| author | haftmann | 
| Fri, 14 Jun 2019 08:34:27 +0000 | |
| changeset 70345 | 80a1aa30e24d | 
| parent 70344 | 050104f01bf9 | 
| child 70347 | e5cd5471c18a | 
| permissions | -rw-r--r-- | 
| 63494 | 1 | (* Title: HOL/Rat.thy | 
| 2 | Author: Markus Wenzel, TU Muenchen | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 3 | *) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 4 | |
| 60758 | 5 | section \<open>Rational numbers\<close> | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 6 | |
| 35372 | 7 | theory Rat | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64849diff
changeset | 8 | imports Archimedean_Field | 
| 15131 | 9 | begin | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 10 | |
| 60758 | 11 | subsection \<open>Rational numbers as quotient\<close> | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 12 | |
| 60758 | 13 | subsubsection \<open>Construction of the type of rational numbers\<close> | 
| 18913 | 14 | |
| 63326 | 15 | definition ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" | 
| 16 | where "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 17 | |
| 63326 | 18 | lemma ratrel_iff [simp]: "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x" | 
| 27551 | 19 | by (simp add: ratrel_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 20 | |
| 47906 | 21 | lemma exists_ratrel_refl: "\<exists>x. ratrel x x" | 
| 22 | by (auto intro!: one_neq_zero) | |
| 18913 | 23 | |
| 47906 | 24 | lemma symp_ratrel: "symp ratrel" | 
| 25 | by (simp add: ratrel_def symp_def) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 26 | |
| 47906 | 27 | lemma transp_ratrel: "transp ratrel" | 
| 28 | proof (rule transpI, unfold split_paired_all) | |
| 27551 | 29 | fix a b a' b' a'' b'' :: int | 
| 63494 | 30 | assume *: "ratrel (a, b) (a', b')" | 
| 31 | assume **: "ratrel (a', b') (a'', b'')" | |
| 27551 | 32 | have "b' * (a * b'') = b'' * (a * b')" by simp | 
| 63494 | 33 | also from * have "a * b' = a' * b" by auto | 
| 27551 | 34 | also have "b'' * (a' * b) = b * (a' * b'')" by simp | 
| 63494 | 35 | also from ** have "a' * b'' = a'' * b'" by auto | 
| 27551 | 36 | also have "b * (a'' * b') = b' * (a'' * b)" by simp | 
| 37 | finally have "b' * (a * b'') = b' * (a'' * b)" . | |
| 63494 | 38 | moreover from ** have "b' \<noteq> 0" by auto | 
| 27551 | 39 | ultimately have "a * b'' = a'' * b" by simp | 
| 63494 | 40 | with * ** show "ratrel (a, b) (a'', b'')" by auto | 
| 27551 | 41 | qed | 
| 42 | ||
| 47906 | 43 | lemma part_equivp_ratrel: "part_equivp ratrel" | 
| 44 | by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel]) | |
| 45 | ||
| 46 | quotient_type rat = "int \<times> int" / partial: "ratrel" | |
| 47 | morphisms Rep_Rat Abs_Rat | |
| 48 | by (rule part_equivp_ratrel) | |
| 27551 | 49 | |
| 53012 
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
 kuncar parents: 
52146diff
changeset | 50 | lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)" | 
| 63326 | 51 | by (simp add: rat.domain_eq) | 
| 52 | ||
| 27551 | 53 | |
| 60758 | 54 | subsubsection \<open>Representation and basic operations\<close> | 
| 27551 | 55 | |
| 47906 | 56 | lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat" | 
| 57 | is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)" | |
| 58 | by simp | |
| 27551 | 59 | |
| 60 | lemma eq_rat: | |
| 63326 | 61 | "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b" | 
| 62 | "\<And>a. Fract a 0 = Fract 0 1" | |
| 63 | "\<And>a c. Fract 0 a = Fract 0 c" | |
| 47906 | 64 | by (transfer, simp)+ | 
| 27551 | 65 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 66 | lemma Rat_cases [case_names Fract, cases type: rat]: | 
| 63326 | 67 | assumes that: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 68 | shows C | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 69 | proof - | 
| 63326 | 70 | obtain a b :: int where q: "q = Fract a b" and b: "b \<noteq> 0" | 
| 47906 | 71 | by transfer simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 72 | let ?a = "a div gcd a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 73 | let ?b = "b div gcd a b" | 
| 63326 | 74 | from b have "?b * gcd a b = b" | 
| 58834 | 75 | by simp | 
| 63326 | 76 | with b have "?b \<noteq> 0" | 
| 77 | by fastforce | |
| 78 | with q b have q2: "q = Fract ?a ?b" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 79 | by (simp add: eq_rat dvd_div_mult mult.commute [of a]) | 
| 63326 | 80 | from b have coprime: "coprime ?a ?b" | 
| 62348 | 81 | by (auto intro: div_gcd_coprime) | 
| 63326 | 82 | show C | 
| 83 | proof (cases "b > 0") | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 84 | case True | 
| 63326 | 85 | then have "?b > 0" | 
| 86 | by (simp add: nonneg1_imp_zdiv_pos_iff) | |
| 87 | from q2 this coprime show C by (rule that) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 88 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 89 | case False | 
| 63326 | 90 | have "q = Fract (- ?a) (- ?b)" | 
| 91 | unfolding q2 by transfer simp | |
| 92 | moreover from False b have "- ?b > 0" | |
| 93 | by (simp add: pos_imp_zdiv_neg_iff) | |
| 94 | moreover from coprime have "coprime (- ?a) (- ?b)" | |
| 95 | by simp | |
| 96 | ultimately show C | |
| 97 | by (rule that) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 98 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 99 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 100 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 101 | lemma Rat_induct [case_names Fract, induct type: rat]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 102 | assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 103 | shows "P q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 104 | using assms by (cases q) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 105 | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 106 | instantiation rat :: field | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 107 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 108 | |
| 47906 | 109 | lift_definition zero_rat :: "rat" is "(0, 1)" | 
| 110 | by simp | |
| 111 | ||
| 112 | lift_definition one_rat :: "rat" is "(1, 1)" | |
| 113 | by simp | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 114 | |
| 47906 | 115 | lemma Zero_rat_def: "0 = Fract 0 1" | 
| 116 | by transfer simp | |
| 18913 | 117 | |
| 47906 | 118 | lemma One_rat_def: "1 = Fract 1 1" | 
| 119 | by transfer simp | |
| 120 | ||
| 121 | lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | |
| 122 | is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)" | |
| 63494 | 123 | by (auto simp: distrib_right) (simp add: ac_simps) | 
| 27551 | 124 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 125 | lemma add_rat [simp]: | 
| 27551 | 126 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 127 | shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" | |
| 47906 | 128 | using assms by transfer simp | 
| 18913 | 129 | |
| 47906 | 130 | lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)" | 
| 131 | by simp | |
| 27551 | 132 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 133 | lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" | 
| 47906 | 134 | by transfer simp | 
| 27551 | 135 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 136 | lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" | 
| 27551 | 137 | by (cases "b = 0") (simp_all add: eq_rat) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 138 | |
| 63326 | 139 | definition diff_rat_def: "q - r = q + - r" for q r :: rat | 
| 18913 | 140 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 141 | lemma diff_rat [simp]: | 
| 63494 | 142 | "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" | 
| 143 | by (simp add: diff_rat_def) | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 144 | |
| 47906 | 145 | lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | 
| 146 | is "\<lambda>x y. (fst x * fst y, snd x * snd y)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 147 | by (simp add: ac_simps) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 148 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 149 | lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" | 
| 47906 | 150 | by transfer simp | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 151 | |
| 63494 | 152 | lemma mult_rat_cancel: "c \<noteq> 0 \<Longrightarrow> Fract (c * a) (c * b) = Fract a b" | 
| 153 | by transfer simp | |
| 47906 | 154 | |
| 155 | lift_definition inverse_rat :: "rat \<Rightarrow> rat" | |
| 156 | is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 157 | by (auto simp add: mult.commute) | 
| 47906 | 158 | |
| 159 | lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" | |
| 160 | by transfer simp | |
| 161 | ||
| 63326 | 162 | definition divide_rat_def: "q div r = q * inverse r" for q r :: rat | 
| 47906 | 163 | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 164 | lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)" | 
| 47906 | 165 | by (simp add: divide_rat_def) | 
| 27509 | 166 | |
| 63326 | 167 | instance | 
| 168 | proof | |
| 47906 | 169 | fix q r s :: rat | 
| 170 | show "(q * r) * s = q * (r * s)" | |
| 171 | by transfer simp | |
| 172 | show "q * r = r * q" | |
| 173 | by transfer simp | |
| 174 | show "1 * q = q" | |
| 175 | by transfer simp | |
| 176 | show "(q + r) + s = q + (r + s)" | |
| 177 | by transfer (simp add: algebra_simps) | |
| 178 | show "q + r = r + q" | |
| 179 | by transfer simp | |
| 180 | show "0 + q = q" | |
| 181 | by transfer simp | |
| 182 | show "- q + q = 0" | |
| 183 | by transfer simp | |
| 184 | show "q - r = q + - r" | |
| 185 | by (fact diff_rat_def) | |
| 186 | show "(q + r) * s = q * s + r * s" | |
| 187 | by transfer (simp add: algebra_simps) | |
| 188 | show "(0::rat) \<noteq> 1" | |
| 189 | by transfer simp | |
| 63326 | 190 | show "inverse q * q = 1" if "q \<noteq> 0" | 
| 191 | using that by transfer simp | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 192 | show "q div r = q * inverse r" | 
| 47906 | 193 | by (fact divide_rat_def) | 
| 194 | show "inverse 0 = (0::rat)" | |
| 195 | by transfer simp | |
| 27509 | 196 | qed | 
| 197 | ||
| 198 | end | |
| 199 | ||
| 63499 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 200 | (* We cannot state these two rules earlier because of pending sort hypotheses *) | 
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 201 | lemma div_add_self1_no_field [simp]: | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
65552diff
changeset | 202 | assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0" | 
| 63499 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 203 | shows "(b + a) div b = a div b + 1" | 
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 204 | using assms(2) by (fact div_add_self1) | 
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 205 | |
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 206 | lemma div_add_self2_no_field [simp]: | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
65552diff
changeset | 207 | assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0" | 
| 63499 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 208 | shows "(a + b) div b = a div b + 1" | 
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 209 | using assms(2) by (fact div_add_self2) | 
| 
9c9a59949887
Tuned looping simp rules in semiring_div
 eberlm <eberlm@in.tum.de> parents: 
63326diff
changeset | 210 | |
| 27551 | 211 | lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 212 | by (induct k) (simp_all add: Zero_rat_def One_rat_def) | 
| 27551 | 213 | |
| 214 | lemma of_int_rat: "of_int k = Fract k 1" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 215 | by (cases k rule: int_diff_cases) (simp add: of_nat_rat) | 
| 27551 | 216 | |
| 217 | lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" | |
| 218 | by (rule of_nat_rat [symmetric]) | |
| 219 | ||
| 220 | lemma Fract_of_int_eq: "Fract k 1 = of_int k" | |
| 221 | by (rule of_int_rat [symmetric]) | |
| 222 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 223 | lemma rat_number_collapse: | 
| 27551 | 224 | "Fract 0 k = 0" | 
| 225 | "Fract 1 1 = 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 226 | "Fract (numeral w) 1 = numeral w" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 227 | "Fract (- numeral w) 1 = - numeral w" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 228 | "Fract (- 1) 1 = - 1" | 
| 27551 | 229 | "Fract k 0 = 0" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 230 | using Fract_of_int_eq [of "numeral w"] | 
| 63494 | 231 | and Fract_of_int_eq [of "- numeral w"] | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 232 | by (simp_all add: Zero_rat_def One_rat_def eq_rat) | 
| 27551 | 233 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 234 | lemma rat_number_expand: | 
| 27551 | 235 | "0 = Fract 0 1" | 
| 236 | "1 = Fract 1 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 237 | "numeral k = Fract (numeral k) 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 238 | "- 1 = Fract (- 1) 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 239 | "- numeral k = Fract (- numeral k) 1" | 
| 27551 | 240 | by (simp_all add: rat_number_collapse) | 
| 241 | ||
| 242 | lemma Rat_cases_nonzero [case_names Fract 0]: | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 243 | assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 63326 | 244 | and 0: "q = 0 \<Longrightarrow> C" | 
| 27551 | 245 | shows C | 
| 246 | proof (cases "q = 0") | |
| 63326 | 247 | case True | 
| 248 | then show C using 0 by auto | |
| 27551 | 249 | next | 
| 250 | case False | |
| 63326 | 251 | then obtain a b where *: "q = Fract a b" "b > 0" "coprime a b" | 
| 252 | by (cases q) auto | |
| 253 | with False have "0 \<noteq> Fract a b" | |
| 254 | by simp | |
| 255 | with \<open>b > 0\<close> have "a \<noteq> 0" | |
| 256 | by (simp add: Zero_rat_def eq_rat) | |
| 257 | with Fract * show C by blast | |
| 27551 | 258 | qed | 
| 259 | ||
| 63326 | 260 | |
| 61799 | 261 | subsubsection \<open>Function \<open>normalize\<close>\<close> | 
| 33805 | 262 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 263 | lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 264 | proof (cases "b = 0") | 
| 63326 | 265 | case True | 
| 63494 | 266 | then show ?thesis | 
| 267 | by (simp add: eq_rat) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 268 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 269 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 270 | moreover have "b div gcd a b * gcd a b = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 271 | by (rule dvd_div_mult_self) simp | 
| 63326 | 272 | ultimately have "b div gcd a b * gcd a b \<noteq> 0" | 
| 273 | by simp | |
| 274 | then have "b div gcd a b \<noteq> 0" | |
| 275 | by fastforce | |
| 276 | with False show ?thesis | |
| 277 | by (simp add: eq_rat dvd_div_mult mult.commute [of a]) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 278 | qed | 
| 33805 | 279 | |
| 63326 | 280 | definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" | 
| 281 | where "normalize p = | |
| 282 | (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a)) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 283 | else if snd p = 0 then (0, 1) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 284 | else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 285 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 286 | lemma normalize_crossproduct: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 287 | assumes "q \<noteq> 0" "s \<noteq> 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 288 | assumes "normalize (p, q) = normalize (r, s)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 289 | shows "p * s = r * q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 290 | proof - | 
| 63326 | 291 | have *: "p * s = q * r" | 
| 292 | if "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 293 | proof - | 
| 63494 | 294 | from that have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = | 
| 295 | (q * gcd r s) * (sgn (q * s) * r * gcd p q)" | |
| 63326 | 296 | by simp | 
| 297 | with assms show ?thesis | |
| 64240 | 298 | by (auto simp add: ac_simps sgn_mult sgn_0_0) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 299 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 300 | from assms show ?thesis | 
| 64240 | 301 | by (auto simp: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_mult | 
| 63326 | 302 | split: if_splits intro: *) | 
| 33805 | 303 | qed | 
| 304 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 305 | lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 63494 | 306 | by (auto simp: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse | 
| 63326 | 307 | split: if_split_asm) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 308 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 309 | lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0" | 
| 63494 | 310 | by (auto simp: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff | 
| 63326 | 311 | split: if_split_asm) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 312 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 313 | lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q" | 
| 63494 | 314 | by (auto simp: normalize_def Let_def dvd_div_neg div_gcd_coprime split: if_split_asm) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 315 | |
| 63326 | 316 | lemma normalize_stable [simp]: "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 317 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 318 | |
| 63326 | 319 | lemma normalize_denom_zero [simp]: "normalize (p, 0) = (0, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 320 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 321 | |
| 63326 | 322 | lemma normalize_negative [simp]: "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 323 | by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 324 | |
| 60758 | 325 | text\<open> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 326 | Decompose a fraction into normalized, i.e. coprime numerator and denominator: | 
| 60758 | 327 | \<close> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 328 | |
| 63326 | 329 | definition quotient_of :: "rat \<Rightarrow> int \<times> int" | 
| 330 | where "quotient_of x = | |
| 331 | (THE pair. x = Fract (fst pair) (snd pair) \<and> snd pair > 0 \<and> coprime (fst pair) (snd pair))" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 332 | |
| 63326 | 333 | lemma quotient_of_unique: "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 334 | proof (cases r) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 335 | case (Fract a b) | 
| 63494 | 336 | then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> | 
| 337 | snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" | |
| 63326 | 338 | by auto | 
| 339 | then show ?thesis | |
| 340 | proof (rule ex1I) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 341 | fix p | 
| 63911 | 342 | assume r: "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 343 | obtain c d where p: "p = (c, d)" by (cases p) | |
| 344 | with r have Fract': "r = Fract c d" "d > 0" "coprime c d" | |
| 63326 | 345 | by simp_all | 
| 63911 | 346 | have "(c, d) = (a, b)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 347 | proof (cases "a = 0") | 
| 63326 | 348 | case True | 
| 349 | with Fract Fract' show ?thesis | |
| 350 | by (simp add: eq_rat) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 351 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 352 | case False | 
| 63326 | 353 | with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" | 
| 354 | by (auto simp add: eq_rat) | |
| 355 | then have "c * b > 0 \<longleftrightarrow> a * d > 0" | |
| 356 | by auto | |
| 357 | with \<open>b > 0\<close> \<open>d > 0\<close> have "a > 0 \<longleftrightarrow> c > 0" | |
| 358 | by (simp add: zero_less_mult_iff) | |
| 359 | with \<open>a \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have sgn: "sgn a = sgn c" | |
| 360 | by (auto simp add: not_less) | |
| 60758 | 361 | from \<open>coprime a b\<close> \<open>coprime c d\<close> have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 362 | by (simp add: coprime_crossproduct_int) | 
| 63326 | 363 | with \<open>b > 0\<close> \<open>d > 0\<close> have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" | 
| 364 | by simp | |
| 365 | then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" | |
| 366 | by (simp add: abs_sgn) | |
| 367 | with sgn * show ?thesis | |
| 368 | by (auto simp add: sgn_0_0) | |
| 33805 | 369 | qed | 
| 63326 | 370 | with p show "p = (a, b)" | 
| 371 | by simp | |
| 33805 | 372 | qed | 
| 373 | qed | |
| 374 | ||
| 63326 | 375 | lemma quotient_of_Fract [code]: "quotient_of (Fract a b) = normalize (a, b)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 376 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 377 | have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 378 | by (rule sym) (auto intro: normalize_eq) | 
| 52146 | 379 | moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 380 | by (cases "normalize (a, b)") (rule normalize_denom_pos, simp) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 381 | moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 382 | by (rule normalize_coprime) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 383 | ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast | 
| 63911 | 384 | then have "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> | 
| 385 | coprime (fst p) (snd p)) = normalize (a, b)" | |
| 386 | by (rule the1_equality [OF quotient_of_unique]) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 387 | then show ?thesis by (simp add: quotient_of_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 388 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 389 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 390 | lemma quotient_of_number [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 391 | "quotient_of 0 = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 392 | "quotient_of 1 = (1, 1)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 393 | "quotient_of (numeral k) = (numeral k, 1)" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 394 | "quotient_of (- 1) = (- 1, 1)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 395 | "quotient_of (- numeral k) = (- numeral k, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 396 | by (simp_all add: rat_number_expand quotient_of_Fract) | 
| 33805 | 397 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 398 | lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 399 | by (simp add: quotient_of_Fract normalize_eq) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 400 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 401 | lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 402 | by (cases r) (simp add: quotient_of_Fract normalize_denom_pos) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 403 | |
| 64849 | 404 | lemma quotient_of_denom_pos': "snd (quotient_of r) > 0" | 
| 405 | using quotient_of_denom_pos [of r] by (simp add: prod_eq_iff) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64849diff
changeset | 406 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 407 | lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 408 | by (cases r) (simp add: quotient_of_Fract normalize_coprime) | 
| 33805 | 409 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 410 | lemma quotient_of_inject: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 411 | assumes "quotient_of a = quotient_of b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 412 | shows "a = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 413 | proof - | 
| 63326 | 414 | obtain p q r s where a: "a = Fract p q" and b: "b = Fract r s" and "q > 0" and "s > 0" | 
| 415 | by (cases a, cases b) | |
| 416 | with assms show ?thesis | |
| 417 | by (simp add: eq_rat quotient_of_Fract normalize_crossproduct) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 418 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 419 | |
| 63326 | 420 | lemma quotient_of_inject_eq: "quotient_of a = quotient_of b \<longleftrightarrow> a = b" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 421 | by (auto simp add: quotient_of_inject) | 
| 33805 | 422 | |
| 27551 | 423 | |
| 60758 | 424 | subsubsection \<open>Various\<close> | 
| 27551 | 425 | |
| 426 | lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 427 | by (simp add: Fract_of_int_eq [symmetric]) | 
| 27551 | 428 | |
| 63326 | 429 | lemma Fract_add_one: "n \<noteq> 0 \<Longrightarrow> Fract (m + n) n = Fract m n + 1" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 430 | by (simp add: rat_number_expand) | 
| 27551 | 431 | |
| 50178 | 432 | lemma quotient_of_div: | 
| 433 | assumes r: "quotient_of r = (n,d)" | |
| 434 | shows "r = of_int n / of_int d" | |
| 435 | proof - | |
| 436 | from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]] | |
| 437 | have "r = Fract n d" by simp | |
| 63326 | 438 | then show ?thesis using Fract_of_int_quotient | 
| 439 | by simp | |
| 50178 | 440 | qed | 
| 27551 | 441 | |
| 63326 | 442 | |
| 60758 | 443 | subsubsection \<open>The ordered field of rational numbers\<close> | 
| 27509 | 444 | |
| 47907 | 445 | lift_definition positive :: "rat \<Rightarrow> bool" | 
| 446 | is "\<lambda>x. 0 < fst x * snd x" | |
| 63326 | 447 | proof clarsimp | 
| 47907 | 448 | fix a b c d :: int | 
| 449 | assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b" | |
| 63326 | 450 | then have "a * d * b * d = c * b * b * d" | 
| 47907 | 451 | by simp | 
| 63326 | 452 | then have "a * b * d\<^sup>2 = c * d * b\<^sup>2" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 453 | unfolding power2_eq_square by (simp add: ac_simps) | 
| 63326 | 454 | then have "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2" | 
| 47907 | 455 | by simp | 
| 63326 | 456 | then show "0 < a * b \<longleftrightarrow> 0 < c * d" | 
| 60758 | 457 | using \<open>b \<noteq> 0\<close> and \<open>d \<noteq> 0\<close> | 
| 47907 | 458 | by (simp add: zero_less_mult_iff) | 
| 459 | qed | |
| 460 | ||
| 461 | lemma positive_zero: "\<not> positive 0" | |
| 462 | by transfer simp | |
| 463 | ||
| 63326 | 464 | lemma positive_add: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" | 
| 465 | apply transfer | |
| 466 | apply (simp add: zero_less_mult_iff) | |
| 63494 | 467 | apply (elim disjE) | 
| 468 | apply (simp_all add: add_pos_pos add_neg_neg mult_pos_neg mult_neg_pos mult_neg_neg) | |
| 63326 | 469 | done | 
| 47907 | 470 | |
| 63326 | 471 | lemma positive_mult: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" | 
| 472 | apply transfer | |
| 473 | apply (drule (1) mult_pos_pos) | |
| 474 | apply (simp add: ac_simps) | |
| 475 | done | |
| 47907 | 476 | |
| 63326 | 477 | lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" | 
| 478 | by transfer (auto simp: neq_iff zero_less_mult_iff mult_less_0_iff) | |
| 47907 | 479 | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 480 | instantiation rat :: linordered_field | 
| 27509 | 481 | begin | 
| 482 | ||
| 63326 | 483 | definition "x < y \<longleftrightarrow> positive (y - x)" | 
| 47907 | 484 | |
| 63326 | 485 | definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: rat | 
| 47907 | 486 | |
| 63326 | 487 | definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: rat | 
| 47907 | 488 | |
| 63326 | 489 | definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: rat | 
| 47906 | 490 | |
| 63326 | 491 | instance | 
| 492 | proof | |
| 47907 | 493 | fix a b c :: rat | 
| 494 | show "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 495 | by (rule abs_rat_def) | |
| 496 | show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" | |
| 497 | unfolding less_eq_rat_def less_rat_def | |
| 63326 | 498 | apply auto | 
| 63494 | 499 | apply (drule (1) positive_add) | 
| 500 | apply (simp_all add: positive_zero) | |
| 63326 | 501 | done | 
| 47907 | 502 | show "a \<le> a" | 
| 503 | unfolding less_eq_rat_def by simp | |
| 504 | show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | |
| 505 | unfolding less_eq_rat_def less_rat_def | |
| 63326 | 506 | apply auto | 
| 507 | apply (drule (1) positive_add) | |
| 508 | apply (simp add: algebra_simps) | |
| 509 | done | |
| 47907 | 510 | show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" | 
| 511 | unfolding less_eq_rat_def less_rat_def | |
| 63326 | 512 | apply auto | 
| 513 | apply (drule (1) positive_add) | |
| 514 | apply (simp add: positive_zero) | |
| 515 | done | |
| 47907 | 516 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 517 | unfolding less_eq_rat_def less_rat_def by auto | 
| 47907 | 518 | show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | 
| 519 | by (rule sgn_rat_def) | |
| 520 | show "a \<le> b \<or> b \<le> a" | |
| 521 | unfolding less_eq_rat_def less_rat_def | |
| 522 | by (auto dest!: positive_minus) | |
| 523 | show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | |
| 524 | unfolding less_rat_def | |
| 63326 | 525 | apply (drule (1) positive_mult) | 
| 526 | apply (simp add: algebra_simps) | |
| 527 | done | |
| 47906 | 528 | qed | 
| 27551 | 529 | |
| 47907 | 530 | end | 
| 531 | ||
| 70344 | 532 | text\<open>Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs | 
| 533 | of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> because the former can lead to case | |
| 534 | explosions.\<close> | |
| 535 | ||
| 70345 
80a1aa30e24d
avoid pseudo-collection to be used in generated proofs
 haftmann parents: 
70344diff
changeset | 536 | lemmas (in linordered_field) sign_simps [no_atp] = algebra_simps zero_less_mult_iff mult_less_0_iff | 
| 
80a1aa30e24d
avoid pseudo-collection to be used in generated proofs
 haftmann parents: 
70344diff
changeset | 537 | lemmas sign_simps [no_atp] = algebra_simps zero_less_mult_iff mult_less_0_iff | 
| 68536 | 538 | |
| 539 | ||
| 47907 | 540 | instantiation rat :: distrib_lattice | 
| 541 | begin | |
| 542 | ||
| 63326 | 543 | definition "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min" | 
| 27509 | 544 | |
| 63326 | 545 | definition "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max" | 
| 47907 | 546 | |
| 63326 | 547 | instance | 
| 548 | by standard (auto simp add: inf_rat_def sup_rat_def max_min_distrib2) | |
| 47907 | 549 | |
| 550 | end | |
| 551 | ||
| 552 | lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b" | |
| 553 | by transfer simp | |
| 27509 | 554 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 555 | lemma less_rat [simp]: | 
| 63494 | 556 | "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)" | 
| 557 | by (simp add: less_rat_def positive_rat algebra_simps) | |
| 27509 | 558 | |
| 47907 | 559 | lemma le_rat [simp]: | 
| 63494 | 560 | "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)" | 
| 561 | by (simp add: le_less eq_rat) | |
| 27551 | 562 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 563 | lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>" | 
| 35216 | 564 | by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff) | 
| 27551 | 565 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 566 | lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" | 
| 27551 | 567 | unfolding Fract_of_int_eq | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 568 | by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) | 
| 27551 | 569 | (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) | 
| 570 | ||
| 571 | lemma Rat_induct_pos [case_names Fract, induct type: rat]: | |
| 572 | assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)" | |
| 573 | shows "P q" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 574 | proof (cases q) | 
| 63326 | 575 | case (Fract a b) | 
| 576 | have step': "P (Fract a b)" if b: "b < 0" for a b :: int | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 577 | proof - | 
| 63326 | 578 | from b have "0 < - b" | 
| 579 | by simp | |
| 580 | then have "P (Fract (- a) (- b))" | |
| 581 | by (rule step) | |
| 582 | then show "P (Fract a b)" | |
| 583 | by (simp add: order_less_imp_not_eq [OF b]) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 584 | qed | 
| 63494 | 585 | from Fract show "P q" | 
| 586 | by (auto simp add: linorder_neq_iff step step') | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 587 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 588 | |
| 63326 | 589 | lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 590 | by (simp add: Zero_rat_def zero_less_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 591 | |
| 63326 | 592 | lemma Fract_less_zero_iff: "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 593 | by (simp add: Zero_rat_def mult_less_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 594 | |
| 63326 | 595 | lemma zero_le_Fract_iff: "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 596 | by (simp add: Zero_rat_def zero_le_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 597 | |
| 63326 | 598 | lemma Fract_le_zero_iff: "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 599 | by (simp add: Zero_rat_def mult_le_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 600 | |
| 63326 | 601 | lemma one_less_Fract_iff: "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 602 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 603 | |
| 63326 | 604 | lemma Fract_less_one_iff: "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 605 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 606 | |
| 63326 | 607 | lemma one_le_Fract_iff: "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 608 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 609 | |
| 63326 | 610 | lemma Fract_le_one_iff: "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b" | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 611 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 612 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14365diff
changeset | 613 | |
| 60758 | 614 | subsubsection \<open>Rationals are an Archimedean field\<close> | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 615 | |
| 63326 | 616 | lemma rat_floor_lemma: "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)" | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 617 | proof - | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 618 | have "Fract a b = of_int (a div b) + Fract (a mod b) b" | 
| 63326 | 619 | by (cases "b = 0") (simp, simp add: of_int_rat) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 620 | moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1" | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 621 | unfolding Fract_of_int_quotient | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 622 | by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 623 | ultimately show ?thesis by simp | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 624 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 625 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 626 | instance rat :: archimedean_field | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 627 | proof | 
| 63326 | 628 | show "\<exists>z. r \<le> of_int z" for r :: rat | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 629 | proof (induct r) | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 630 | case (Fract a b) | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 631 | have "Fract a b \<le> of_int (a div b + 1)" | 
| 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 632 | using rat_floor_lemma [of a b] by simp | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 633 | then show "\<exists>z. Fract a b \<le> of_int z" .. | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 634 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 635 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 636 | |
| 43732 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 637 | instantiation rat :: floor_ceiling | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 638 | begin | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 639 | |
| 63326 | 640 | definition [code del]: "\<lfloor>x\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" for x :: rat | 
| 43732 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 641 | |
| 61942 | 642 | instance | 
| 643 | proof | |
| 63326 | 644 | show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: rat | 
| 43732 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 645 | unfolding floor_rat_def using floor_exists1 by (rule theI') | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 646 | qed | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 647 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 648 | end | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 649 | |
| 61942 | 650 | lemma floor_Fract: "\<lfloor>Fract a b\<rfloor> = a div b" | 
| 59984 
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
 haftmann parents: 
59867diff
changeset | 651 | by (simp add: Fract_of_int_quotient floor_divide_of_int_eq) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 652 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 653 | |
| 60758 | 654 | subsection \<open>Linear arithmetic setup\<close> | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 655 | |
| 60758 | 656 | declaration \<open> | 
| 31100 | 657 |   K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
 | 
| 658 | (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *) | |
| 659 |   #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
 | |
| 660 | (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) | |
| 661 |   #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
 | |
| 662 |       @{thm True_implies_equals},
 | |
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54863diff
changeset | 663 |       @{thm distrib_left [where a = "numeral v" for v]},
 | 
| 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54863diff
changeset | 664 |       @{thm distrib_left [where a = "- numeral v" for v]},
 | 
| 64240 | 665 |       @{thm div_by_1}, @{thm div_0},
 | 
| 31100 | 666 |       @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
 | 
| 667 |       @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
 | |
| 63711 
e4843a8a8b18
more complete simpset for linear arithmetic to avoid warnings: terms such as (2x + 2y)/2 can then be simplified by the linear arithmetic prover during its proof replay
 boehmes parents: 
63502diff
changeset | 668 |       @{thm add_divide_distrib}, @{thm diff_divide_distrib},
 | 
| 31100 | 669 |       @{thm of_int_minus}, @{thm of_int_diff},
 | 
| 670 |       @{thm of_int_of_nat_eq}]
 | |
| 61144 | 671 | #> Lin_Arith.add_simprocs [Numeral_Simprocs.field_divide_cancel_numeral_factor] | 
| 69593 | 672 | #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> rat\<close>) | 
| 673 | #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> rat\<close>)) | |
| 60758 | 674 | \<close> | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 675 | |
| 23342 | 676 | |
| 60758 | 677 | subsection \<open>Embedding from Rationals to other Fields\<close> | 
| 23342 | 678 | |
| 27551 | 679 | context field_char_0 | 
| 680 | begin | |
| 681 | ||
| 47906 | 682 | lift_definition of_rat :: "rat \<Rightarrow> 'a" | 
| 683 | is "\<lambda>x. of_int (fst x) / of_int (snd x)" | |
| 63494 | 684 | by (auto simp: nonzero_divide_eq_eq nonzero_eq_divide_eq) (simp only: of_int_mult [symmetric]) | 
| 23342 | 685 | |
| 47906 | 686 | end | 
| 687 | ||
| 27551 | 688 | lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b" | 
| 47906 | 689 | by transfer simp | 
| 23342 | 690 | |
| 691 | lemma of_rat_0 [simp]: "of_rat 0 = 0" | |
| 47906 | 692 | by transfer simp | 
| 23342 | 693 | |
| 694 | lemma of_rat_1 [simp]: "of_rat 1 = 1" | |
| 47906 | 695 | by transfer simp | 
| 23342 | 696 | |
| 697 | lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" | |
| 47906 | 698 | by transfer (simp add: add_frac_eq) | 
| 23342 | 699 | |
| 23343 | 700 | lemma of_rat_minus: "of_rat (- a) = - of_rat a" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 701 | by transfer simp | 
| 23343 | 702 | |
| 63326 | 703 | lemma of_rat_neg_one [simp]: "of_rat (- 1) = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 704 | by (simp add: of_rat_minus) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 705 | |
| 23343 | 706 | lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 707 | using of_rat_add [of a "- b"] by (simp add: of_rat_minus) | 
| 23343 | 708 | |
| 23342 | 709 | lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" | 
| 63326 | 710 | by transfer (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps) | 
| 23342 | 711 | |
| 64267 | 712 | lemma of_rat_sum: "of_rat (\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A. of_rat (f a))" | 
| 59000 | 713 | by (induct rule: infinite_finite_induct) (auto simp: of_rat_add) | 
| 714 | ||
| 64272 | 715 | lemma of_rat_prod: "of_rat (\<Prod>a\<in>A. f a) = (\<Prod>a\<in>A. of_rat (f a))" | 
| 59000 | 716 | by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult) | 
| 717 | ||
| 63326 | 718 | lemma nonzero_of_rat_inverse: "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)" | 
| 719 | by (rule inverse_unique [symmetric]) (simp add: of_rat_mult [symmetric]) | |
| 23342 | 720 | |
| 68441 | 721 | lemma of_rat_inverse: "(of_rat (inverse a) :: 'a::field_char_0) = inverse (of_rat a)" | 
| 63326 | 722 | by (cases "a = 0") (simp_all add: nonzero_of_rat_inverse) | 
| 23342 | 723 | |
| 63326 | 724 | lemma nonzero_of_rat_divide: "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b" | 
| 725 | by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) | |
| 23342 | 726 | |
| 68441 | 727 | lemma of_rat_divide: "(of_rat (a / b) :: 'a::field_char_0) = of_rat a / of_rat b" | 
| 63326 | 728 | by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) | 
| 729 | ||
| 730 | lemma of_rat_power: "(of_rat (a ^ n) :: 'a::field_char_0) = of_rat a ^ n" | |
| 731 | by (induct n) (simp_all add: of_rat_mult) | |
| 23342 | 732 | |
| 63326 | 733 | lemma of_rat_eq_iff [simp]: "of_rat a = of_rat b \<longleftrightarrow> a = b" | 
| 734 | apply transfer | |
| 735 | apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) | |
| 736 | apply (simp only: of_int_mult [symmetric] of_int_eq_iff) | |
| 737 | done | |
| 23343 | 738 | |
| 63326 | 739 | lemma of_rat_eq_0_iff [simp]: "of_rat a = 0 \<longleftrightarrow> a = 0" | 
| 54409 | 740 | using of_rat_eq_iff [of _ 0] by simp | 
| 741 | ||
| 63326 | 742 | lemma zero_eq_of_rat_iff [simp]: "0 = of_rat a \<longleftrightarrow> 0 = a" | 
| 54409 | 743 | by simp | 
| 744 | ||
| 63326 | 745 | lemma of_rat_eq_1_iff [simp]: "of_rat a = 1 \<longleftrightarrow> a = 1" | 
| 54409 | 746 | using of_rat_eq_iff [of _ 1] by simp | 
| 747 | ||
| 63326 | 748 | lemma one_eq_of_rat_iff [simp]: "1 = of_rat a \<longleftrightarrow> 1 = a" | 
| 54409 | 749 | by simp | 
| 750 | ||
| 63326 | 751 | lemma of_rat_less: "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 752 | proof (induct r, induct s) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 753 | fix a b c d :: int | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 754 | assume not_zero: "b > 0" "d > 0" | 
| 56544 | 755 | then have "b * d > 0" by simp | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 756 | have of_int_divide_less_eq: | 
| 63326 | 757 | "(of_int a :: 'a) / of_int b < of_int c / of_int d \<longleftrightarrow> | 
| 758 | (of_int a :: 'a) * of_int d < of_int c * of_int b" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 759 | using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) | 
| 63326 | 760 | show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) \<longleftrightarrow> | 
| 761 | Fract a b < Fract c d" | |
| 60758 | 762 | using not_zero \<open>b * d > 0\<close> | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 763 | by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 764 | qed | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 765 | |
| 63326 | 766 | lemma of_rat_less_eq: "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 767 | unfolding le_less by (auto simp add: of_rat_less) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 768 | |
| 63326 | 769 | lemma of_rat_le_0_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 0 \<longleftrightarrow> r \<le> 0" | 
| 770 | using of_rat_less_eq [of r 0, where 'a = 'a] by simp | |
| 54409 | 771 | |
| 63326 | 772 | lemma zero_le_of_rat_iff [simp]: "0 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 \<le> r" | 
| 773 | using of_rat_less_eq [of 0 r, where 'a = 'a] by simp | |
| 54409 | 774 | |
| 63326 | 775 | lemma of_rat_le_1_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 1 \<longleftrightarrow> r \<le> 1" | 
| 54409 | 776 | using of_rat_less_eq [of r 1] by simp | 
| 777 | ||
| 63326 | 778 | lemma one_le_of_rat_iff [simp]: "1 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 \<le> r" | 
| 54409 | 779 | using of_rat_less_eq [of 1 r] by simp | 
| 780 | ||
| 63326 | 781 | lemma of_rat_less_0_iff [simp]: "(of_rat r :: 'a::linordered_field) < 0 \<longleftrightarrow> r < 0" | 
| 782 | using of_rat_less [of r 0, where 'a = 'a] by simp | |
| 54409 | 783 | |
| 63326 | 784 | lemma zero_less_of_rat_iff [simp]: "0 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 < r" | 
| 785 | using of_rat_less [of 0 r, where 'a = 'a] by simp | |
| 54409 | 786 | |
| 63326 | 787 | lemma of_rat_less_1_iff [simp]: "(of_rat r :: 'a::linordered_field) < 1 \<longleftrightarrow> r < 1" | 
| 54409 | 788 | using of_rat_less [of r 1] by simp | 
| 789 | ||
| 63326 | 790 | lemma one_less_of_rat_iff [simp]: "1 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 < r" | 
| 54409 | 791 | using of_rat_less [of 1 r] by simp | 
| 23343 | 792 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 793 | lemma of_rat_eq_id [simp]: "of_rat = id" | 
| 23343 | 794 | proof | 
| 63326 | 795 | show "of_rat a = id a" for a | 
| 796 | by (induct a) (simp add: of_rat_rat Fract_of_int_eq [symmetric]) | |
| 23343 | 797 | qed | 
| 798 | ||
| 63494 | 799 | text \<open>Collapse nested embeddings.\<close> | 
| 23343 | 800 | lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" | 
| 63326 | 801 | by (induct n) (simp_all add: of_rat_add) | 
| 23343 | 802 | |
| 803 | lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" | |
| 63326 | 804 | by (cases z rule: int_diff_cases) (simp add: of_rat_diff) | 
| 23343 | 805 | |
| 63326 | 806 | lemma of_rat_numeral_eq [simp]: "of_rat (numeral w) = numeral w" | 
| 807 | using of_rat_of_int_eq [of "numeral w"] by simp | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 808 | |
| 63326 | 809 | lemma of_rat_neg_numeral_eq [simp]: "of_rat (- numeral w) = - numeral w" | 
| 810 | using of_rat_of_int_eq [of "- numeral w"] by simp | |
| 23343 | 811 | |
| 23879 | 812 | lemmas zero_rat = Zero_rat_def | 
| 813 | lemmas one_rat = One_rat_def | |
| 814 | ||
| 63326 | 815 | abbreviation rat_of_nat :: "nat \<Rightarrow> rat" | 
| 816 | where "rat_of_nat \<equiv> of_nat" | |
| 24198 | 817 | |
| 63326 | 818 | abbreviation rat_of_int :: "int \<Rightarrow> rat" | 
| 819 | where "rat_of_int \<equiv> of_int" | |
| 820 | ||
| 24198 | 821 | |
| 60758 | 822 | subsection \<open>The Set of Rational Numbers\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 823 | |
| 28001 | 824 | context field_char_0 | 
| 825 | begin | |
| 826 | ||
| 61070 | 827 | definition Rats :: "'a set" ("\<rat>")
 | 
| 828 | where "\<rat> = range of_rat" | |
| 28001 | 829 | |
| 830 | end | |
| 831 | ||
| 68529 | 832 | lemma Rats_cases [cases set: Rats]: | 
| 833 | assumes "q \<in> \<rat>" | |
| 834 | obtains (of_rat) r where "q = of_rat r" | |
| 835 | proof - | |
| 836 | from \<open>q \<in> \<rat>\<close> have "q \<in> range of_rat" | |
| 837 | by (simp only: Rats_def) | |
| 838 | then obtain r where "q = of_rat r" .. | |
| 839 | then show thesis .. | |
| 840 | qed | |
| 841 | ||
| 61070 | 842 | lemma Rats_of_rat [simp]: "of_rat r \<in> \<rat>" | 
| 63326 | 843 | by (simp add: Rats_def) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 844 | |
| 61070 | 845 | lemma Rats_of_int [simp]: "of_int z \<in> \<rat>" | 
| 63326 | 846 | by (subst of_rat_of_int_eq [symmetric]) (rule Rats_of_rat) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 847 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 848 | lemma Ints_subset_Rats: "\<int> \<subseteq> \<rat>" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 849 | using Ints_cases Rats_of_int by blast | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 850 | |
| 61070 | 851 | lemma Rats_of_nat [simp]: "of_nat n \<in> \<rat>" | 
| 63326 | 852 | by (subst of_rat_of_nat_eq [symmetric]) (rule Rats_of_rat) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 853 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 854 | lemma Nats_subset_Rats: "\<nat> \<subseteq> \<rat>" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 855 | using Ints_subset_Rats Nats_subset_Ints by blast | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 856 | |
| 61070 | 857 | lemma Rats_number_of [simp]: "numeral w \<in> \<rat>" | 
| 63326 | 858 | by (subst of_rat_numeral_eq [symmetric]) (rule Rats_of_rat) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 859 | |
| 61070 | 860 | lemma Rats_0 [simp]: "0 \<in> \<rat>" | 
| 63326 | 861 | unfolding Rats_def by (rule range_eqI) (rule of_rat_0 [symmetric]) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 862 | |
| 61070 | 863 | lemma Rats_1 [simp]: "1 \<in> \<rat>" | 
| 63326 | 864 | unfolding Rats_def by (rule range_eqI) (rule of_rat_1 [symmetric]) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 865 | |
| 63326 | 866 | lemma Rats_add [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a + b \<in> \<rat>" | 
| 867 | apply (auto simp add: Rats_def) | |
| 868 | apply (rule range_eqI) | |
| 869 | apply (rule of_rat_add [symmetric]) | |
| 870 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 871 | |
| 68529 | 872 | lemma Rats_minus_iff [simp]: "- a \<in> \<rat> \<longleftrightarrow> a \<in> \<rat>" | 
| 873 | by (metis Rats_cases Rats_of_rat add.inverse_inverse of_rat_minus) | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 874 | |
| 63326 | 875 | lemma Rats_diff [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a - b \<in> \<rat>" | 
| 876 | apply (auto simp add: Rats_def) | |
| 877 | apply (rule range_eqI) | |
| 878 | apply (rule of_rat_diff [symmetric]) | |
| 879 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 880 | |
| 63326 | 881 | lemma Rats_mult [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a * b \<in> \<rat>" | 
| 882 | apply (auto simp add: Rats_def) | |
| 883 | apply (rule range_eqI) | |
| 884 | apply (rule of_rat_mult [symmetric]) | |
| 885 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 886 | |
| 68441 | 887 | lemma Rats_inverse [simp]: "a \<in> \<rat> \<Longrightarrow> inverse a \<in> \<rat>" | 
| 63494 | 888 | for a :: "'a::field_char_0" | 
| 63326 | 889 | apply (auto simp add: Rats_def) | 
| 890 | apply (rule range_eqI) | |
| 891 | apply (rule of_rat_inverse [symmetric]) | |
| 892 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 893 | |
| 68441 | 894 | lemma Rats_divide [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a / b \<in> \<rat>" | 
| 63494 | 895 | for a b :: "'a::field_char_0" | 
| 63326 | 896 | apply (auto simp add: Rats_def) | 
| 897 | apply (rule range_eqI) | |
| 898 | apply (rule of_rat_divide [symmetric]) | |
| 899 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 900 | |
| 63494 | 901 | lemma Rats_power [simp]: "a \<in> \<rat> \<Longrightarrow> a ^ n \<in> \<rat>" | 
| 902 | for a :: "'a::field_char_0" | |
| 63326 | 903 | apply (auto simp add: Rats_def) | 
| 904 | apply (rule range_eqI) | |
| 905 | apply (rule of_rat_power [symmetric]) | |
| 906 | done | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 907 | |
| 63326 | 908 | lemma Rats_induct [case_names of_rat, induct set: Rats]: "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q" | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 909 | by (rule Rats_cases) auto | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 910 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57136diff
changeset | 911 | lemma Rats_infinite: "\<not> finite \<rat>" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57136diff
changeset | 912 | by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def) | 
| 28001 | 913 | |
| 63326 | 914 | |
| 60758 | 915 | subsection \<open>Implementation of rational numbers as pairs of integers\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 916 | |
| 60758 | 917 | text \<open>Formal constructor\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 918 | |
| 63326 | 919 | definition Frct :: "int \<times> int \<Rightarrow> rat" | 
| 920 | where [simp]: "Frct p = Fract (fst p) (snd p)" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 921 | |
| 63326 | 922 | lemma [code abstype]: "Frct (quotient_of q) = q" | 
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 923 | by (cases q) (auto intro: quotient_of_eq) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 924 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 925 | |
| 60758 | 926 | text \<open>Numerals\<close> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 927 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 928 | declare quotient_of_Fract [code abstract] | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 929 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 930 | definition of_int :: "int \<Rightarrow> rat" | 
| 63326 | 931 | where [code_abbrev]: "of_int = Int.of_int" | 
| 932 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 933 | hide_const (open) of_int | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 934 | |
| 63326 | 935 | lemma quotient_of_int [code abstract]: "quotient_of (Rat.of_int a) = (a, 1)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 936 | by (simp add: of_int_def of_int_rat quotient_of_Fract) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 937 | |
| 63326 | 938 | lemma [code_unfold]: "numeral k = Rat.of_int (numeral k)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 939 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 940 | |
| 63326 | 941 | lemma [code_unfold]: "- numeral k = Rat.of_int (- numeral k)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 942 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 943 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 944 | lemma Frct_code_post [code_post]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 945 | "Frct (0, a) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 946 | "Frct (a, 0) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 947 | "Frct (1, 1) = 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 948 | "Frct (numeral k, 1) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 949 | "Frct (1, numeral k) = 1 / numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 950 | "Frct (numeral k, numeral l) = numeral k / numeral l" | 
| 57576 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 951 | "Frct (- a, b) = - Frct (a, b)" | 
| 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 952 | "Frct (a, - b) = - Frct (a, b)" | 
| 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 953 | "- (- Frct q) = Frct q" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 954 | by (simp_all add: Fract_of_int_quotient) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 955 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 956 | |
| 60758 | 957 | text \<open>Operations\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 958 | |
| 63326 | 959 | lemma rat_zero_code [code abstract]: "quotient_of 0 = (0, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 960 | by (simp add: Zero_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 961 | |
| 63326 | 962 | lemma rat_one_code [code abstract]: "quotient_of 1 = (1, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 963 | by (simp add: One_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 964 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 965 | lemma rat_plus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 966 | "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 967 | in normalize (a * d + b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 968 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 969 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 970 | lemma rat_uminus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 971 | "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 972 | by (cases p) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 973 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 974 | lemma rat_minus_code [code abstract]: | 
| 63326 | 975 | "quotient_of (p - q) = | 
| 976 | (let (a, c) = quotient_of p; (b, d) = quotient_of q | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 977 | in normalize (a * d - b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 978 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 979 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 980 | lemma rat_times_code [code abstract]: | 
| 63326 | 981 | "quotient_of (p * q) = | 
| 982 | (let (a, c) = quotient_of p; (b, d) = quotient_of q | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 983 | in normalize (a * b, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 984 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 985 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 986 | lemma rat_inverse_code [code abstract]: | 
| 63326 | 987 | "quotient_of (inverse p) = | 
| 988 | (let (a, b) = quotient_of p | |
| 989 | in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 990 | proof (cases p) | 
| 63326 | 991 | case (Fract a b) | 
| 992 | then show ?thesis | |
| 67051 | 993 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract ac_simps) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 994 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 995 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 996 | lemma rat_divide_code [code abstract]: | 
| 63326 | 997 | "quotient_of (p / q) = | 
| 998 | (let (a, c) = quotient_of p; (b, d) = quotient_of q | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 999 | in normalize (a * d, c * b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1000 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1001 | |
| 67051 | 1002 | lemma rat_abs_code [code abstract]: | 
| 1003 | "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1004 | by (cases p) (simp add: quotient_of_Fract) | 
| 67051 | 1005 | |
| 63326 | 1006 | lemma rat_sgn_code [code abstract]: "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1007 | proof (cases p) | 
| 63326 | 1008 | case (Fract a b) | 
| 1009 | then show ?thesis | |
| 1010 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract) | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1011 | qed | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1012 | |
| 63326 | 1013 | lemma rat_floor_code [code]: "\<lfloor>p\<rfloor> = (let (a, b) = quotient_of p in a div b)" | 
| 61942 | 1014 | by (cases p) (simp add: quotient_of_Fract floor_Fract) | 
| 43733 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 1015 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1016 | instantiation rat :: equal | 
| 26513 | 1017 | begin | 
| 1018 | ||
| 63326 | 1019 | definition [code]: "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b" | 
| 26513 | 1020 | |
| 63326 | 1021 | instance | 
| 1022 | by standard (simp add: equal_rat_def quotient_of_inject_eq) | |
| 26513 | 1023 | |
| 63326 | 1024 | lemma rat_eq_refl [code nbe]: "HOL.equal (r::rat) r \<longleftrightarrow> True" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1025 | by (rule equal_refl) | 
| 28351 | 1026 | |
| 26513 | 1027 | end | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1028 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1029 | lemma rat_less_eq_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1030 | "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)" | 
| 35726 | 1031 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1032 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1033 | lemma rat_less_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1034 | "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)" | 
| 35726 | 1035 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1036 | |
| 63326 | 1037 | lemma [code]: "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1038 | by (cases p) (simp add: quotient_of_Fract of_rat_rat) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 1039 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1040 | |
| 60758 | 1041 | text \<open>Quickcheck\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1042 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1043 | definition (in term_syntax) | 
| 63494 | 1044 | valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> | 
| 1045 | int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> | |
| 63326 | 1046 | rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" | 
| 1047 |   where [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1048 | |
| 37751 | 1049 | notation fcomp (infixl "\<circ>>" 60) | 
| 1050 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1051 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1052 | instantiation rat :: random | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1053 | begin | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1054 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1055 | definition | 
| 63326 | 1056 | "Quickcheck_Random.random i = | 
| 1057 | Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair | |
| 1058 | (let j = int_of_integer (integer_of_natural (denom + 1)) | |
| 1059 | in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))" | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1060 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1061 | instance .. | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1062 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1063 | end | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1064 | |
| 37751 | 1065 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 1066 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1067 | |
| 41920 
d4fb7a418152
moving exhaustive_generators.ML to Quickcheck directory
 bulwahn parents: 
41792diff
changeset | 1068 | instantiation rat :: exhaustive | 
| 41231 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1069 | begin | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1070 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1071 | definition | 
| 63326 | 1072 | "exhaustive_rat f d = | 
| 1073 | Quickcheck_Exhaustive.exhaustive | |
| 1074 | (\<lambda>l. Quickcheck_Exhaustive.exhaustive | |
| 1075 | (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" | |
| 42311 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1076 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1077 | instance .. | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1078 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1079 | end | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1080 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1081 | instantiation rat :: full_exhaustive | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1082 | begin | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1083 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1084 | definition | 
| 63326 | 1085 | "full_exhaustive_rat f d = | 
| 1086 | Quickcheck_Exhaustive.full_exhaustive | |
| 1087 | (\<lambda>(l, _). Quickcheck_Exhaustive.full_exhaustive | |
| 1088 | (\<lambda>k. f | |
| 1089 | (let j = int_of_integer (integer_of_natural l) + 1 | |
| 1090 | in valterm_fract k (j, \<lambda>_. Code_Evaluation.term_of j))) d) d" | |
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1091 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1092 | instance .. | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1093 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1094 | end | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1095 | |
| 63326 | 1096 | instance rat :: partial_term_of .. | 
| 1097 | ||
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1098 | lemma [code]: | 
| 63326 | 1099 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) \<equiv> | 
| 1100 | Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])" | |
| 1101 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) \<equiv> | |
| 1102 | Code_Evaluation.App | |
| 1103 | (Code_Evaluation.Const (STR ''Rat.Frct'') | |
| 1104 | (Typerep.Typerep (STR ''fun'') | |
| 1105 | [Typerep.Typerep (STR ''Product_Type.prod'') | |
| 1106 | [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []], | |
| 1107 | Typerep.Typerep (STR ''Rat.rat'') []])) | |
| 1108 | (Code_Evaluation.App | |
| 1109 | (Code_Evaluation.App | |
| 1110 | (Code_Evaluation.Const (STR ''Product_Type.Pair'') | |
| 1111 | (Typerep.Typerep (STR ''fun'') | |
| 1112 | [Typerep.Typerep (STR ''Int.int'') [], | |
| 1113 | Typerep.Typerep (STR ''fun'') | |
| 1114 | [Typerep.Typerep (STR ''Int.int'') [], | |
| 1115 | Typerep.Typerep (STR ''Product_Type.prod'') | |
| 1116 | [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) | |
| 1117 | (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))" | |
| 1118 | by (rule partial_term_of_anything)+ | |
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1119 | |
| 43887 | 1120 | instantiation rat :: narrowing | 
| 1121 | begin | |
| 1122 | ||
| 1123 | definition | |
| 63326 | 1124 | "narrowing = | 
| 1125 | Quickcheck_Narrowing.apply | |
| 1126 | (Quickcheck_Narrowing.apply | |
| 1127 | (Quickcheck_Narrowing.cons (\<lambda>nom denom. Fract nom denom)) narrowing) narrowing" | |
| 43887 | 1128 | |
| 1129 | instance .. | |
| 1130 | ||
| 1131 | end | |
| 1132 | ||
| 1133 | ||
| 60758 | 1134 | subsection \<open>Setup for Nitpick\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1135 | |
| 60758 | 1136 | declaration \<open> | 
| 69593 | 1137 | Nitpick_HOL.register_frac_type \<^type_name>\<open>rat\<close> | 
| 1138 | [(\<^const_name>\<open>Abs_Rat\<close>, \<^const_name>\<open>Nitpick.Abs_Frac\<close>), | |
| 1139 | (\<^const_name>\<open>zero_rat_inst.zero_rat\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>), | |
| 1140 | (\<^const_name>\<open>one_rat_inst.one_rat\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>), | |
| 1141 | (\<^const_name>\<open>plus_rat_inst.plus_rat\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>), | |
| 1142 | (\<^const_name>\<open>times_rat_inst.times_rat\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>), | |
| 1143 | (\<^const_name>\<open>uminus_rat_inst.uminus_rat\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>), | |
| 1144 | (\<^const_name>\<open>inverse_rat_inst.inverse_rat\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>), | |
| 1145 | (\<^const_name>\<open>ord_rat_inst.less_rat\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>), | |
| 1146 | (\<^const_name>\<open>ord_rat_inst.less_eq_rat\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>), | |
| 1147 | (\<^const_name>\<open>field_char_0_class.of_rat\<close>, \<^const_name>\<open>Nitpick.of_frac\<close>)] | |
| 60758 | 1148 | \<close> | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1149 | |
| 63326 | 1150 | lemmas [nitpick_unfold] = | 
| 1151 | inverse_rat_inst.inverse_rat | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1152 | one_rat_inst.one_rat ord_rat_inst.less_rat | 
| 37397 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1153 | ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat | 
| 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1154 | uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1155 | |
| 52146 | 1156 | |
| 60758 | 1157 | subsection \<open>Float syntax\<close> | 
| 35343 | 1158 | |
| 1159 | syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
 | |
| 1160 | ||
| 60758 | 1161 | parse_translation \<open> | 
| 52146 | 1162 | let | 
| 1163 | fun mk_frac str = | |
| 1164 | let | |
| 1165 |         val {mant = i, exp = n} = Lexicon.read_float str;
 | |
| 69593 | 1166 | val exp = Syntax.const \<^const_syntax>\<open>Power.power\<close>; | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57576diff
changeset | 1167 | val ten = Numeral.mk_number_syntax 10; | 
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59984diff
changeset | 1168 | val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n; | 
| 69593 | 1169 | in Syntax.const \<^const_syntax>\<open>Fields.inverse_divide\<close> $ Numeral.mk_number_syntax i $ exp10 end; | 
| 52146 | 1170 | |
| 69593 | 1171 | fun float_tr [(c as Const (\<^syntax_const>\<open>_constrain\<close>, _)) $ t $ u] = c $ float_tr [t] $ u | 
| 52146 | 1172 | | float_tr [t as Const (str, _)] = mk_frac str | 
| 1173 |       | float_tr ts = raise TERM ("float_tr", ts);
 | |
| 69593 | 1174 | in [(\<^syntax_const>\<open>_Float\<close>, K float_tr)] end | 
| 60758 | 1175 | \<close> | 
| 35343 | 1176 | |
| 60758 | 1177 | text\<open>Test:\<close> | 
| 35343 | 1178 | lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)" | 
| 52146 | 1179 | by simp | 
| 35343 | 1180 | |
| 55974 
c835a9379026
more official const syntax: avoid educated guessing by Syntax_Phases.decode_term;
 wenzelm parents: 
55143diff
changeset | 1181 | |
| 60758 | 1182 | subsection \<open>Hiding implementation details\<close> | 
| 37143 | 1183 | |
| 47907 | 1184 | hide_const (open) normalize positive | 
| 37143 | 1185 | |
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 1186 | lifting_update rat.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 1187 | lifting_forget rat.lifting | 
| 47906 | 1188 | |
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29667diff
changeset | 1189 | end |