doc-src/TutorialI/Misc/document/AdvancedInd.tex
author nipkow
Mon, 21 Aug 2000 18:45:29 +0200
changeset 9670 820cca8573f8
child 9673 1b2d4f995b13
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     1
\begin{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     2
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     3
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     4
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     5
Now that we have learned about rules and logic, we take another look at the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     6
finer points of induction. The two questions we answer are: what to do if the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     7
proposition to be proved is not directly amenable to induction, and how to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     8
utilize and even derive new induction schemas.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     9
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    10
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    11
\isamarkupsubsection{Massaging the proposition\label{sec:ind-var-in-prems}}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    12
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    13
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    14
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    15
So far we have assumed that the theorem we want to prove is already in a form
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    16
that is amenable to induction, but this is not always the case:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    17
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    18
\isacommand{lemma}\ {"}xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd(rev\ xs)\ =\ last\ xs{"}\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    19
\isacommand{apply}(induct\_tac\ xs)%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    20
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    21
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    22
(where \isa{hd} and \isa{last} return the first and last element of a
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    23
non-empty list)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    24
produces the warning
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    25
\begin{quote}\tt
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    26
Induction variable occurs also among premises!
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    27
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    28
and leads to the base case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    29
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    30
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    31
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    32
which, after simplification, becomes
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    33
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    34
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    35
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    36
We cannot prove this equality because we do not know what \isa{hd} and
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    37
\isa{last} return when applied to \isa{[]}.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    38
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    39
The point is that we have violated the above warning. Because the induction
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    40
formula is only the conclusion, the occurrence of \isa{xs} in the premises is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    41
not modified by induction. Thus the case that should have been trivial
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    42
becomes unprovable. Fortunately, the solution is easy:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    43
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    44
\emph{Pull all occurrences of the induction variable into the conclusion
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    45
using \isa{\isasymlongrightarrow}.}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    46
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    47
This means we should prove%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    48
\end{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    49
\isacommand{lemma}\ hd\_rev:\ {"}xs\ {\isasymnoteq}\ []\ {\isasymlongrightarrow}\ hd(rev\ xs)\ =\ last\ xs{"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    50
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    51
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    52
This time, induction leaves us with the following base case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    53
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    54
\ 1.\ []\ {\isasymnoteq}\ []\ {\isasymlongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    55
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    56
which is trivial, and \isa{auto} finishes the whole proof.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    57
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    58
If \isa{hd\_rev} is meant to be simplification rule, you are done. But if you
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    59
really need the \isa{\isasymLongrightarrow}-version of \isa{hd\_rev}, for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    60
example because you want to apply it as an introduction rule, you need to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    61
derive it separately, by combining it with modus ponens:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    62
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    63
\isacommand{lemmas}\ hd\_revI\ =\ hd\_rev[THEN\ mp]%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    64
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    65
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    66
which yields the lemma we originally set out to prove.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    67
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    68
In case there are multiple premises $A@1$, \dots, $A@n$ containing the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    69
induction variable, you should turn the conclusion $C$ into
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    70
\[ A@1 \longrightarrow \cdots A@n \longrightarrow C \]
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    71
(see the remark?? in \S\ref{??}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    72
Additionally, you may also have to universally quantify some other variables,
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    73
which can yield a fairly complex conclusion.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    74
Here is a simple example (which is proved by \isa{blast}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    75
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    76
\isacommand{lemma}\ simple:\ {"}{\isasymforall}\ y.\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ \&\ A\ y{"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    77
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    78
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    79
You can get the desired lemma by explicit
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    80
application of modus ponens and \isa{spec}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    81
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    82
\isacommand{lemmas}\ myrule\ =\ simple[THEN\ spec,\ THEN\ mp,\ THEN\ mp]%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    83
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    84
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    85
or the wholesale stripping of \isa{\isasymforall} and
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    86
\isa{\isasymlongrightarrow} in the conclusion via \isa{rulify}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    87
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    88
\isacommand{lemmas}\ myrule\ =\ simple[rulify]%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    89
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    90
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    91
yielding \isa{{\isasymlbrakk}\mbox{?A}\ \mbox{?y};\ \mbox{?B}\ \mbox{?y}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{?B}\ \mbox{?y}\ {\isasymand}\ \mbox{?A}\ \mbox{?y}}.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    92
You can go one step further and include these derivations already in the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    93
statement of your original lemma, thus avoiding the intermediate step:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    94
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    95
\isacommand{lemma}\ myrule[rulify]:\ \ {"}{\isasymforall}\ y.\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ \&\ A\ y{"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    96
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    97
\bigskip
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    98
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    99
A second reason why your proposition may not be amenable to induction is that
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   100
you want to induct on a whole term, rather than an individual variable. In
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   101
general, when inducting on some term $t$ you must rephrase the conclusion as
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   102
\[ \forall y@1 \dots y@n.~ x = t \longrightarrow C \] where $y@1 \dots y@n$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   103
are the free variables in $t$ and $x$ is new, and perform induction on $x$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   104
afterwards. An example appears below.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   105
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   106
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   107
\isamarkupsubsection{Beyond structural induction}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   108
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   109
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   110
So far, inductive proofs where by structural induction for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   111
primitive recursive functions and recursion induction for total recursive
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   112
functions. But sometimes structural induction is awkward and there is no
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   113
recursive function in sight either that could furnish a more appropriate
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   114
induction schema. In such cases some existing standard induction schema can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   115
be helpful. We show how to apply such induction schemas by an example.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   116
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   117
Structural induction on \isa{nat} is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   118
usually known as ``mathematical induction''. There is also ``complete
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   119
induction'', where you must prove $P(n)$ under the assumption that $P(m)$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   120
holds for all $m<n$. In Isabelle, this is the theorem \isa{less\_induct}:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   121
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   122
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   123
\begin{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   124
({\isasymAnd}\mbox{n}.\ {\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ \mbox{?P}\ \mbox{m}\ {\isasymLongrightarrow}\ \mbox{?P}\ \mbox{n})\ {\isasymLongrightarrow}\ \mbox{?P}\ \mbox{?n}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   125
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   126
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   127
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   128
Here is an example of its application.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   129
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   130
\isacommand{consts}\ f\ ::\ {"}nat\ =>\ nat{"}\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   131
\isacommand{axioms}\ f\_ax:\ {"}f(f(n))\ <\ f(Suc(n)){"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   132
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   133
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   134
From the above axiom\footnote{In general, the use of axioms is strongly
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   135
discouraged, because of the danger of inconsistencies. The above axiom does
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   136
not introduce an inconsistency because, for example, the identity function
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   137
satisfies it.}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   138
for \isa{f} it follows that \isa{\mbox{n}\ {\isasymle}\ f\ \mbox{n}}, which can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   139
be proved by induction on \isa{f\ \mbox{n}}. Following the recipy outlined
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   140
above, we have to phrase the proposition as follows to allow induction:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   141
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   142
\isacommand{lemma}\ f\_incr\_lem:\ {"}{\isasymforall}i.\ k\ =\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   143
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   144
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   145
To perform induction on \isa{k} using \isa{less\_induct}, we use the same
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   146
general induction method as for recursion induction (see
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   147
\S\ref{sec:recdef-induction}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   148
\end{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   149
\isacommand{apply}(induct\_tac\ k\ rule:less\_induct)%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   150
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   151
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   152
which leaves us with the following proof state:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   153
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   154
\ 1.\ {\isasymAnd}\mbox{n}.\ {\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i})\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   155
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymforall}\mbox{i}.\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   156
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   157
After stripping the \isa{\isasymforall i}, the proof continues with a case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   158
distinction on \isa{i}. The case \isa{i = 0} is trivial and we focus on the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   159
other case:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   160
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   161
\ 1.\ {\isasymAnd}\mbox{n}\ \mbox{i}\ \mbox{nat}.\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   162
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i});\ \mbox{i}\ =\ Suc\ \mbox{nat}{\isasymrbrakk}\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   163
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   164
\end{isabellepar}%%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   165
\end{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   166
\isacommand{by}(blast\ intro!:\ f\_ax\ Suc\_leI\ intro:le\_less\_trans)%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   167
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   168
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   169
It is not surprising if you find the last step puzzling.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   170
The proof goes like this (writing \isa{j} instead of \isa{nat}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   171
Since \isa{\mbox{i}\ =\ Suc\ \mbox{j}} it suffices to show
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   172
\isa{\mbox{j}\ <\ f\ (Suc\ \mbox{j})} (by \isa{Suc\_leI}: \isa{\mbox{?m}\ <\ \mbox{?n}\ {\isasymLongrightarrow}\ Suc\ \mbox{?m}\ {\isasymle}\ \mbox{?n}}). This is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   173
proved as follows. From \isa{f\_ax} we have \isa{f\ (f\ \mbox{j})\ <\ f\ (Suc\ \mbox{j})}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   174
(1) which implies \isa{f\ \mbox{j}\ {\isasymle}\ f\ (f\ \mbox{j})} (by the induction hypothesis).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   175
Using (1) once more we obtain \isa{f\ \mbox{j}\ <\ f\ (Suc\ \mbox{j})} (2) by transitivity
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   176
(\isa{le_less_trans}: \isa{{\isasymlbrakk}\mbox{?i}\ {\isasymle}\ \mbox{?j};\ \mbox{?j}\ <\ \mbox{?k}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{?i}\ <\ \mbox{?k}}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   177
Using the induction hypothesis once more we obtain \isa{\mbox{j}\ {\isasymle}\ f\ \mbox{j}}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   178
which, together with (2) yields \isa{\mbox{j}\ <\ f\ (Suc\ \mbox{j})} (again by
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   179
\isa{le_less_trans}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   180
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   181
This last step shows both the power and the danger of automatic proofs: they
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   182
will usually not tell you how the proof goes, because it can be very hard to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   183
translate the internal proof into a human-readable format. Therefore
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   184
\S\ref{sec:part2?} introduces a language for writing readable yet concise
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   185
proofs.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   186
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   187
We can now derive the desired \isa{\mbox{i}\ {\isasymle}\ f\ \mbox{i}} from \isa{f\_incr}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   188
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   189
\isacommand{lemmas}\ f\_incr\ =\ f\_incr\_lem[rulify,\ OF\ refl]%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   190
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   191
The final \isa{refl} gets rid of the premise \isa{?k = f ?i}. Again, we could
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   192
have included this derivation in the original statement of the lemma:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   193
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   194
\isacommand{lemma}\ f\_incr[rulify,\ OF\ refl]:\ {"}{\isasymforall}i.\ k\ =\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{"}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   195
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   196
\begin{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   197
From the above axiom and lemma for \isa{f} show that \isa{f} is the identity.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   198
\end{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   199
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   200
In general, \isa{induct\_tac} can be applied with any rule \isa{r}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   201
whose conclusion is of the form \isa{?P ?x1 \dots ?xn}, in which case the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   202
format is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   203
\begin{ttbox}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   204
apply(induct_tac y1 ... yn rule: r)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   205
\end{ttbox}\index{*induct_tac}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   206
where \isa{y1}, \dots, \isa{yn} are variables in the first subgoal.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   207
In fact, \isa{induct\_tac} even allows the conclusion of
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   208
\isa{r} to be an (iterated) conjunction of formulae of the above form, in
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   209
which case the application is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   210
\begin{ttbox}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   211
apply(induct_tac y1 ... yn and ... and z1 ... zm rule: r)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   212
\end{ttbox}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   213
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   214
Finally we should mention that HOL already provides the mother of all
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   215
inductions, \emph{wellfounded induction} (\isa{wf\_induct}):
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   216
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   217
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   218
\begin{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   219
{\isasymlbrakk}wf\ \mbox{?r};\ {\isasymAnd}\mbox{x}.\ {\isasymforall}\mbox{y}.\ (\mbox{y},\ \mbox{x})\ {\isasymin}\ \mbox{?r}\ {\isasymlongrightarrow}\ \mbox{?P}\ \mbox{y}\ {\isasymLongrightarrow}\ \mbox{?P}\ \mbox{x}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{?P}\ \mbox{?a}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   220
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   221
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   222
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   223
For details see the library.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   224
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   225
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   226
%%% Local Variables:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   227
%%% mode: latex
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   228
%%% TeX-master: "root"
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   229
%%% End: