doc-src/TutorialI/Misc/document/AdvancedInd.tex
author nipkow
Tue, 05 Sep 2000 13:53:39 +0200
changeset 9844 8016321c7de1
parent 9834 109b11c4e77e
child 9924 3370f6aa3200
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     1
%
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     2
\begin{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     3
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     4
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     5
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     6
Now that we have learned about rules and logic, we take another look at the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     7
finer points of induction. The two questions we answer are: what to do if the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     8
proposition to be proved is not directly amenable to induction, and how to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     9
utilize and even derive new induction schemas.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    10
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    11
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    12
\isamarkupsubsection{Massaging the proposition\label{sec:ind-var-in-prems}}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    13
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    14
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    15
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    16
So far we have assumed that the theorem we want to prove is already in a form
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    17
that is amenable to induction, but this is not always the case:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    18
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    19
\isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    20
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    21
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    22
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    23
(where \isa{hd} and \isa{last} return the first and last element of a
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    24
non-empty list)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    25
produces the warning
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    26
\begin{quote}\tt
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    27
Induction variable occurs also among premises!
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    28
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    29
and leads to the base case
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    30
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    31
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    32
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    33
which, after simplification, becomes
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    34
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    35
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ []
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    36
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    37
We cannot prove this equality because we do not know what \isa{hd} and
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    38
\isa{last} return when applied to \isa{{\isacharbrackleft}{\isacharbrackright}}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    39
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    40
The point is that we have violated the above warning. Because the induction
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    41
formula is only the conclusion, the occurrence of \isa{xs} in the premises is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    42
not modified by induction. Thus the case that should have been trivial
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    43
becomes unprovable. Fortunately, the solution is easy:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    44
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    45
\emph{Pull all occurrences of the induction variable into the conclusion
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    46
using \isa{{\isasymlongrightarrow}}.}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    47
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    48
This means we should prove%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    49
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    50
\isacommand{lemma}\ hd{\isacharunderscore}rev{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    51
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    52
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    53
This time, induction leaves us with the following base case
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    54
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    55
\ 1.\ []\ {\isasymnoteq}\ []\ {\isasymlongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    56
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    57
which is trivial, and \isa{auto} finishes the whole proof.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    58
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    59
If \isa{hd{\isacharunderscore}rev} is meant to be a simplification rule, you are
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    60
done. But if you really need the \isa{{\isasymLongrightarrow}}-version of
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    61
\isa{hd{\isacharunderscore}rev}, for example because you want to apply it as an
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    62
introduction rule, you need to derive it separately, by combining it with
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    63
modus ponens:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    64
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    65
\isacommand{lemmas}\ hd{\isacharunderscore}revI\ {\isacharequal}\ hd{\isacharunderscore}rev{\isacharbrackleft}THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    66
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    67
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    68
which yields the lemma we originally set out to prove.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    69
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    70
In case there are multiple premises $A@1$, \dots, $A@n$ containing the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    71
induction variable, you should turn the conclusion $C$ into
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    72
\[ A@1 \longrightarrow \cdots A@n \longrightarrow C \]
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    73
(see the remark?? in \S\ref{??}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    74
Additionally, you may also have to universally quantify some other variables,
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    75
which can yield a fairly complex conclusion.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    76
Here is a simple example (which is proved by \isa{blast}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    77
\end{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    78
\isacommand{lemma}\ simple{\isacharcolon}\ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    79
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    80
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    81
You can get the desired lemma by explicit
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    82
application of modus ponens and \isa{spec}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    83
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    84
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}THEN\ spec{\isacharcomma}\ THEN\ mp{\isacharcomma}\ THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    85
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    86
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    87
or the wholesale stripping of \isa{{\isasymforall}} and
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    88
\isa{{\isasymlongrightarrow}} in the conclusion via \isa{rulify}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    89
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    90
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}rulify{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    91
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    92
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    93
yielding \isa{{\isasymlbrakk}A\ y{\isacharsemicolon}\ B\ y{\isasymrbrakk}\ {\isasymLongrightarrow}\ B\ y\ {\isasymand}\ A\ y}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    94
You can go one step further and include these derivations already in the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    95
statement of your original lemma, thus avoiding the intermediate step:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    96
