| author | wenzelm | 
| Tue, 19 Jan 2021 13:26:38 +0100 | |
| changeset 73159 | 8015b81249b1 | 
| parent 71827 | 5e315defb038 | 
| child 75669 | 43f5dfb7fa35 | 
| permissions | -rw-r--r-- | 
| 47325 | 1  | 
(* Title: HOL/Transfer.thy  | 
2  | 
Author: Brian Huffman, TU Muenchen  | 
|
| 
51956
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
3  | 
Author: Ondrej Kuncar, TU Muenchen  | 
| 47325 | 4  | 
*)  | 
5  | 
||
| 60758 | 6  | 
section \<open>Generic theorem transfer using relations\<close>  | 
| 47325 | 7  | 
|
8  | 
theory Transfer  | 
|
| 
59275
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
9  | 
imports Basic_BNF_LFPs Hilbert_Choice Metis  | 
| 47325 | 10  | 
begin  | 
11  | 
||
| 60758 | 12  | 
subsection \<open>Relator for function space\<close>  | 
| 47325 | 13  | 
|
| 63343 | 14  | 
bundle lifting_syntax  | 
| 
53011
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
15  | 
begin  | 
| 63343 | 16  | 
notation rel_fun (infixr "===>" 55)  | 
17  | 
notation map_fun (infixr "--->" 55)  | 
|
| 
53011
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
18  | 
end  | 
| 
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
19  | 
|
| 63343 | 20  | 
context includes lifting_syntax  | 
| 
53011
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
21  | 
begin  | 
| 
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
22  | 
|
| 55945 | 23  | 
lemma rel_funD2:  | 
24  | 
assumes "rel_fun A B f g" and "A x x"  | 
|
| 
47937
 
70375fa2679d
generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
 
kuncar 
parents: 
47924 
diff
changeset
 | 
25  | 
shows "B (f x) (g x)"  | 
| 55945 | 26  | 
using assms by (rule rel_funD)  | 
| 
47937
 
70375fa2679d
generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
 
kuncar 
parents: 
47924 
diff
changeset
 | 
27  | 
|
| 55945 | 28  | 
lemma rel_funE:  | 
29  | 
assumes "rel_fun A B f g" and "A x y"  | 
|
| 47325 | 30  | 
obtains "B (f x) (g y)"  | 
| 55945 | 31  | 
using assms by (simp add: rel_fun_def)  | 
| 47325 | 32  | 
|
| 55945 | 33  | 
lemmas rel_fun_eq = fun.rel_eq  | 
| 47325 | 34  | 
|
| 55945 | 35  | 
lemma rel_fun_eq_rel:  | 
| 67399 | 36  | 
shows "rel_fun (=) R = (\<lambda>f g. \<forall>x. R (f x) (g x))"  | 
| 55945 | 37  | 
by (simp add: rel_fun_def)  | 
| 47325 | 38  | 
|
39  | 
||
| 60758 | 40  | 
subsection \<open>Transfer method\<close>  | 
| 47325 | 41  | 
|
| 60758 | 42  | 
text \<open>Explicit tag for relation membership allows for  | 
43  | 
backward proof methods.\<close>  | 
|
| 47325 | 44  | 
|
45  | 
definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
|
46  | 
where "Rel r \<equiv> r"  | 
|
47  | 
||
| 60758 | 48  | 
text \<open>Handling of equality relations\<close>  | 
| 
49975
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
48891 
diff
changeset
 | 
49  | 
|
| 
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
48891 
diff
changeset
 | 
50  | 
definition is_equality :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 67399 | 51  | 
where "is_equality R \<longleftrightarrow> R = (=)"  | 
| 
49975
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
48891 
diff
changeset
 | 
52  | 
|
| 67399 | 53  | 
lemma is_equality_eq: "is_equality (=)"  | 
| 
51437
 
8739f8abbecb
fixing transfer tactic - unfold fully identity relation by using relator_eq
 
kuncar 
parents: 
51112 
diff
changeset
 | 
54  | 
unfolding is_equality_def by simp  | 
| 
 
8739f8abbecb
fixing transfer tactic - unfold fully identity relation by using relator_eq
 
kuncar 
parents: 
51112 
diff
changeset
 | 
55  | 
|
| 60758 | 56  | 
text \<open>Reverse implication for monotonicity rules\<close>  | 
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
57  | 
|
| 
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
58  | 
definition rev_implies where  | 
| 
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
59  | 
"rev_implies x y \<longleftrightarrow> (y \<longrightarrow> x)"  | 
| 
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
60  | 
|
| 60758 | 61  | 
text \<open>Handling of meta-logic connectives\<close>  | 
| 47325 | 62  | 
|
63  | 
definition transfer_forall where  | 
|
64  | 
"transfer_forall \<equiv> All"  | 
|
65  | 
||
66  | 
definition transfer_implies where  | 
|
| 67399 | 67  | 
"transfer_implies \<equiv> (\<longrightarrow>)"  | 
| 47325 | 68  | 
|
| 
47355
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
69  | 
definition transfer_bforall :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
70  | 
where "transfer_bforall \<equiv> (\<lambda>P Q. \<forall>x. P x \<longrightarrow> Q x)"  | 
| 
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
71  | 
|
| 47325 | 72  | 
lemma transfer_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (transfer_forall (\<lambda>x. P x))"  | 
73  | 
unfolding atomize_all transfer_forall_def ..  | 
|
74  | 
||
75  | 
lemma transfer_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (transfer_implies A B)"  | 
|
76  | 
unfolding atomize_imp transfer_implies_def ..  | 
|
77  | 
||
| 
47355
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
78  | 
lemma transfer_bforall_unfold:  | 
| 
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
79  | 
"Trueprop (transfer_bforall P (\<lambda>x. Q x)) \<equiv> (\<And>x. P x \<Longrightarrow> Q x)"  | 
| 
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
80  | 
unfolding transfer_bforall_def atomize_imp atomize_all ..  | 
| 
 
3d9d98e0f1a4
add bounded quantifier constant transfer_bforall, whose definition is unfolded after transfer
 
huffman 
parents: 
47325 
diff
changeset
 | 
81  | 
|
| 67399 | 82  | 
lemma transfer_start: "\<lbrakk>P; Rel (=) P Q\<rbrakk> \<Longrightarrow> Q"  | 
| 47325 | 83  | 
unfolding Rel_def by simp  | 
84  | 
||
| 67399 | 85  | 
lemma transfer_start': "\<lbrakk>P; Rel (\<longrightarrow>) P Q\<rbrakk> \<Longrightarrow> Q"  | 
| 47325 | 86  | 
unfolding Rel_def by simp  | 
87  | 
||
| 
47635
 
ebb79474262c
rename 'correspondence' method to 'transfer_prover'
 
huffman 
parents: 
47627 
diff
changeset
 | 
88  | 
lemma transfer_prover_start: "\<lbrakk>x = x'; Rel R x' y\<rbrakk> \<Longrightarrow> Rel R x y"  | 
| 
47618
 
1568dadd598a
make correspondence tactic more robust by replacing lhs with schematic variable before applying intro rules
 
huffman 
parents: 
47612 
diff
changeset
 | 
89  | 
by simp  | 
| 
 
1568dadd598a
make correspondence tactic more robust by replacing lhs with schematic variable before applying intro rules
 
huffman 
parents: 
47612 
diff
changeset
 | 
90  | 
|
| 67399 | 91  | 
lemma untransfer_start: "\<lbrakk>Q; Rel (=) P Q\<rbrakk> \<Longrightarrow> P"  | 
| 
52358
 
f4c4bcb0d564
implement 'untransferred' attribute, which is like 'transferred' but works in the opposite direction
 
huffman 
parents: 
52354 
diff
changeset
 | 
92  | 
unfolding Rel_def by simp  | 
| 
 
f4c4bcb0d564
implement 'untransferred' attribute, which is like 'transferred' but works in the opposite direction
 
huffman 
parents: 
52354 
diff
changeset
 | 
93  | 
|
| 67399 | 94  | 
lemma Rel_eq_refl: "Rel (=) x x"  | 
| 47325 | 95  | 
unfolding Rel_def ..  | 
96  | 
||
| 
47789
 
71a526ee569a
implement transfer tactic with more scalable forward proof methods
 
huffman 
parents: 
47684 
diff
changeset
 | 
97  | 
lemma Rel_app:  | 
| 
47523
 
1bf0e92c1ca0
make transfer method more deterministic by using SOLVED' on some subgoals
 
huffman 
parents: 
47503 
diff
changeset
 | 
98  | 
assumes "Rel (A ===> B) f g" and "Rel A x y"  | 
| 
47789
 
71a526ee569a
implement transfer tactic with more scalable forward proof methods
 
huffman 
parents: 
47684 
diff
changeset
 | 
99  | 
shows "Rel B (f x) (g y)"  | 
| 55945 | 100  | 
using assms unfolding Rel_def rel_fun_def by fast  | 
| 
47523
 
1bf0e92c1ca0
make transfer method more deterministic by using SOLVED' on some subgoals
 
huffman 
parents: 
47503 
diff
changeset
 | 
101  | 
|
| 
47789
 
71a526ee569a
implement transfer tactic with more scalable forward proof methods
 
huffman 
parents: 
47684 
diff
changeset
 | 
102  | 
lemma Rel_abs:  | 
| 
47523
 
1bf0e92c1ca0
make transfer method more deterministic by using SOLVED' on some subgoals
 
huffman 
parents: 
47503 
diff
changeset
 | 
103  | 
assumes "\<And>x y. Rel A x y \<Longrightarrow> Rel B (f x) (g y)"  | 
| 
47789
 
71a526ee569a
implement transfer tactic with more scalable forward proof methods
 
huffman 
parents: 
47684 
diff
changeset
 | 
104  | 
shows "Rel (A ===> B) (\<lambda>x. f x) (\<lambda>y. g y)"  | 
| 55945 | 105  | 
using assms unfolding Rel_def rel_fun_def by fast  | 
| 
47523
 
1bf0e92c1ca0
make transfer method more deterministic by using SOLVED' on some subgoals
 
huffman 
parents: 
47503 
diff
changeset
 | 
106  | 
|
| 60758 | 107  | 
subsection \<open>Predicates on relations, i.e. ``class constraints''\<close>  | 
| 47325 | 108  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
109  | 
definition left_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
110  | 
where "left_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y)"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
111  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
112  | 
definition left_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
113  | 
where "left_unique R \<longleftrightarrow> (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
114  | 
|
| 47325 | 115  | 
definition right_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
116  | 
where "right_total R \<longleftrightarrow> (\<forall>y. \<exists>x. R x y)"  | 
|
117  | 
||
118  | 
definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
|
119  | 
where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)"  | 
|
120  | 
||
121  | 
definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
|
122  | 
where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"  | 
|
123  | 
||
124  | 
definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
|
125  | 
where "bi_unique R \<longleftrightarrow>  | 
|
126  | 
(\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and>  | 
|
127  | 
(\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"  | 
|
128  | 
||
| 71827 | 129  | 
lemma left_unique_iff: "left_unique R \<longleftrightarrow> (\<forall>z. \<exists>\<^sub>\<le>\<^sub>1x. R x z)"  | 
130  | 
unfolding Uniq_def left_unique_def by force  | 
|
131  | 
||
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
132  | 
lemma left_uniqueI: "(\<And>x y z. \<lbrakk> A x z; A y z \<rbrakk> \<Longrightarrow> x = y) \<Longrightarrow> left_unique A"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
133  | 
unfolding left_unique_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
134  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
135  | 
lemma left_uniqueD: "\<lbrakk> left_unique A; A x z; A y z \<rbrakk> \<Longrightarrow> x = y"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
136  | 
unfolding left_unique_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
137  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
138  | 
lemma left_totalI:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
139  | 
"(\<And>x. \<exists>y. R x y) \<Longrightarrow> left_total R"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
140  | 
unfolding left_total_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
141  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
142  | 
lemma left_totalE:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
143  | 
assumes "left_total R"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
144  | 
obtains "(\<And>x. \<exists>y. R x y)"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
145  | 
using assms unfolding left_total_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
146  | 
|
| 53927 | 147  | 
lemma bi_uniqueDr: "\<lbrakk> bi_unique A; A x y; A x z \<rbrakk> \<Longrightarrow> y = z"  | 
| 71827 | 148  | 
by(simp add: bi_unique_def)  | 
| 53927 | 149  | 
|
150  | 
lemma bi_uniqueDl: "\<lbrakk> bi_unique A; A x y; A z y \<rbrakk> \<Longrightarrow> x = z"  | 
|
| 71827 | 151  | 
by(simp add: bi_unique_def)  | 
152  | 
||
153  | 
lemma bi_unique_iff: "bi_unique R \<longleftrightarrow> (\<forall>z. \<exists>\<^sub>\<le>\<^sub>1x. R x z) \<and> (\<forall>z. \<exists>\<^sub>\<le>\<^sub>1x. R z x)"  | 
|
154  | 
unfolding Uniq_def bi_unique_def by force  | 
|
155  | 
||
156  | 
lemma right_unique_iff: "right_unique R \<longleftrightarrow> (\<forall>z. \<exists>\<^sub>\<le>\<^sub>1x. R z x)"  | 
|
157  | 
unfolding Uniq_def right_unique_def by force  | 
|
| 53927 | 158  | 
|
159  | 
lemma right_uniqueI: "(\<And>x y z. \<lbrakk> A x y; A x z \<rbrakk> \<Longrightarrow> y = z) \<Longrightarrow> right_unique A"  | 
|
| 56085 | 160  | 
unfolding right_unique_def by fast  | 
| 53927 | 161  | 
|
162  | 
lemma right_uniqueD: "\<lbrakk> right_unique A; A x y; A x z \<rbrakk> \<Longrightarrow> y = z"  | 
|
| 56085 | 163  | 
unfolding right_unique_def by fast  | 
| 53927 | 164  | 
|
| 
59514
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
165  | 
lemma right_totalI: "(\<And>y. \<exists>x. A x y) \<Longrightarrow> right_total A"  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
166  | 
by(simp add: right_total_def)  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
167  | 
|
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
168  | 
lemma right_totalE:  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
169  | 
assumes "right_total A"  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
170  | 
obtains x where "A x y"  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
171  | 
using assms by(auto simp add: right_total_def)  | 
| 
 
509caf5edfa6
add intro and elim rules for right_total
 
Andreas Lochbihler 
parents: 
59276 
diff
changeset
 | 
172  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
173  | 
lemma right_total_alt_def2:  | 
| 71697 | 174  | 
"right_total R \<longleftrightarrow> ((R ===> (\<longrightarrow>)) ===> (\<longrightarrow>)) All All" (is "?lhs = ?rhs")  | 
175  | 
proof  | 
|
176  | 
assume ?lhs then show ?rhs  | 
|
177  | 
unfolding right_total_def rel_fun_def by blast  | 
|
178  | 
next  | 
|
179  | 
assume \<section>: ?rhs  | 
|
180  | 
show ?lhs  | 
|
181  | 
using \<section> [unfolded rel_fun_def, rule_format, of "\<lambda>x. True" "\<lambda>y. \<exists>x. R x y"]  | 
|
182  | 
unfolding right_total_def by blast  | 
|
183  | 
qed  | 
|
| 47325 | 184  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
185  | 
lemma right_unique_alt_def2:  | 
| 67399 | 186  | 
"right_unique R \<longleftrightarrow> (R ===> R ===> (\<longrightarrow>)) (=) (=)"  | 
| 55945 | 187  | 
unfolding right_unique_def rel_fun_def by auto  | 
| 47325 | 188  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
189  | 
lemma bi_total_alt_def2:  | 
| 71697 | 190  | 
"bi_total R \<longleftrightarrow> ((R ===> (=)) ===> (=)) All All" (is "?lhs = ?rhs")  | 
191  | 
proof  | 
|
192  | 
assume ?lhs then show ?rhs  | 
|
193  | 
unfolding bi_total_def rel_fun_def by blast  | 
|
194  | 
next  | 
|
195  | 
assume \<section>: ?rhs  | 
|
196  | 
show ?lhs  | 
|
197  | 
using \<section> [unfolded rel_fun_def, rule_format, of "\<lambda>x. \<exists>y. R x y" "\<lambda>y. True"]  | 
|
198  | 
using \<section> [unfolded rel_fun_def, rule_format, of "\<lambda>x. True" "\<lambda>y. \<exists>x. R x y"]  | 
|
199  | 
by (auto simp: bi_total_def)  | 
|
200  | 
qed  | 
|
| 47325 | 201  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
202  | 
lemma bi_unique_alt_def2:  | 
| 67399 | 203  | 
"bi_unique R \<longleftrightarrow> (R ===> R ===> (=)) (=) (=)"  | 
| 55945 | 204  | 
unfolding bi_unique_def rel_fun_def by auto  | 
| 47325 | 205  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
206  | 
lemma [simp]:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
207  | 
shows left_unique_conversep: "left_unique A\<inverse>\<inverse> \<longleftrightarrow> right_unique A"  | 
| 71697 | 208  | 
and right_unique_conversep: "right_unique A\<inverse>\<inverse> \<longleftrightarrow> left_unique A"  | 
209  | 
by(auto simp add: left_unique_def right_unique_def)  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
210  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
211  | 
lemma [simp]:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
212  | 
shows left_total_conversep: "left_total A\<inverse>\<inverse> \<longleftrightarrow> right_total A"  | 
| 71697 | 213  | 
and right_total_conversep: "right_total A\<inverse>\<inverse> \<longleftrightarrow> left_total A"  | 
214  | 
by(simp_all add: left_total_def right_total_def)  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
215  | 
|
| 53944 | 216  | 
lemma bi_unique_conversep [simp]: "bi_unique R\<inverse>\<inverse> = bi_unique R"  | 
| 71697 | 217  | 
by(auto simp add: bi_unique_def)  | 
| 53944 | 218  | 
|
219  | 
lemma bi_total_conversep [simp]: "bi_total R\<inverse>\<inverse> = bi_total R"  | 
|
| 71697 | 220  | 
by(auto simp add: bi_total_def)  | 
| 53944 | 221  | 
|
| 67399 | 222  | 
lemma right_unique_alt_def: "right_unique R = (conversep R OO R \<le> (=))" unfolding right_unique_def by blast  | 
223  | 
lemma left_unique_alt_def: "left_unique R = (R OO (conversep R) \<le> (=))" unfolding left_unique_def by blast  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
224  | 
|
| 67399 | 225  | 
lemma right_total_alt_def: "right_total R = (conversep R OO R \<ge> (=))" unfolding right_total_def by blast  | 
226  | 
lemma left_total_alt_def: "left_total R = (R OO conversep R \<ge> (=))" unfolding left_total_def by blast  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
227  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
228  | 
lemma bi_total_alt_def: "bi_total A = (left_total A \<and> right_total A)"  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
229  | 
unfolding left_total_def right_total_def bi_total_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
230  | 
|
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
231  | 
lemma bi_unique_alt_def: "bi_unique A = (left_unique A \<and> right_unique A)"  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
232  | 
unfolding left_unique_def right_unique_def bi_unique_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
233  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
234  | 
lemma bi_totalI: "left_total R \<Longrightarrow> right_total R \<Longrightarrow> bi_total R"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
235  | 
unfolding bi_total_alt_def ..  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
236  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
237  | 
lemma bi_uniqueI: "left_unique R \<Longrightarrow> right_unique R \<Longrightarrow> bi_unique R"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
238  | 
unfolding bi_unique_alt_def ..  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
239  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
240  | 
end  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
241  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
242  | 
|
| 70491 | 243  | 
lemma is_equality_lemma: "(\<And>R. is_equality R \<Longrightarrow> PROP (P R)) \<equiv> PROP (P (=))"  | 
| 71697 | 244  | 
unfolding is_equality_def  | 
245  | 
proof (rule equal_intr_rule)  | 
|
246  | 
show "(\<And>R. R = (=) \<Longrightarrow> PROP P R) \<Longrightarrow> PROP P (=)"  | 
|
247  | 
apply (drule meta_spec)  | 
|
248  | 
apply (erule meta_mp [OF _ refl])  | 
|
249  | 
done  | 
|
250  | 
qed simp  | 
|
| 70491 | 251  | 
|
252  | 
lemma Domainp_lemma: "(\<And>R. Domainp T = R \<Longrightarrow> PROP (P R)) \<equiv> PROP (P (Domainp T))"  | 
|
| 71697 | 253  | 
proof (rule equal_intr_rule)  | 
254  | 
show "(\<And>R. Domainp T = R \<Longrightarrow> PROP P R) \<Longrightarrow> PROP P (Domainp T)"  | 
|
255  | 
apply (drule meta_spec)  | 
|
256  | 
apply (erule meta_mp [OF _ refl])  | 
|
257  | 
done  | 
|
258  | 
qed simp  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
259  | 
|
| 69605 | 260  | 
ML_file \<open>Tools/Transfer/transfer.ML\<close>  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
261  | 
declare refl [transfer_rule]  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
262  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
263  | 
hide_const (open) Rel  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
264  | 
|
| 63343 | 265  | 
context includes lifting_syntax  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
266  | 
begin  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
267  | 
|
| 60758 | 268  | 
text \<open>Handling of domains\<close>  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
269  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
270  | 
lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
271  | 
by auto  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
272  | 
|
| 58386 | 273  | 
lemma Domainp_refl[transfer_domain_rule]:  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
274  | 
"Domainp T = Domainp T" ..  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
275  | 
|
| 67399 | 276  | 
lemma Domain_eq_top[transfer_domain_rule]: "Domainp (=) = top" by auto  | 
| 
60229
 
4cd6462c1fda
Workaround that allows us to execute lifted constants that have as a return type a datatype containing a subtype
 
kuncar 
parents: 
59523 
diff
changeset
 | 
277  | 
|
| 
64425
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
278  | 
lemma Domainp_pred_fun_eq[relator_domain]:  | 
| 
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
279  | 
assumes "left_unique T"  | 
| 71697 | 280  | 
shows "Domainp (T ===> S) = pred_fun (Domainp T) (Domainp S)" (is "?lhs = ?rhs")  | 
281  | 
proof (intro ext iffI)  | 
|
282  | 
fix x  | 
|
283  | 
assume "?lhs x"  | 
|
284  | 
then show "?rhs x"  | 
|
285  | 
using assms unfolding rel_fun_def pred_fun_def by blast  | 
|
286  | 
next  | 
|
287  | 
fix x  | 
|
288  | 
assume "?rhs x"  | 
|
289  | 
then have "\<exists>g. \<forall>y xa. T xa y \<longrightarrow> S (x xa) (g y)"  | 
|
290  | 
using assms unfolding Domainp_iff left_unique_def pred_fun_def  | 
|
291  | 
by (intro choice) blast  | 
|
292  | 
then show "?lhs x"  | 
|
293  | 
by blast  | 
|
294  | 
qed  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
295  | 
|
| 60758 | 296  | 
text \<open>Properties are preserved by relation composition.\<close>  | 
| 47660 | 297  | 
|
298  | 
lemma OO_def: "R OO S = (\<lambda>x z. \<exists>y. R x y \<and> S y z)"  | 
|
299  | 
by auto  | 
|
300  | 
||
301  | 
lemma bi_total_OO: "\<lbrakk>bi_total A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A OO B)"  | 
|
| 56085 | 302  | 
unfolding bi_total_def OO_def by fast  | 
| 47660 | 303  | 
|
304  | 
lemma bi_unique_OO: "\<lbrakk>bi_unique A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A OO B)"  | 
|
| 56085 | 305  | 
unfolding bi_unique_def OO_def by blast  | 
| 47660 | 306  | 
|
307  | 
lemma right_total_OO:  | 
|
308  | 
"\<lbrakk>right_total A; right_total B\<rbrakk> \<Longrightarrow> right_total (A OO B)"  | 
|
| 56085 | 309  | 
unfolding right_total_def OO_def by fast  | 
| 47660 | 310  | 
|
311  | 
lemma right_unique_OO:  | 
|
312  | 
"\<lbrakk>right_unique A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A OO B)"  | 
|
| 56085 | 313  | 
unfolding right_unique_def OO_def by fast  | 
| 47660 | 314  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
315  | 
lemma left_total_OO: "left_total R \<Longrightarrow> left_total S \<Longrightarrow> left_total (R OO S)"  | 
| 71697 | 316  | 
unfolding left_total_def OO_def by fast  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
317  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
318  | 
lemma left_unique_OO: "left_unique R \<Longrightarrow> left_unique S \<Longrightarrow> left_unique (R OO S)"  | 
| 71697 | 319  | 
unfolding left_unique_def OO_def by blast  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
320  | 
|
| 47325 | 321  | 
|
| 60758 | 322  | 
subsection \<open>Properties of relators\<close>  | 
| 47325 | 323  | 
|
| 67399 | 324  | 
lemma left_total_eq[transfer_rule]: "left_total (=)"  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
325  | 
unfolding left_total_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
326  | 
|
| 67399 | 327  | 
lemma left_unique_eq[transfer_rule]: "left_unique (=)"  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
328  | 
unfolding left_unique_def by blast  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
329  | 
|
| 67399 | 330  | 
lemma right_total_eq [transfer_rule]: "right_total (=)"  | 
| 47325 | 331  | 
unfolding right_total_def by simp  | 
332  | 
||
| 67399 | 333  | 
lemma right_unique_eq [transfer_rule]: "right_unique (=)"  | 
| 47325 | 334  | 
unfolding right_unique_def by simp  | 
335  | 
||
| 67399 | 336  | 
lemma bi_total_eq[transfer_rule]: "bi_total (=)"  | 
| 47325 | 337  | 
unfolding bi_total_def by simp  | 
338  | 
||
| 67399 | 339  | 
lemma bi_unique_eq[transfer_rule]: "bi_unique (=)"  | 
| 47325 | 340  | 
unfolding bi_unique_def by simp  | 
341  | 
||
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
342  | 
lemma left_total_fun[transfer_rule]:  | 
| 71697 | 343  | 
assumes "left_unique A" "left_total B"  | 
344  | 
shows "left_total (A ===> B)"  | 
|
345  | 
unfolding left_total_def  | 
|
346  | 
proof  | 
|
347  | 
fix f  | 
|
348  | 
show "Ex ((A ===> B) f)"  | 
|
349  | 
unfolding rel_fun_def  | 
|
350  | 
proof (intro exI strip)  | 
|
351  | 
fix x y  | 
|
352  | 
assume A: "A x y"  | 
|
353  | 
have "(THE x. A x y) = x"  | 
|
354  | 
using A assms by (simp add: left_unique_def the_equality)  | 
|
355  | 
then show "B (f x) (SOME z. B (f (THE x. A x y)) z)"  | 
|
356  | 
using assms by (force simp: left_total_def intro: someI_ex)  | 
|
357  | 
qed  | 
|
358  | 
qed  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
359  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
360  | 
lemma left_unique_fun[transfer_rule]:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
361  | 
"\<lbrakk>left_total A; left_unique B\<rbrakk> \<Longrightarrow> left_unique (A ===> B)"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
362  | 
unfolding left_total_def left_unique_def rel_fun_def  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
363  | 
by (clarify, rule ext, fast)  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
364  | 
|
| 47325 | 365  | 
lemma right_total_fun [transfer_rule]:  | 
| 71697 | 366  | 
assumes "right_unique A" "right_total B"  | 
367  | 
shows "right_total (A ===> B)"  | 
|
368  | 
unfolding right_total_def  | 
|
369  | 
proof  | 
|
370  | 
fix g  | 
|
371  | 
show "\<exists>x. (A ===> B) x g"  | 
|
372  | 
unfolding rel_fun_def  | 
|
373  | 
proof (intro exI strip)  | 
|
374  | 
fix x y  | 
|
375  | 
assume A: "A x y"  | 
|
376  | 
have "(THE y. A x y) = y"  | 
|
377  | 
using A assms by (simp add: right_unique_def the_equality)  | 
|
378  | 
then show "B (SOME z. B z (g (THE y. A x y))) (g y)"  | 
|
379  | 
using assms by (force simp: right_total_def intro: someI_ex)  | 
|
380  | 
qed  | 
|
381  | 
qed  | 
|
| 47325 | 382  | 
|
383  | 
lemma right_unique_fun [transfer_rule]:  | 
|
384  | 
"\<lbrakk>right_total A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A ===> B)"  | 
|
| 55945 | 385  | 
unfolding right_total_def right_unique_def rel_fun_def  | 
| 47325 | 386  | 
by (clarify, rule ext, fast)  | 
387  | 
||
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
388  | 
lemma bi_total_fun[transfer_rule]:  | 
| 47325 | 389  | 
"\<lbrakk>bi_unique A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A ===> B)"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
390  | 
unfolding bi_unique_alt_def bi_total_alt_def  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
391  | 
by (blast intro: right_total_fun left_total_fun)  | 
| 47325 | 392  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
393  | 
lemma bi_unique_fun[transfer_rule]:  | 
| 47325 | 394  | 
"\<lbrakk>bi_total A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A ===> B)"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
395  | 
unfolding bi_unique_alt_def bi_total_alt_def  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
396  | 
by (blast intro: right_unique_fun left_unique_fun)  | 
| 47325 | 397  | 
|
| 
56543
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
398  | 
end  | 
| 
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
399  | 
|
| 
59275
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
400  | 
lemma if_conn:  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
401  | 
"(if P \<and> Q then t else e) = (if P then if Q then t else e else e)"  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
402  | 
"(if P \<or> Q then t else e) = (if P then t else if Q then t else e)"  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
403  | 
"(if P \<longrightarrow> Q then t else e) = (if P then if Q then t else e else t)"  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
404  | 
"(if \<not> P then t else e) = (if P then e else t)"  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
405  | 
by auto  | 
| 
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
406  | 
|
| 69605 | 407  | 
ML_file \<open>Tools/Transfer/transfer_bnf.ML\<close>  | 
408  | 
ML_file \<open>Tools/BNF/bnf_fp_rec_sugar_transfer.ML\<close>  | 
|
| 
59275
 
77cd4992edcd
Add plugin to generate transfer theorem for primrec and primcorec
 
desharna 
parents: 
59141 
diff
changeset
 | 
409  | 
|
| 
56543
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
410  | 
declare pred_fun_def [simp]  | 
| 
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
411  | 
declare rel_fun_eq [relator_eq]  | 
| 
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
412  | 
|
| 
64425
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
413  | 
(* Delete the automated generated rule from the bnf command;  | 
| 
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
414  | 
we have a more general rule (Domainp_pred_fun_eq) that subsumes it. *)  | 
| 
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
415  | 
declare fun.Domainp_rel[relator_domain del]  | 
| 
 
b17acc1834e3
a more general relator domain rule for the function type
 
kuncar 
parents: 
64014 
diff
changeset
 | 
416  | 
|
| 60758 | 417  | 
subsection \<open>Transfer rules\<close>  | 
| 47325 | 418  | 
|
| 63343 | 419  | 
context includes lifting_syntax  | 
| 
56543
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
420  | 
begin  | 
| 
 
9bd56f2e4c10
bi_unique and co. rules from the BNF hook must be introduced after bi_unique op= and co. rules are introduced
 
kuncar 
parents: 
56524 
diff
changeset
 | 
421  | 
|
| 53952 | 422  | 
lemma Domainp_forall_transfer [transfer_rule]:  | 
423  | 
assumes "right_total A"  | 
|
| 67399 | 424  | 
shows "((A ===> (=)) ===> (=))  | 
| 53952 | 425  | 
(transfer_bforall (Domainp A)) transfer_forall"  | 
426  | 
using assms unfolding right_total_def  | 
|
| 55945 | 427  | 
unfolding transfer_forall_def transfer_bforall_def rel_fun_def Domainp_iff  | 
| 56085 | 428  | 
by fast  | 
| 53952 | 429  | 
|
| 60758 | 430  | 
text \<open>Transfer rules using implication instead of equality on booleans.\<close>  | 
| 47684 | 431  | 
|
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
432  | 
lemma transfer_forall_transfer [transfer_rule]:  | 
| 67399 | 433  | 
"bi_total A \<Longrightarrow> ((A ===> (=)) ===> (=)) transfer_forall transfer_forall"  | 
434  | 
"right_total A \<Longrightarrow> ((A ===> (=)) ===> implies) transfer_forall transfer_forall"  | 
|
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
435  | 
"right_total A \<Longrightarrow> ((A ===> implies) ===> implies) transfer_forall transfer_forall"  | 
| 67399 | 436  | 
"bi_total A \<Longrightarrow> ((A ===> (=)) ===> rev_implies) transfer_forall transfer_forall"  | 
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
437  | 
"bi_total A \<Longrightarrow> ((A ===> rev_implies) ===> rev_implies) transfer_forall transfer_forall"  | 
| 55945 | 438  | 
unfolding transfer_forall_def rev_implies_def rel_fun_def right_total_def bi_total_def  | 
| 56085 | 439  | 
by fast+  | 
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
440  | 
|
| 
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
441  | 
lemma transfer_implies_transfer [transfer_rule]:  | 
| 67399 | 442  | 
"((=) ===> (=) ===> (=) ) transfer_implies transfer_implies"  | 
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
443  | 
"(rev_implies ===> implies ===> implies ) transfer_implies transfer_implies"  | 
| 67399 | 444  | 
"(rev_implies ===> (=) ===> implies ) transfer_implies transfer_implies"  | 
445  | 
"((=) ===> implies ===> implies ) transfer_implies transfer_implies"  | 
|
446  | 
"((=) ===> (=) ===> implies ) transfer_implies transfer_implies"  | 
|
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
447  | 
"(implies ===> rev_implies ===> rev_implies) transfer_implies transfer_implies"  | 
| 67399 | 448  | 
"(implies ===> (=) ===> rev_implies) transfer_implies transfer_implies"  | 
449  | 
"((=) ===> rev_implies ===> rev_implies) transfer_implies transfer_implies"  | 
|
450  | 
"((=) ===> (=) ===> rev_implies) transfer_implies transfer_implies"  | 
|
| 55945 | 451  | 
unfolding transfer_implies_def rev_implies_def rel_fun_def by auto  | 
| 
52354
 
acb4f932dd24
implement 'transferred' attribute for transfer package, with support for monotonicity of !!/==>
 
huffman 
parents: 
51956 
diff
changeset
 | 
452  | 
|
| 47684 | 453  | 
lemma eq_imp_transfer [transfer_rule]:  | 
| 67399 | 454  | 
"right_unique A \<Longrightarrow> (A ===> A ===> (\<longrightarrow>)) (=) (=)"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
455  | 
unfolding right_unique_alt_def2 .  | 
| 47684 | 456  | 
|
| 60758 | 457  | 
text \<open>Transfer rules using equality.\<close>  | 
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
458  | 
|
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
459  | 
lemma left_unique_transfer [transfer_rule]:  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
460  | 
assumes "right_total A"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
461  | 
assumes "right_total B"  | 
| 
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
462  | 
assumes "bi_unique A"  | 
| 67399 | 463  | 
shows "((A ===> B ===> (=)) ===> implies) left_unique left_unique"  | 
| 71697 | 464  | 
using assms unfolding left_unique_def right_total_def bi_unique_def rel_fun_def  | 
465  | 
by metis  | 
|
| 
56518
 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 
kuncar 
parents: 
56085 
diff
changeset
 | 
466  | 
|
| 47636 | 467  | 
lemma eq_transfer [transfer_rule]:  | 
| 47325 | 468  | 
assumes "bi_unique A"  | 
| 67399 | 469  | 
shows "(A ===> A ===> (=)) (=) (=)"  | 
| 55945 | 470  | 
using assms unfolding bi_unique_def rel_fun_def by auto  | 
| 47325 | 471  | 
|
| 
51956
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
472  | 
lemma right_total_Ex_transfer[transfer_rule]:  | 
| 
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
473  | 
assumes "right_total A"  | 
| 67399 | 474  | 
shows "((A ===> (=)) ===> (=)) (Bex (Collect (Domainp A))) Ex"  | 
| 71697 | 475  | 
using assms unfolding right_total_def Bex_def rel_fun_def Domainp_iff  | 
476  | 
by fast  | 
|
| 
51956
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
477  | 
|
| 
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
478  | 
lemma right_total_All_transfer[transfer_rule]:  | 
| 
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
479  | 
assumes "right_total A"  | 
| 67399 | 480  | 
shows "((A ===> (=)) ===> (=)) (Ball (Collect (Domainp A))) All"  | 
| 71697 | 481  | 
using assms unfolding right_total_def Ball_def rel_fun_def Domainp_iff  | 
482  | 
by fast  | 
|
| 
51956
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51955 
diff
changeset
 | 
483  | 
|
| 70927 | 484  | 
context  | 
485  | 
includes lifting_syntax  | 
|
486  | 
begin  | 
|
487  | 
||
| 68521 | 488  | 
lemma right_total_fun_eq_transfer:  | 
489  | 
assumes [transfer_rule]: "right_total A" "bi_unique B"  | 
|
490  | 
shows "((A ===> B) ===> (A ===> B) ===> (=)) (\<lambda>f g. \<forall>x\<in>Collect(Domainp A). f x = g x) (=)"  | 
|
491  | 
unfolding fun_eq_iff  | 
|
492  | 
by transfer_prover  | 
|
493  | 
||
| 70927 | 494  | 
end  | 
495  | 
||
| 47636 | 496  | 
lemma All_transfer [transfer_rule]:  | 
| 47325 | 497  | 
assumes "bi_total A"  | 
| 67399 | 498  | 
shows "((A ===> (=)) ===> (=)) All All"  | 
| 55945 | 499  | 
using assms unfolding bi_total_def rel_fun_def by fast  | 
| 47325 | 500  | 
|
| 47636 | 501  | 
lemma Ex_transfer [transfer_rule]:  | 
| 47325 | 502  | 
assumes "bi_total A"  | 
| 67399 | 503  | 
shows "((A ===> (=)) ===> (=)) Ex Ex"  | 
| 55945 | 504  | 
using assms unfolding bi_total_def rel_fun_def by fast  | 
| 47325 | 505  | 
|
| 59515 | 506  | 
lemma Ex1_parametric [transfer_rule]:  | 
507  | 
assumes [transfer_rule]: "bi_unique A" "bi_total A"  | 
|
| 67399 | 508  | 
shows "((A ===> (=)) ===> (=)) Ex1 Ex1"  | 
| 71697 | 509  | 
unfolding Ex1_def by transfer_prover  | 
| 59515 | 510  | 
|
| 58448 | 511  | 
declare If_transfer [transfer_rule]  | 
| 47325 | 512  | 
|
| 47636 | 513  | 
lemma Let_transfer [transfer_rule]: "(A ===> (A ===> B) ===> B) Let Let"  | 
| 55945 | 514  | 
unfolding rel_fun_def by simp  | 
| 47612 | 515  | 
|
| 58916 | 516  | 
declare id_transfer [transfer_rule]  | 
| 47625 | 517  | 
|
| 58444 | 518  | 
declare comp_transfer [transfer_rule]  | 
| 47325 | 519  | 
|
| 58916 | 520  | 
lemma curry_transfer [transfer_rule]:  | 
521  | 
"((rel_prod A B ===> C) ===> A ===> B ===> C) curry curry"  | 
|
522  | 
unfolding curry_def by transfer_prover  | 
|
523  | 
||
| 47636 | 524  | 
lemma fun_upd_transfer [transfer_rule]:  | 
| 47325 | 525  | 
assumes [transfer_rule]: "bi_unique A"  | 
526  | 
shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd"  | 
|
| 71697 | 527  | 
unfolding fun_upd_def by transfer_prover  | 
| 47325 | 528  | 
|
| 55415 | 529  | 
lemma case_nat_transfer [transfer_rule]:  | 
| 67399 | 530  | 
"(A ===> ((=) ===> A) ===> (=) ===> A) case_nat case_nat"  | 
| 55945 | 531  | 
unfolding rel_fun_def by (simp split: nat.split)  | 
| 
47627
 
2b1d3eda59eb
add secondary transfer rule for universal quantifiers on non-bi-total relations
 
huffman 
parents: 
47625 
diff
changeset
 | 
532  | 
|
| 55415 | 533  | 
lemma rec_nat_transfer [transfer_rule]:  | 
| 67399 | 534  | 
"(A ===> ((=) ===> A ===> A) ===> (=) ===> A) rec_nat rec_nat"  | 
| 55945 | 535  | 
unfolding rel_fun_def by (clarsimp, rename_tac n, induct_tac n, simp_all)  | 
| 47924 | 536  | 
|
537  | 
lemma funpow_transfer [transfer_rule]:  | 
|
| 67399 | 538  | 
"((=) ===> (A ===> A) ===> (A ===> A)) compow compow"  | 
| 47924 | 539  | 
unfolding funpow_def by transfer_prover  | 
540  | 
||
| 53952 | 541  | 
lemma mono_transfer[transfer_rule]:  | 
542  | 
assumes [transfer_rule]: "bi_total A"  | 
|
| 67399 | 543  | 
assumes [transfer_rule]: "(A ===> A ===> (=)) (\<le>) (\<le>)"  | 
544  | 
assumes [transfer_rule]: "(B ===> B ===> (=)) (\<le>) (\<le>)"  | 
|
545  | 
shows "((A ===> B) ===> (=)) mono mono"  | 
|
| 71697 | 546  | 
unfolding mono_def by transfer_prover  | 
| 53952 | 547  | 
|
| 58182 | 548  | 
lemma right_total_relcompp_transfer[transfer_rule]:  | 
| 53952 | 549  | 
assumes [transfer_rule]: "right_total B"  | 
| 67399 | 550  | 
shows "((A ===> B ===> (=)) ===> (B ===> C ===> (=)) ===> A ===> C ===> (=))  | 
551  | 
(\<lambda>R S x z. \<exists>y\<in>Collect (Domainp B). R x y \<and> S y z) (OO)"  | 
|
| 71697 | 552  | 
unfolding OO_def by transfer_prover  | 
| 53952 | 553  | 
|
| 58182 | 554  | 
lemma relcompp_transfer[transfer_rule]:  | 
| 53952 | 555  | 
assumes [transfer_rule]: "bi_total B"  | 
| 67399 | 556  | 
shows "((A ===> B ===> (=)) ===> (B ===> C ===> (=)) ===> A ===> C ===> (=)) (OO) (OO)"  | 
| 71697 | 557  | 
unfolding OO_def by transfer_prover  | 
| 
47627
 
2b1d3eda59eb
add secondary transfer rule for universal quantifiers on non-bi-total relations
 
huffman 
parents: 
47625 
diff
changeset
 | 
558  | 
|
| 53952 | 559  | 
lemma right_total_Domainp_transfer[transfer_rule]:  | 
560  | 
assumes [transfer_rule]: "right_total B"  | 
|
| 67399 | 561  | 
shows "((A ===> B ===> (=)) ===> A ===> (=)) (\<lambda>T x. \<exists>y\<in>Collect(Domainp B). T x y) Domainp"  | 
| 53952 | 562  | 
apply(subst(2) Domainp_iff[abs_def]) by transfer_prover  | 
563  | 
||
564  | 
lemma Domainp_transfer[transfer_rule]:  | 
|
565  | 
assumes [transfer_rule]: "bi_total B"  | 
|
| 67399 | 566  | 
shows "((A ===> B ===> (=)) ===> A ===> (=)) Domainp Domainp"  | 
| 71697 | 567  | 
unfolding Domainp_iff by transfer_prover  | 
| 53952 | 568  | 
|
| 58182 | 569  | 
lemma reflp_transfer[transfer_rule]:  | 
| 67399 | 570  | 
"bi_total A \<Longrightarrow> ((A ===> A ===> (=)) ===> (=)) reflp reflp"  | 
| 53952 | 571  | 
"right_total A \<Longrightarrow> ((A ===> A ===> implies) ===> implies) reflp reflp"  | 
| 67399 | 572  | 
"right_total A \<Longrightarrow> ((A ===> A ===> (=)) ===> implies) reflp reflp"  | 
| 53952 | 573  | 
"bi_total A \<Longrightarrow> ((A ===> A ===> rev_implies) ===> rev_implies) reflp reflp"  | 
| 67399 | 574  | 
"bi_total A \<Longrightarrow> ((A ===> A ===> (=)) ===> rev_implies) reflp reflp"  | 
| 71697 | 575  | 
unfolding reflp_def rev_implies_def bi_total_def right_total_def rel_fun_def  | 
| 53952 | 576  | 
by fast+  | 
577  | 
||
578  | 
lemma right_unique_transfer [transfer_rule]:  | 
|
| 59523 | 579  | 
"\<lbrakk> right_total A; right_total B; bi_unique B \<rbrakk>  | 
| 67399 | 580  | 
\<Longrightarrow> ((A ===> B ===> (=)) ===> implies) right_unique right_unique"  | 
| 71697 | 581  | 
unfolding right_unique_def right_total_def bi_unique_def rel_fun_def  | 
| 53952 | 582  | 
by metis  | 
| 47325 | 583  | 
|
| 59523 | 584  | 
lemma left_total_parametric [transfer_rule]:  | 
585  | 
assumes [transfer_rule]: "bi_total A" "bi_total B"  | 
|
| 67399 | 586  | 
shows "((A ===> B ===> (=)) ===> (=)) left_total left_total"  | 
| 71697 | 587  | 
unfolding left_total_def by transfer_prover  | 
| 59523 | 588  | 
|
589  | 
lemma right_total_parametric [transfer_rule]:  | 
|
590  | 
assumes [transfer_rule]: "bi_total A" "bi_total B"  | 
|
| 67399 | 591  | 
shows "((A ===> B ===> (=)) ===> (=)) right_total right_total"  | 
| 71697 | 592  | 
unfolding right_total_def by transfer_prover  | 
| 59523 | 593  | 
|
594  | 
lemma left_unique_parametric [transfer_rule]:  | 
|
595  | 
assumes [transfer_rule]: "bi_unique A" "bi_total A" "bi_total B"  | 
|
| 67399 | 596  | 
shows "((A ===> B ===> (=)) ===> (=)) left_unique left_unique"  | 
| 71697 | 597  | 
unfolding left_unique_def by transfer_prover  | 
| 59523 | 598  | 
|
599  | 
lemma prod_pred_parametric [transfer_rule]:  | 
|
| 67399 | 600  | 
"((A ===> (=)) ===> (B ===> (=)) ===> rel_prod A B ===> (=)) pred_prod pred_prod"  | 
| 71697 | 601  | 
unfolding prod.pred_set Basic_BNFs.fsts_def Basic_BNFs.snds_def fstsp.simps sndsp.simps  | 
| 59523 | 602  | 
by simp transfer_prover  | 
603  | 
||
604  | 
lemma apfst_parametric [transfer_rule]:  | 
|
605  | 
"((A ===> B) ===> rel_prod A C ===> rel_prod B C) apfst apfst"  | 
|
| 71697 | 606  | 
unfolding apfst_def by transfer_prover  | 
| 59523 | 607  | 
|
| 67399 | 608  | 
lemma rel_fun_eq_eq_onp: "((=) ===> eq_onp P) = eq_onp (\<lambda>f. \<forall>x. P(f x))"  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
609  | 
unfolding eq_onp_def rel_fun_def by auto  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
610  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
611  | 
lemma rel_fun_eq_onp_rel:  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
612  | 
shows "((eq_onp R) ===> S) = (\<lambda>f g. \<forall>x. R x \<longrightarrow> S (f x) (g x))"  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
613  | 
by (auto simp add: eq_onp_def rel_fun_def)  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
614  | 
|
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
615  | 
lemma eq_onp_transfer [transfer_rule]:  | 
| 
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
616  | 
assumes [transfer_rule]: "bi_unique A"  | 
| 67399 | 617  | 
shows "((A ===> (=)) ===> A ===> A ===> (=)) eq_onp eq_onp"  | 
| 71697 | 618  | 
unfolding eq_onp_def by transfer_prover  | 
| 
56524
 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 
kuncar 
parents: 
56520 
diff
changeset
 | 
619  | 
|
| 57599 | 620  | 
lemma rtranclp_parametric [transfer_rule]:  | 
621  | 
assumes "bi_unique A" "bi_total A"  | 
|
| 67399 | 622  | 
shows "((A ===> A ===> (=)) ===> A ===> A ===> (=)) rtranclp rtranclp"  | 
| 57599 | 623  | 
proof(rule rel_funI iffI)+  | 
624  | 
fix R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and R' x y x' y'  | 
|
| 67399 | 625  | 
assume R: "(A ===> A ===> (=)) R R'" and "A x x'"  | 
| 57599 | 626  | 
  {
 | 
627  | 
assume "R\<^sup>*\<^sup>* x y" "A y y'"  | 
|
628  | 
thus "R'\<^sup>*\<^sup>* x' y'"  | 
|
629  | 
proof(induction arbitrary: y')  | 
|
630  | 
case base  | 
|
| 60758 | 631  | 
with \<open>bi_unique A\<close> \<open>A x x'\<close> have "x' = y'" by(rule bi_uniqueDr)  | 
| 57599 | 632  | 
thus ?case by simp  | 
633  | 
next  | 
|
634  | 
case (step y z z')  | 
|
| 60758 | 635  | 
from \<open>bi_total A\<close> obtain y' where "A y y'" unfolding bi_total_def by blast  | 
| 57599 | 636  | 
hence "R'\<^sup>*\<^sup>* x' y'" by(rule step.IH)  | 
| 60758 | 637  | 
moreover from R \<open>A y y'\<close> \<open>A z z'\<close> \<open>R y z\<close>  | 
| 57599 | 638  | 
have "R' y' z'" by(auto dest: rel_funD)  | 
639  | 
ultimately show ?case ..  | 
|
640  | 
qed  | 
|
641  | 
next  | 
|
642  | 
assume "R'\<^sup>*\<^sup>* x' y'" "A y y'"  | 
|
643  | 
thus "R\<^sup>*\<^sup>* x y"  | 
|
644  | 
proof(induction arbitrary: y)  | 
|
645  | 
case base  | 
|
| 60758 | 646  | 
with \<open>bi_unique A\<close> \<open>A x x'\<close> have "x = y" by(rule bi_uniqueDl)  | 
| 57599 | 647  | 
thus ?case by simp  | 
648  | 
next  | 
|
649  | 
case (step y' z' z)  | 
|
| 60758 | 650  | 
from \<open>bi_total A\<close> obtain y where "A y y'" unfolding bi_total_def by blast  | 
| 57599 | 651  | 
hence "R\<^sup>*\<^sup>* x y" by(rule step.IH)  | 
| 60758 | 652  | 
moreover from R \<open>A y y'\<close> \<open>A z z'\<close> \<open>R' y' z'\<close>  | 
| 57599 | 653  | 
have "R y z" by(auto dest: rel_funD)  | 
654  | 
ultimately show ?case ..  | 
|
655  | 
qed  | 
|
656  | 
}  | 
|
657  | 
qed  | 
|
658  | 
||
| 59523 | 659  | 
lemma right_unique_parametric [transfer_rule]:  | 
660  | 
assumes [transfer_rule]: "bi_total A" "bi_unique B" "bi_total B"  | 
|
| 67399 | 661  | 
shows "((A ===> B ===> (=)) ===> (=)) right_unique right_unique"  | 
| 71697 | 662  | 
unfolding right_unique_def by transfer_prover  | 
| 59523 | 663  | 
|
| 61630 | 664  | 
lemma map_fun_parametric [transfer_rule]:  | 
665  | 
"((A ===> B) ===> (C ===> D) ===> (B ===> C) ===> A ===> D) map_fun map_fun"  | 
|
| 71697 | 666  | 
unfolding map_fun_def by transfer_prover  | 
| 61630 | 667  | 
|
| 47325 | 668  | 
end  | 
| 
53011
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
669  | 
|
| 64014 | 670  | 
|
| 71182 | 671  | 
subsection \<open>\<^const>\<open>of_bool\<close> and \<^const>\<open>of_nat\<close>\<close>  | 
672  | 
||
673  | 
context  | 
|
674  | 
includes lifting_syntax  | 
|
675  | 
begin  | 
|
676  | 
||
677  | 
lemma transfer_rule_of_bool:  | 
|
678  | 
\<open>((\<longleftrightarrow>) ===> (\<cong>)) of_bool of_bool\<close>  | 
|
679  | 
if [transfer_rule]: \<open>0 \<cong> 0\<close> \<open>1 \<cong> 1\<close>  | 
|
680  | 
for R :: \<open>'a::zero_neq_one \<Rightarrow> 'b::zero_neq_one \<Rightarrow> bool\<close> (infix \<open>\<cong>\<close> 50)  | 
|
| 71697 | 681  | 
unfolding of_bool_def by transfer_prover  | 
| 64014 | 682  | 
|
683  | 
lemma transfer_rule_of_nat:  | 
|
| 71182 | 684  | 
"((=) ===> (\<cong>)) of_nat of_nat"  | 
685  | 
if [transfer_rule]: \<open>0 \<cong> 0\<close> \<open>1 \<cong> 1\<close>  | 
|
686  | 
\<open>((\<cong>) ===> (\<cong>) ===> (\<cong>)) (+) (+)\<close>  | 
|
687  | 
for R :: \<open>'a::semiring_1 \<Rightarrow> 'b::semiring_1 \<Rightarrow> bool\<close> (infix \<open>\<cong>\<close> 50)  | 
|
| 71697 | 688  | 
unfolding of_nat_def by transfer_prover  | 
| 64014 | 689  | 
|
| 
53011
 
aeee0a4be6cf
introduce locale with syntax for fun_rel and map_fun and make thus ===> and ---> local
 
kuncar 
parents: 
52358 
diff
changeset
 | 
690  | 
end  | 
| 71182 | 691  | 
|
692  | 
end  |