto simp: dest: has_bochner_integral_reflect_real_lemma)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4530
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4531
lemma integrable_reflect_real[simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4532
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4533
  shows "integrable (lebesgue_on {-b..-a}) (\<lambda>x. f(-x)) \<longleftrightarrow> integrable (lebesgue_on {a..b}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4534
  by (metis has_bochner_integral_iff has_bochner_integral_reflect_real)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4535
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4536
lemma integral_reflect_real[simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4537
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4538
  shows "integral\<^sup>L (lebesgue_on {-b .. -a}) (\<lambda>x. f(-x)) = integral\<^sup>L (lebesgue_on {a..b::real}) f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4539
  using has_bochner_integral_reflect_real [of b a f]
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4540
  by (metis has_bochner_integral_iff not_integrable_integral_eq)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4541
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4542
subsection\<open>More results on integrability\<close>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4543
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4544
lemma integrable_on_all_intervals_UNIV:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4545
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4546
  assumes intf: "\<And>a b. f integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4547
    and normf: "\<And>x. norm(f x) \<le> g x" and g: "g integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4548
  shows "f integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4549
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4550
have intg: "(\<forall>a b. g integrable_on cbox a b)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4551
    and gle_e: "\<forall>e>0. \<exists>B>0. \<forall>a b c d.
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4552
                    ball 0 B \<subseteq> cbox a b \<and> cbox a b \<subseteq> cbox c d \<longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4553
                    \<bar>integral (cbox a b) g - integral (cbox c d) g\<bar>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4554
                    < e"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4555
    using g
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4556
    by (auto simp: integrable_alt_subset [of _ UNIV] intf)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4557
  have le: "norm (integral (cbox a b) f - integral (cbox c d) f) \<le> \<bar>integral (cbox a b) g - integral (cbox c d) g\<bar>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4558
    if "cbox a b \<subseteq> cbox c d" for a b c d
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4559
  proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4560
    have "norm (integral (cbox a b) f - integral (cbox c d) f) = norm (integral (cbox c d - cbox a b) f)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4561
      using intf that by (simp add: norm_minus_commute integral_setdiff)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4562
    also have "\<dots> \<le> integral (cbox c d - cbox a b) g"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4563
    proof (rule integral_norm_bound_integral [OF _ _ normf])
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4564
      show "f integrable_on cbox c d - cbox a b" "g integrable_on cbox c d - cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4565
        by (meson integrable_integral integrable_setdiff intf intg negligible_setdiff that)+
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4566
    qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4567
    also have "\<dots> = integral (cbox c d) g - integral (cbox a b) g"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4568
      using intg that by (simp add: integral_setdiff)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4569
    also have "\<dots> \<le> \<bar>integral (cbox a b) g - integral (cbox c d) g\<bar>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4570
      by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4571
    finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4572
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4573
  show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4574
    using gle_e
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4575
    apply (simp add: integrable_alt_subset [of _ UNIV] intf)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4576
    apply (erule imp_forward all_forward ex_forward asm_rl)+
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4577
    by (meson not_less order_trans le)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4578
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4579
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4580
lemma integrable_on_all_intervals_integrable_bound:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4581
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4582
  assumes intf: "\<And>a b. (\<lambda>x. if x \<in> S then f x else 0) integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4583
    and normf: "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> g x" and g: "g integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4584
  shows "f integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4585
  using integrable_on_all_intervals_UNIV [OF intf, of "(\<lambda>x. if x \<in> S then g x else 0)"]
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4586
  by (simp add: g integrable_restrict_UNIV normf)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4587
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4588
lemma measurable_bounded_lemma:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4589
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4590
  assumes f: "f \<in> borel_measurable lebesgue" and g: "g integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4591
    and normf: "\<And>x. x \<in> cbox a b \<Longrightarrow> norm(f x) \<le> g x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4592
  shows "f integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4593
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4594
  have "g absolutely_integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4595
    by (metis (full_types) add_increasing g le_add_same_cancel1 nonnegative_absolutely_integrable_1 norm_ge_zero normf)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4596
  then have "integrable (lebesgue_on (cbox a b)) g"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4597
    by (simp add: integrable_restrict_space set_integrable_def)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4598
  then have "integrable (lebesgue_on (cbox a b)) f"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4599
  proof (rule Bochner_Integration.integrable_bound)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4600
    show "AE x in lebesgue_on (cbox a b). norm (f x) \<le> norm (g x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4601
      by (rule AE_I2) (auto intro: normf order_trans)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4602
  qed (simp add: f measurable_restrict_space1)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4603
  then show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4604
    by (simp add: integrable_on_lebesgue_on)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4605
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4606
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4607
proposition measurable_bounded_by_integrable_imp_integrable:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4608
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4609
  assumes f: "f \<in> borel_measurable (lebesgue_on S)" and g: "g integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4610
    and normf: "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> g x" and S: "S \<in> sets lebesgue"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4611
  shows "f integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4612
proof (rule integrable_on_all_intervals_integrable_bound [OF _ normf g])
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4613
  show "(\<lambda>x. if x \<in> S then f x else 0) integrable_on cbox a b" for a b
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4614
  proof (rule measurable_bounded_lemma)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4615
    show "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue"
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4616
      by (simp add: S borel_measurable_if f)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4617
    show "(\<lambda>x. if x \<in> S then g x else 0) integrable_on cbox a b"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4618
      by (simp add: g integrable_altD(1))
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4619
    show "norm (if x \<in> S then f x else 0) \<le> (if x \<in> S then g x else 0)" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4620
      using normf by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4621
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4622
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4623
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4624
lemma measurable_bounded_by_integrable_imp_lebesgue_integrable:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4625
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4626
  assumes f: "f \<in> borel_measurable (lebesgue_on S)" and g: "integrable (lebesgue_on S) g"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4627
    and normf: "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> g x" and S: "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4628
  shows "integrable (lebesgue_on S) f"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4629
proof -
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4630
  have "f absolutely_integrable_on S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4631
    by (metis (no_types) S absolutely_integrable_integrable_bound f g integrable_on_lebesgue_on measurable_bounded_by_integrable_imp_integrable normf)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4632
  then show ?thesis
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4633
    by (simp add: S integrable_restrict_space set_integrable_def)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4634
qed
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4635
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4636
lemma measurable_bounded_by_integrable_imp_integrable_real:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4637
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4638
  assumes "f \<in> borel_measurable (lebesgue_on S)" "g integrable_on S" "\<And>x. x \<in> S \<Longrightarrow> abs(f x) \<le> g x" "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4639
  shows "f integrable_on S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4640
  using measurable_bounded_by_integrable_imp_integrable [of f S g] assms by simp
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4641
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4642
subsection\<open> Relation between Borel measurability and integrability.\<close>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4643
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4644
lemma integrable_imp_measurable_weak:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4645
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4646
  assumes "S \<in> sets lebesgue" "f integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4647
  shows "f \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4648
  by (metis (mono_tags, lifting) assms has_integral_implies_lebesgue_measurable borel_measurable_restrict_space_iff integrable_on_def sets.Int_space_eq2)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4649
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4650
lemma integrable_imp_measurable:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4651
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4652
  assumes "f integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4653
  shows "f \<in> borel_measurable (lebesgue_on S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4654
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4655
  have "(UNIV::'a set) \<in> sets lborel"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4656
    by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4657
  then show ?thesis
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70694
diff changeset
  4658
    by (metis (mono_tags, lifting) assms borel_measurable_if_D integrable_imp_measurable_weak integrable_restrict_UNIV lebesgue_on_UNIV_eq sets_lebesgue_on_refl)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4659
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4660
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4661
lemma integrable_iff_integrable_on:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4662
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4663
  assumes "S \<in> sets lebesgue" "(\<integral>\<^sup>+ x. ennreal (norm (f x)) \<partial>lebesgue_on S) < \<infinity>"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4664
  shows "integrable (lebesgue_on S) f \<longleftrightarrow> f integrable_on S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4665
  using assms integrable_iff_bounded integrable_imp_measurable integrable_on_lebesgue_on by blast
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4666
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4667
lemma absolutely_integrable_measurable:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4668
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4669
  assumes "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4670
  shows "f absolutely_integrable_on S \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S) \<and> integrable (lebesgue_on S) (norm \<circ> f)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4671
    (is "?lhs = ?rhs")
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4672
proof
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4673
  assume L: ?lhs
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4674
  then have "f \<in> borel_measurable (lebesgue_on S)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4675
    by (simp add: absolutely_integrable_on_def integrable_imp_measurable)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4676
  then show ?rhs
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4677
    using assms set_integrable_norm [of lebesgue S f] L
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4678
    by (simp add: integrable_restrict_space set_integrable_def)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4679
next
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4680
  assume ?rhs then show ?lhs
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4681
    using assms integrable_on_lebesgue_on
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4682
    by (metis absolutely_integrable_integrable_bound comp_def eq_iff measurable_bounded_by_integrable_imp_integrable)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4683
qed
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4684
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4685
lemma absolutely_integrable_measurable_real:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4686
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4687
  assumes "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4688
  shows "f absolutely_integrable_on S \<longleftrightarrow>
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4689
         f \<in> borel_measurable (lebesgue_on S) \<and> integrable (lebesgue_on S) (\<lambda>x. \<bar>f x\<bar>)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4690
  by (simp add: absolutely_integrable_measurable assms o_def)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4691
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4692
lemma absolutely_integrable_measurable_real':
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4693
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4694
  assumes "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4695
  shows "f absolutely_integrable_on S \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S) \<and> (\<lambda>x. \<bar>f x\<bar>) integrable_on S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4696
  using assms
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4697
  apply (auto simp: absolutely_integrable_measurable integrable_on_lebesgue_on)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4698
  apply (simp add: integrable_on_lebesgue_on measurable_bounded_by_integrable_imp_lebesgue_integrable)
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4699
  using abs_absolutely_integrableI_1 absolutely_integrable_measurable measurable_bounded_by_integrable_imp_integrable_real by blast
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4700
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4701
lemma absolutely_integrable_imp_borel_measurable:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4702
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4703
  assumes "f absolutely_integrable_on S" "S \<in> sets lebesgue"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4704
  shows "f \<in> borel_measurable (lebesgue_on S)"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4705
  using absolutely_integrable_measurable assms by blast
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4706
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4707
lemma measurable_bounded_by_integrable_imp_absolutely_integrable:
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4708
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4709
  assumes "f \<in> borel_measurable (lebesgue_on S)" "S \<in> sets lebesgue"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4710
    and "g integrable_on S" and "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> (g x)"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4711
  shows "f absolutely_integrable_on S"
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4712
  using assms absolutely_integrable_integrable_bound measurable_bounded_by_integrable_imp_integrable by blast
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70380
diff changeset
  4713
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4714
proposition negligible_differentiable_vimage:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4715
  fixes f :: "'a \<Rightarrow> 'a::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4716
  assumes "negligible T"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4717
    and f': "\<And>x. x \<in> S \<Longrightarrow> inj(f' x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4718
    and derf: "\<And>x. x \<in> S \<Longrightarrow> (f has_derivative f' x) (at x within S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4719
  shows "negligible {x \<in> S. f x \<in> T}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4720
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4721
  define U where
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4722
    "U \<equiv> \<lambda>n::nat. {x \<in> S. \<forall>y. y \<in> S \<and> norm(y - x) < 1/n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4723
                     \<longrightarrow> norm(y - x) \<le> n * norm(f y - f x)}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4724
  have "negligible {x \<in> U n. f x \<in> T}" if "n > 0" for n
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4725
  proof (subst locally_negligible_alt, clarify)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4726
    fix a
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4727
    assume a: "a \<in> U n" and fa: "f a \<in> T"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4728
    define V where "V \<equiv> {x. x \<in> U n \<and> f x \<in> T} \<inter> ball a (1 / n / 2)"
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69661
diff changeset
  4729
    show "\<exists>V. openin (top_of_set {x \<in> U n. f x \<in> T}) V \<and> a \<in> V \<and> negligible V"
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4730
    proof (intro exI conjI)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4731
      have noxy: "norm(x - y) \<le> n * norm(f x - f y)" if "x \<in> V" "y \<in> V" for x y
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4732
        using that unfolding U_def V_def mem_Collect_eq Int_iff mem_ball dist_norm
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4733
        by (meson norm_triangle_half_r)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4734
      then have "inj_on f V"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4735
        by (force simp: inj_on_def)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4736
      then obtain g where g: "\<And>x. x \<in> V \<Longrightarrow> g(f x) = x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4737
        by (metis inv_into_f_f)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4738
      have "\<exists>T' B. open T' \<and> f x \<in> T' \<and>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4739
                   (\<forall>y\<in>f ` V \<inter> T \<inter> T'. norm (g y - g (f x)) \<le> B * norm (y - f x))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4740
        if "f x \<in> T" "x \<in> V" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4741
        apply (rule_tac x = "ball (f x) 1" in exI)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4742
        using that noxy by (force simp: g)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4743
      then have "negligible (g ` (f ` V \<inter> T))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4744
        by (force simp: \<open>negligible T\<close> negligible_Int intro!: negligible_locally_Lipschitz_image)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4745
      moreover have "V \<subseteq> g ` (f ` V \<inter> T)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4746
        by (force simp: g image_iff V_def)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4747
      ultimately show "negligible V"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4748
        by (rule negligible_subset)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4749
    qed (use a fa V_def that in auto)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4750
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4751
  with negligible_countable_Union have "negligible (\<Union>n \<in> {0<..}. {x. x \<in> U n \<and> f x \<in> T})"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4752
    by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4753
  moreover have "{x \<in> S. f x \<in> T} \<subseteq> (\<Union>n \<in> {0<..}. {x. x \<in> U n \<and> f x \<in> T})"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4754
  proof clarsimp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4755
    fix x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4756
    assume "x \<in> S" and "f x \<in> T"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4757
    then obtain inj: "inj(f' x)" and der: "(f has_derivative f' x) (at x within S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4758
      using assms by metis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4759
    moreover have "linear(f' x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4760
      and eps: "\<And>\<epsilon>. \<epsilon> > 0 \<Longrightarrow> \<exists>\<delta>>0. \<forall>y\<in>S. norm (y - x) < \<delta> \<longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4761
                      norm (f y - f x - f' x (y - x)) \<le> \<epsilon> * norm (y - x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4762
      using der by (auto simp: has_derivative_within_alt linear_linear)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4763
    ultimately obtain g where "linear g" and g: "g \<circ> f' x = id"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4764
      using linear_injective_left_inverse by metis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4765
    then obtain B where "B > 0" and B: "\<And>z. B * norm z \<le> norm(f' x z)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4766
      using linear_invertible_bounded_below_pos \<open>linear (f' x)\<close> by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4767
    then obtain i where "i \<noteq> 0" and i: "1 / real i < B"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4768
      by (metis (full_types) inverse_eq_divide real_arch_invD)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4769
    then obtain \<delta> where "\<delta> > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4770
         and \<delta>: "\<And>y. \<lbrakk>y\<in>S; norm (y - x) < \<delta>\<rbrakk> \<Longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4771
                  norm (f y - f x - f' x (y - x)) \<le> (B - 1 / real i) * norm (y - x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4772
      using eps [of "B - 1/i"] by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4773
    then obtain j where "j \<noteq> 0" and j: "inverse (real j) < \<delta>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4774
      using real_arch_inverse by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4775
    have "norm (y - x)/(max i j) \<le> norm (f y - f x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4776
      if "y \<in> S" and less: "norm (y - x) < 1 / (max i j)" for y
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4777
    proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4778
      have "1 / real (max i j) < \<delta>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4779
        using j \<open>j \<noteq> 0\<close> \<open>0 < \<delta>\<close>
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  4780
        by (auto simp: field_split_simps max_mult_distrib_left of_nat_max)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4781
    then have "norm (y - x) < \<delta>"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4782
      using less by linarith
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4783
    with \<delta> \<open>y \<in> S\<close> have le: "norm (f y - f x - f' x (y - x)) \<le> B * norm (y - x) - norm (y - x)/i"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4784
      by (auto simp: algebra_simps)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4785
    have *: "\<lbrakk>norm(f - f' - y) \<le> b - c; b \<le> norm y; d \<le> c\<rbrakk> \<Longrightarrow> d \<le> norm(f - f')"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4786
      for b c d and y f f'::'a
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4787
      using norm_triangle_ineq3 [of "f - f'" y] by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4788
    show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4789
      apply (rule * [OF le B])
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70802
diff changeset
  4790
      using \<open>i \<noteq> 0\<close> \<open>j \<noteq> 0\<close> by (simp add: field_split_simps max_mult_distrib_left of_nat_max less_max_iff_disj)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4791
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4792
  with \<open>x \<in> S\<close> \<open>i \<noteq> 0\<close> \<open>j \<noteq> 0\<close> show "\<exists>n\<in>{0<..}. x \<in> U n"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4793
    by (rule_tac x="max i j" in bexI) (auto simp: field_simps U_def less_max_iff_disj)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4794
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4795
  ultimately show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4796
    by (rule negligible_subset)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4797
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4798
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4799
lemma absolutely_integrable_Un:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4800
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4801
  assumes S: "f absolutely_integrable_on S" and T: "f absolutely_integrable_on T"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4802
  shows "f absolutely_integrable_on (S \<union> T)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4803
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4804
  have [simp]: "{x. (if x \<in> A then f x else 0) \<noteq> 0} = {x \<in> A. f x \<noteq> 0}" for A
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4805
    by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4806
  let ?ST = "{x \<in> S. f x \<noteq> 0} \<inter> {x \<in> T. f x \<noteq> 0}"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4807
  have "?ST \<in> sets lebesgue"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4808
  proof (rule Sigma_Algebra.sets.Int)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4809
    have "f integrable_on S"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4810
      using S absolutely_integrable_on_def by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4811
    then have "(\<lambda>x. if x \<in> S then f x else 0) integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4812
      by (simp add: integrable_restrict_UNIV)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4813
    then have borel: "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable (lebesgue_on UNIV)"
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70694
diff changeset
  4814
      using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4815
    then show "{x \<in> S. f x \<noteq> 0} \<in> sets lebesgue"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4816
      unfolding borel_measurable_vimage_open
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4817
      by (rule allE [where x = "-{0}"]) auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4818
  next
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4819
    have "f integrable_on T"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4820
      using T absolutely_integrable_on_def by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4821
    then have "(\<lambda>x. if x \<in> T then f x else 0) integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4822
      by (simp add: integrable_restrict_UNIV)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4823
    then have borel: "(\<lambda>x. if x \<in> T then f x else 0) \<in> borel_measurable (lebesgue_on UNIV)"
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70694
diff changeset
  4824
      using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4825
    then show "{x \<in> T. f x \<noteq> 0} \<in> sets lebesgue"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4826
      unfolding borel_measurable_vimage_open
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4827
      by (rule allE [where x = "-{0}"]) auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4828
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4829
  then have "f absolutely_integrable_on ?ST"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4830
    by (rule set_integrable_subset [OF S]) auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4831
  then have Int: "(\<lambda>x. if x \<in> ?ST then f x else 0) absolutely_integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4832
    using absolutely_integrable_restrict_UNIV by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4833
  have "(\<lambda>x. if x \<in> S then f x else 0) absolutely_integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4834
       "(\<lambda>x. if x \<in> T then f x else 0) absolutely_integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4835
    using S T absolutely_integrable_restrict_UNIV by blast+
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4836
  then have "(\<lambda>x. (if x \<in> S then f x else 0) + (if x \<in> T then f x else 0)) absolutely_integrable_on UNIV"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4837
    by (rule set_integral_add)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4838
  then have "(\<lambda>x. ((if x \<in> S then f x else 0) + (if x \<in> T then f x else 0)) - (if x \<in> ?ST then f x else 0)) absolutely_integrable_on UNIV"
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
  4839
    using Int by (rule set_integral_diff)
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4840
  then have "(\<lambda>x. if x \<in> S \<union> T then f x else 0) absolutely_integrable_on UNIV"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4841
    by (rule absolutely_integrable_spike) (auto intro: empty_imp_negligible)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4842
  then show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4843
    unfolding absolutely_integrable_restrict_UNIV .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4844
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4845
70726
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4846
lemma absolutely_integrable_on_combine:
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4847
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4848
  assumes "f absolutely_integrable_on {a..c}"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4849
    and "f absolutely_integrable_on {c..b}"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4850
    and "a \<le> c"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4851
    and "c \<le> b"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4852
  shows "f absolutely_integrable_on {a..b}"
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4853
  by (metis absolutely_integrable_Un assms ivl_disj_un_two_touch(4))
91587befabfd one small last theorem
paulson <lp15@cam.ac.uk>
parents: 70721
diff changeset
  4854
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4855
lemma uniform_limit_set_lebesgue_integral_at_top:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4856
  fixes f :: "'a \<Rightarrow> real \<Rightarrow> 'b::{banach, second_countable_topology}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4857
    and g :: "real \<Rightarrow> real"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4858
  assumes bound: "\<And>x y. x \<in> A \<Longrightarrow> y \<ge> a \<Longrightarrow> norm (f x y) \<le> g y"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4859
  assumes integrable: "set_integrable M {a..} g"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4860
  assumes measurable: "\<And>x. x \<in> A \<Longrightarrow> set_borel_measurable M {a..} (f x)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4861
  assumes "sets borel \<subseteq> sets M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4862
  shows   "uniform_limit A (\<lambda>b x. LINT y:{a..b}|M. f x y) (\<lambda>x. LINT y:{a..}|M. f x y) at_top"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4863
proof (cases "A = {}")
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4864
  case False
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4865
  then obtain x where x: "x \<in> A" by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4866
  have g_nonneg: "g y \<ge> 0" if "y \<ge> a" for y
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4867
  proof -
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4868
    have "0 \<le> norm (f x y)" by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4869
    also have "\<dots> \<le> g y" using bound[OF x that] by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4870
    finally show ?thesis .
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4871
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4872
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4873
  have integrable': "set_integrable M {a..} (\<lambda>y. f x y)" if "x \<in> A" for x
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4874
    unfolding set_integrable_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4875
  proof (rule Bochner_Integration.integrable_bound)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4876
    show "integrable M (\<lambda>x. indicator {a..} x * g x)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4877
      using integrable by (simp add: set_integrable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4878
    show "(\<lambda>y. indicat_real {a..} y *\<^sub>R f x y) \<in> borel_measurable M" using measurable[OF that]
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4879
      by (simp add: set_borel_measurable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4880
    show "AE y in M. norm (indicat_real {a..} y *\<^sub>R f x y) \<le> norm (indicat_real {a..} y * g y)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4881
      using bound[OF that] by (intro AE_I2) (auto simp: indicator_def g_nonneg)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4882
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4883
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4884
  show ?thesis
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4885
  proof (rule uniform_limitI)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4886
    fix e :: real assume e: "e > 0"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4887
    have sets [intro]: "A \<in> sets M" if "A \<in> sets borel" for A
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4888
      using that assms by blast
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4889
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4890
    have "((\<lambda>b. LINT y:{a..b}|M. g y) \<longlongrightarrow> (LINT y:{a..}|M. g y)) at_top"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4891
      by (intro tendsto_set_lebesgue_integral_at_top assms sets) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4892
    with e obtain b0 :: real where b0: "\<forall>b\<ge>b0. \<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4893
      by (auto simp: tendsto_iff eventually_at_top_linorder dist_real_def abs_minus_commute)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4894
    define b where "b = max a b0"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4895
    have "a \<le> b" by (simp add: b_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4896
    from b0 have "\<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4897
      by (auto simp: b_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4898
    also have "{a..} = {a..b} \<union> {b<..}" by (auto simp: b_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4899
    also have "\<bar>(LINT y:\<dots>|M. g y) - (LINT y:{a..b}|M. g y)\<bar> = \<bar>(LINT y:{b<..}|M. g y)\<bar>"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4900
      using \<open>a \<le> b\<close> by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4901
    also have "(LINT y:{b<..}|M. g y) \<ge> 0"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4902
      using g_nonneg \<open>a \<le> b\<close> unfolding set_lebesgue_integral_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4903
      by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4904
    hence "\<bar>(LINT y:{b<..}|M. g y)\<bar> = (LINT y:{b<..}|M. g y)" by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4905
    finally have less: "(LINT y:{b<..}|M. g y) < e" .
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4906
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4907
    have "eventually (\<lambda>b. b \<ge> b0) at_top" by (rule eventually_ge_at_top)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4908
    moreover have "eventually (\<lambda>b. b \<ge> a) at_top" by (rule eventually_ge_at_top)
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70381
diff changeset
  4909
    ultimately show "eventually (\<lambda>b. \<forall>x\<in>A.
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4910
                       dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e) at_top"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4911
    proof eventually_elim
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4912
      case (elim b)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4913
      show ?case
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4914
      proof
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4915
        fix x assume x: "x \<in> A"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4916
        have "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) =
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4917
                norm ((LINT y:{a..}|M. f x y) - (LINT y:{a..b}|M. f x y))"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4918
          by (simp add: dist_norm norm_minus_commute)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4919
        also have "{a..} = {a..b} \<union> {b<..}" using elim by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4920
        also have "(LINT y:\<dots>|M. f x y) - (LINT y:{a..b}|M. f x y) = (LINT y:{b<..}|M. f x y)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4921
          using elim x
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4922
          by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable'])
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4923
        also have "norm \<dots> \<le> (LINT y:{b<..}|M. norm (f x y))" using elim x
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4924
          by (intro set_integral_norm_bound set_integrable_subset[OF integrable']) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4925
        also have "\<dots> \<le> (LINT y:{b<..}|M. g y)" using elim x bound g_nonneg
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4926
          by (intro set_integral_mono set_integrable_norm set_integrable_subset[OF integrable']
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4927
                    set_integrable_subset[OF integrable]) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4928
        also have "(LINT y:{b<..}|M. g y) \<ge> 0"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4929
          using g_nonneg \<open>a \<le> b\<close> unfolding set_lebesgue_integral_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4930
          by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4931
        hence "(LINT y:{b<..}|M. g y) = \<bar>(LINT y:{b<..}|M. g y)\<bar>" by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4932
        also have "\<dots> = \<bar>(LINT y:{a..b} \<union> {b<..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar>"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4933
          using elim by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4934
        also have "{a..b} \<union> {b<..} = {a..}" using elim by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4935
        also have "\<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4936
          using b0 elim by blast
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4937
        finally show "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e" .
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4938
      qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4939
    qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4940
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68527
diff changeset
  4941
qed auto
67998
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4942
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4943
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4944
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4945
subsubsection\<open>Differentiability of inverse function (most basic form)\<close>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4946
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4947
proposition has_derivative_inverse_within:
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4948
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4949
  assumes der_f: "(f has_derivative f') (at a within S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4950
    and cont_g: "continuous (at (f a) within f ` S) g"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4951
    and "a \<in> S" "linear g'" and id: "g' \<circ> f' = id"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4952
    and gf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4953
  shows "(g has_derivative g') (at (f a) within f ` S)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4954
proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4955
  have [simp]: "g' (f' x) = x" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4956
    by (simp add: local.id pointfree_idE)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4957
  have "bounded_linear f'"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4958
    and f': "\<And>e. e>0 \<Longrightarrow> \<exists>d>0. \<forall>y\<in>S. norm (y - a) < d \<longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4959
                        norm (f y - f a - f' (y - a)) \<le> e * norm (y - a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4960
    using der_f by (auto simp: has_derivative_within_alt)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4961
  obtain C where "C > 0" and C: "\<And>x. norm (g' x) \<le> C * norm x"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4962
    using linear_bounded_pos [OF \<open>linear g'\<close>] by metis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4963
  obtain B k where "B > 0" "k > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4964
    and Bk: "\<And>x. \<lbrakk>x \<in> S; norm(f x - f a) < k\<rbrakk> \<Longrightarrow> norm(x - a) \<le> B * norm(f x - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4965
  proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4966
    obtain B where "B > 0" and B: "\<And>x. B * norm x \<le> norm (f' x)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4967
      using linear_inj_bounded_below_pos [of f'] \<open>linear g'\<close> id der_f has_derivative_linear
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4968
        linear_invertible_bounded_below_pos by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4969
    then obtain d where "d>0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4970
      and d: "\<And>y. \<lbrakk>y \<in> S; norm (y - a) < d\<rbrakk> \<Longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4971
                    norm (f y - f a - f' (y - a)) \<le> B / 2 * norm (y - a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4972
      using f' [of "B/2"] by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4973
    then obtain e where "e > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4974
      and e: "\<And>x. \<lbrakk>x \<in> S; norm (f x - f a) < e\<rbrakk> \<Longrightarrow> norm (g (f x) - g (f a)) < d"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4975
      using cont_g by (auto simp: continuous_within_eps_delta dist_norm)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4976
    show thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4977
    proof
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4978
      show "2/B > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4979
        using \<open>B > 0\<close> by simp
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4980
      show "norm (x - a) \<le> 2 / B * norm (f x - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4981
        if "x \<in> S" "norm (f x - f a) < e" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4982
      proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4983
        have xa: "norm (x - a) < d"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4984
          using e [OF that] gf by (simp add: \<open>a \<in> S\<close> that)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4985
        have *: "\<lbrakk>norm(y - f') \<le> B / 2 * norm x; B * norm x \<le> norm f'\<rbrakk>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4986
                 \<Longrightarrow> norm y \<ge> B / 2 * norm x" for y f'::'b and x::'a
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4987
          using norm_triangle_ineq3 [of y f'] by linarith
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4988
        show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4989
          using * [OF d [OF \<open>x \<in> S\<close> xa] B] \<open>B > 0\<close> by (simp add: field_simps)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4990
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4991
    qed (use \<open>e > 0\<close> in auto)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4992
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4993
  show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4994
    unfolding has_derivative_within_alt
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4995
  proof (intro conjI impI allI)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4996
    show "bounded_linear g'"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4997
      using \<open>linear g'\<close> by (simp add: linear_linear)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4998
  next
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  4999
    fix e :: "real"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5000
    assume "e > 0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5001
    then obtain d where "d>0"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5002
      and d: "\<And>y. \<lbrakk>y \<in> S; norm (y - a) < d\<rbrakk> \<Longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5003
                    norm (f y - f a - f' (y - a)) \<le> e / (B * C) * norm (y - a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5004
      using f' [of "e / (B * C)"] \<open>B > 0\<close> \<open>C > 0\<close> by auto
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5005
    have "norm (x - a - g' (f x - f a)) \<le> e * norm (f x - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5006
      if "x \<in> S" and lt_k: "norm (f x - f a) < k" and lt_dB: "norm (f x - f a) < d/B" for x
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5007
    proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5008
      have "norm (x - a) \<le> B * norm(f x - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5009
        using Bk lt_k \<open>x \<in> S\<close> by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5010
      also have "\<dots> < d"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5011
        by (metis \<open>0 < B\<close> lt_dB mult.commute pos_less_divide_eq)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5012
      finally have lt_d: "norm (x - a) < d" .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5013
      have "norm (x - a - g' (f x - f a)) \<le> norm(g'(f x - f a - (f' (x - a))))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5014
        by (simp add: linear_diff [OF \<open>linear g'\<close>] norm_minus_commute)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5015
      also have "\<dots> \<le> C * norm (f x - f a - f' (x - a))"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5016
        using C by blast
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5017
      also have "\<dots> \<le> e * norm (f x - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5018
      proof -
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5019
        have "norm (f x - f a - f' (x - a)) \<le> e / (B * C) * norm (x - a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5020
          using d [OF \<open>x \<in> S\<close> lt_d] .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5021
        also have "\<dots> \<le> (norm (f x - f a) * e) / C"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5022
          using \<open>B > 0\<close> \<open>C > 0\<close> \<open>e > 0\<close> by (simp add: field_simps Bk lt_k \<open>x \<in> S\<close>)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5023
        finally show ?thesis
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5024
          using \<open>C > 0\<close> by (simp add: field_simps)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5025
      qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5026
    finally show ?thesis .
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5027
    qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5028
    then show "\<exists>d>0. \<forall>y\<in>f ` S.
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5029
               norm (y - f a) < d \<longrightarrow>
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5030
               norm (g y - g (f a) - g' (y - f a)) \<le> e * norm (y - f a)"
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5031
      apply (rule_tac x="min k (d / B)" in exI)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5032
      using \<open>k > 0\<close> \<open>B > 0\<close> \<open>d > 0\<close> \<open>a \<in> S\<close> by (auto simp: gf)
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5033
  qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5034
qed
73a5a33486ee Change of variables proof
paulson <lp15@cam.ac.uk>
parents: 67991
diff changeset
  5035
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
diff changeset
  5036
end