\end{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    97
\isacommand{lemma}\ myrule{\isacharbrackleft}rulify{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    98
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    99
\bigskip
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   100
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   101
A second reason why your proposition may not be amenable to induction is that
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   102
you want to induct on a whole term, rather than an individual variable. In
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   103
general, when inducting on some term $t$ you must rephrase the conclusion as
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   104
\[ \forall y@1 \dots y@n.~ x = t \longrightarrow C \] where $y@1 \dots y@n$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   105
are the free variables in $t$ and $x$ is new, and perform induction on $x$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   106
afterwards. An example appears below.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   107
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   108
%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   109
\isamarkupsubsection{Beyond structural and recursion induction}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   110
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   111
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   112
So far, inductive proofs where by structural induction for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   113
primitive recursive functions and recursion induction for total recursive
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   114
functions. But sometimes structural induction is awkward and there is no
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   115
recursive function in sight either that could furnish a more appropriate
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   116
induction schema. In such cases some existing standard induction schema can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   117
be helpful. We show how to apply such induction schemas by an example.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   118
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   119
Structural induction on \isa{nat} is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   120
usually known as ``mathematical induction''. There is also ``complete
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   121
induction'', where you must prove $P(n)$ under the assumption that $P(m)$
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   122
holds for all $m<n$. In Isabelle, this is the theorem \isa{less{\isacharunderscore}induct}:
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   123
%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   124
\begin{isabelle}%
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   125
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   126
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   127
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   128
Here is an example of its application.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   129
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   130
\isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isacharequal}{\isachargreater}\ nat{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   131
\isacommand{axioms}\ f{\isacharunderscore}ax{\isacharcolon}\ {\isachardoublequote}f{\isacharparenleft}f{\isacharparenleft}n{\isacharparenright}{\isacharparenright}\ {\isacharless}\ f{\isacharparenleft}Suc{\isacharparenleft}n{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   132
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   133
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   134
From the above axiom\footnote{In general, the use of axioms is strongly
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   135
discouraged, because of the danger of inconsistencies. The above axiom does
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   136
not introduce an inconsistency because, for example, the identity function
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   137
satisfies it.}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   138
for \isa{f} it follows that \isa{n\ {\isasymle}\ f\ n}, which can
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   139
be proved by induction on \isa{f\ n}. Following the recipy outlined
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   140
above, we have to phrase the proposition as follows to allow induction:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   141
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   142
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   143
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   144
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   145
To perform induction on \isa{k} using \isa{less{\isacharunderscore}induct}, we use the same
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   146
general induction method as for recursion induction (see
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   147
\S\ref{sec:recdef-induction}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   148
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   149
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}less{\isacharunderscore}induct{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   150
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   151
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   152
which leaves us with the following proof state:
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   153
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   154
\ 1.\ {\isasymAnd}\mbox{n}.\ {\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i})\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   155
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymforall}\mbox{i}.\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   156
\end{isabelle}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   157
After stripping the \isa{{\isasymforall}i}, the proof continues with a case
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   158
distinction on \isa{i}. The case \isa{i\ {\isacharequal}\ \isadigit{0}} is trivial and we focus on
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   159
the other case:
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   160
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   161
\ 1.\ {\isasymAnd}\mbox{n}\ \mbox{i}\ \mbox{nat}.\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   162
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i});\ \mbox{i}\ =\ Suc\ \mbox{nat}{\isasymrbrakk}\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   163
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   164
\end{isabelle}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   165
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   166
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   167
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   168
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   169
It is not surprising if you find the last step puzzling.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   170
The proof goes like this (writing \isa{j} instead of \isa{nat}).
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   171
Since \isa{i\ {\isacharequal}\ Suc\ j} it suffices to show
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   172
\isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (by \isa{Suc{\isacharunderscore}leI}: \isa{m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ Suc\ m\ {\isasymle}\ n}). This is
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   173
proved as follows. From \isa{f{\isacharunderscore}ax} we have \isa{f\ {\isacharparenleft}f\ j{\isacharparenright}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   174
(1) which implies \isa{f\ j\ {\isasymle}\ f\ {\isacharparenleft}f\ j{\isacharparenright}} (by the induction hypothesis).
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   175
Using (1) once more we obtain \isa{f\ j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (2) by transitivity
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   176
(\isa{le{\isacharunderscore}less{\isacharunderscore}trans}: \isa{{\isasymlbrakk}i\ {\isasymle}\ j{\isacharsemicolon}\ j\ {\isacharless}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ i\ {\isacharless}\ k}).
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   177
Using the induction hypothesis once more we obtain \isa{j\ {\isasymle}\ f\ j}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   178
which, together with (2) yields \isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (again by
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   179
\isa{le{\isacharunderscore}less{\isacharunderscore}trans}).
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   180
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   181
This last step shows both the power and the danger of automatic proofs: they
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   182
will usually not tell you how the proof goes, because it can be very hard to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   183
translate the internal proof into a human-readable format. Therefore
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   184
\S\ref{sec:part2?} introduces a language for writing readable yet concise
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   185
proofs.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   186
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   187
We can now derive the desired \isa{i\ {\isasymle}\ f\ i} from \isa{f{\isacharunderscore}incr}:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   188
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   189
\isacommand{lemmas}\ f{\isacharunderscore}incr\ {\isacharequal}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharbrackleft}rulify{\isacharcomma}\ OF\ refl{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   190
\begin{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   191
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   192
The final \isa{refl} gets rid of the premise \isa{{\isacharquery}k\ {\isacharequal}\ f\ {\isacharquery}i}. Again,
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   193
we could have included this derivation in the original statement of the lemma:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   194
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   195
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharbrackleft}rulify{\isacharcomma}\ OF\ refl{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   196
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   197
\begin{exercise}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   198
From the above axiom and lemma for \isa{f} show that \isa{f} is the
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   199
identity.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   200
\end{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   201
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   202
In general, \isa{induct{\isacharunderscore}tac} can be applied with any rule $r$
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   203
whose conclusion is of the form ${?}P~?x@1 \dots ?x@n$, in which case the
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   204
format is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   205
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   206
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   207
\end{quote}\index{*induct_tac}%
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   208
where $y@1, \dots, y@n$ are variables in the first subgoal.
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   209
In fact, \isa{induct{\isacharunderscore}tac} even allows the conclusion of
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   210
$r$ to be an (iterated) conjunction of formulae of the above form, in
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   211
which case the application is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   212
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   213
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{and} \dots\ \isa{and} $z@1 \dots z@m$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   214
\end{quote}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   215
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   216
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   217
\isamarkupsubsection{Derivation of new induction schemas}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   218
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   219
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   220
\label{sec:derive-ind}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   221
Induction schemas are ordinary theorems and you can derive new ones
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   222
whenever you wish.  This section shows you how to, using the example
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   223
of \isa{less{\isacharunderscore}induct}. Assume we only have structural induction
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   224
available for \isa{nat} and want to derive complete induction. This
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   225
requires us to generalize the statement first:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   226
\end{isamarkuptext}%
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   227
\isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   228
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   229
\begin{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   230
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   231
The base case is trivially true. For the induction step (\isa{m\ {\isacharless}\ Suc\ n}) we distinguish two cases: \isa{m\ {\isacharless}\ n} is true by induction
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   232
hypothesis and \isa{m\ {\isacharequal}\ n} follow from the assumption again using
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   233
the induction hypothesis:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   234
\end{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   235
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   236
\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   237
\isacommand{ML}{\isachardoublequote}set\ quick{\isacharunderscore}and{\isacharunderscore}dirty{\isachardoublequote}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   238
\isacommand{sorry}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   239
\isacommand{ML}{\isachardoublequote}reset\ quick{\isacharunderscore}and{\isacharunderscore}dirty{\isachardoublequote}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   240
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   241
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   242
The elimination rule \isa{less{\isacharunderscore}SucE} expresses the case distinction:
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   243
%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   244
\begin{isabelle}%
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   245
\ \ \ \ \ {\isasymlbrakk}m\ {\isacharless}\ Suc\ n{\isacharsemicolon}\ m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ P{\isacharsemicolon}\ m\ {\isacharequal}\ n\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ P%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   246
\end{isabelle}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   247
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   248
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   249
Now it is straightforward to derive the original version of
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   250
\isa{less{\isacharunderscore}induct} by manipulting the conclusion of the above lemma:
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   251
instantiate \isa{n} by \isa{Suc\ n} and \isa{m} by \isa{n} and
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   252
remove the trivial condition \isa{n\ {\isacharless}\ Sc\ n}. Fortunately, this
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   253
happens automatically when we add the lemma as a new premise to the
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   254
desired goal:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   255
\end{isamarkuptext}%
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   256
\isacommand{theorem}\ less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   257
\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   258
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   259
\noindent
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   260
Finally we should mention that HOL already provides the mother of all
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   261
inductions, \emph{wellfounded induction} (\isa{wf{\isacharunderscore}induct}):
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   262
%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   263
\begin{isabelle}%
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   264
\ \ \ \ \ {\isasymlbrakk}wf\ r{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isasymforall}y{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}\ {\isasymin}\ r\ {\isasymlongrightarrow}\ P\ y\ {\isasymLongrightarrow}\ P\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ a%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   265
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   266
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   267
where \isa{wf\ r} means that the relation \isa{r} is wellfounded.
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   268
For example \isa{less{\isacharunderscore}induct} is the special case where \isa{r} is
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   269
\isa{{\isacharless}} on \isa{nat}. For details see the library.%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   270
\end{isamarkuptext}%
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
   271
\end{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   272
%%% Local Variables:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   273
%%% mode: latex
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   274
%%% TeX-master: "root"
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   275
%%% End: