author | haftmann |
Fri, 21 May 2010 15:22:37 +0200 | |
changeset 37052 | 80dd92673fca |
parent 37026 | 7e8979a155ae |
child 37107 | 1535aa1c943a |
permissions | -rw-r--r-- |
31459 | 1 |
(* Author: Florian Haftmann, TU Muenchen *) |
29708 | 2 |
|
3 |
header {* An abstract view on maps for code generation. *} |
|
4 |
||
5 |
theory Mapping |
|
35157 | 6 |
imports Main |
29708 | 7 |
begin |
8 |
||
37052 | 9 |
lemma remove1_idem: (*FIXME move to List.thy*) |
10 |
assumes "x \<notin> set xs" |
|
11 |
shows "remove1 x xs = xs" |
|
12 |
using assms by (induct xs) simp_all |
|
13 |
||
14 |
lemma remove1_insort [simp]: |
|
15 |
"remove1 x (insort x xs) = xs" |
|
16 |
by (induct xs) simp_all |
|
17 |
||
18 |
lemma sorted_list_of_set_remove: |
|
19 |
assumes "finite A" |
|
20 |
shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)" |
|
21 |
proof (cases "x \<in> A") |
|
22 |
case False with assms have "x \<notin> set (sorted_list_of_set A)" by simp |
|
23 |
with False show ?thesis by (simp add: remove1_idem) |
|
24 |
next |
|
25 |
case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) |
|
26 |
with assms show ?thesis by simp |
|
27 |
qed |
|
28 |
||
29 |
lemma sorted_list_of_set_range [simp]: |
|
30 |
"sorted_list_of_set {m..<n} = [m..<n]" |
|
31 |
by (rule sorted_distinct_set_unique) simp_all |
|
32 |
||
29708 | 33 |
subsection {* Type definition and primitive operations *} |
34 |
||
35157 | 35 |
datatype ('a, 'b) mapping = Mapping "'a \<rightharpoonup> 'b" |
29708 | 36 |
|
35157 | 37 |
definition empty :: "('a, 'b) mapping" where |
38 |
"empty = Mapping (\<lambda>_. None)" |
|
29708 | 39 |
|
35157 | 40 |
primrec lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<rightharpoonup> 'b" where |
41 |
"lookup (Mapping f) = f" |
|
29708 | 42 |
|
35157 | 43 |
primrec update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
44 |
"update k v (Mapping f) = Mapping (f (k \<mapsto> v))" |
|
29708 | 45 |
|
35157 | 46 |
primrec delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
47 |
"delete k (Mapping f) = Mapping (f (k := None))" |
|
29708 | 48 |
|
49 |
||
50 |
subsection {* Derived operations *} |
|
51 |
||
35157 | 52 |
definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set" where |
53 |
"keys m = dom (lookup m)" |
|
29708 | 54 |
|
35194 | 55 |
definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list" where |
37052 | 56 |
"ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])" |
35194 | 57 |
|
35157 | 58 |
definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool" where |
37052 | 59 |
"is_empty m \<longleftrightarrow> keys m = {}" |
35157 | 60 |
|
61 |
definition size :: "('a, 'b) mapping \<Rightarrow> nat" where |
|
37052 | 62 |
"size m = (if finite (keys m) then card (keys m) else 0)" |
35157 | 63 |
|
64 |
definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
|
37052 | 65 |
"replace k v m = (if k \<in> keys m then update k v m else m)" |
29814 | 66 |
|
37026
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
67 |
definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
37052 | 68 |
"default k v m = (if k \<in> keys m then m else update k v m)" |
37026
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
69 |
|
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
70 |
definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
71 |
"map_entry k f m = (case lookup m k of None \<Rightarrow> m |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
72 |
| Some v \<Rightarrow> update k (f v) m)" |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
73 |
|
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
74 |
definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
75 |
"map_default k v f m = map_entry k f (default k v m)" |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
76 |
|
35157 | 77 |
definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping" where |
78 |
"tabulate ks f = Mapping (map_of (map (\<lambda>k. (k, f k)) ks))" |
|
29708 | 79 |
|
35157 | 80 |
definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping" where |
81 |
"bulkload xs = Mapping (\<lambda>k. if k < length xs then Some (xs ! k) else None)" |
|
29826 | 82 |
|
29708 | 83 |
|
84 |
subsection {* Properties *} |
|
85 |
||
35157 | 86 |
lemma lookup_inject [simp]: |
29708 | 87 |
"lookup m = lookup n \<longleftrightarrow> m = n" |
88 |
by (cases m, cases n) simp |
|
89 |
||
35157 | 90 |
lemma mapping_eqI: |
91 |
assumes "lookup m = lookup n" |
|
92 |
shows "m = n" |
|
93 |
using assms by simp |
|
94 |
||
37052 | 95 |
lemma keys_is_none_lookup [code_inline]: |
96 |
"k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))" |
|
97 |
by (auto simp add: keys_def is_none_def) |
|
98 |
||
29708 | 99 |
lemma lookup_empty [simp]: |
100 |
"lookup empty = Map.empty" |
|
101 |
by (simp add: empty_def) |
|
102 |
||
103 |
lemma lookup_update [simp]: |
|
104 |
"lookup (update k v m) = (lookup m) (k \<mapsto> v)" |
|
105 |
by (cases m) simp |
|
106 |
||
35157 | 107 |
lemma lookup_delete [simp]: |
108 |
"lookup (delete k m) = (lookup m) (k := None)" |
|
109 |
by (cases m) simp |
|
29708 | 110 |
|
37026
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
111 |
lemma lookup_map_entry [simp]: |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
112 |
"lookup (map_entry k f m) = (lookup m) (k := Option.map f (lookup m k))" |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
113 |
by (cases "lookup m k") (simp_all add: map_entry_def expand_fun_eq) |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
114 |
|
35157 | 115 |
lemma lookup_tabulate [simp]: |
29708 | 116 |
"lookup (tabulate ks f) = (Some o f) |` set ks" |
117 |
by (induct ks) (auto simp add: tabulate_def restrict_map_def expand_fun_eq) |
|
118 |
||
35157 | 119 |
lemma lookup_bulkload [simp]: |
29826 | 120 |
"lookup (bulkload xs) = (\<lambda>k. if k < length xs then Some (xs ! k) else None)" |
35157 | 121 |
by (simp add: bulkload_def) |
29826 | 122 |
|
29708 | 123 |
lemma update_update: |
124 |
"update k v (update k w m) = update k v m" |
|
125 |
"k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)" |
|
35157 | 126 |
by (rule mapping_eqI, simp add: fun_upd_twist)+ |
29708 | 127 |
|
35157 | 128 |
lemma update_delete [simp]: |
129 |
"update k v (delete k m) = update k v m" |
|
130 |
by (rule mapping_eqI) simp |
|
29708 | 131 |
|
132 |
lemma delete_update: |
|
133 |
"delete k (update k v m) = delete k m" |
|
134 |
"k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)" |
|
35157 | 135 |
by (rule mapping_eqI, simp add: fun_upd_twist)+ |
29708 | 136 |
|
35157 | 137 |
lemma delete_empty [simp]: |
138 |
"delete k empty = empty" |
|
139 |
by (rule mapping_eqI) simp |
|
29708 | 140 |
|
35157 | 141 |
lemma replace_update: |
37052 | 142 |
"k \<notin> keys m \<Longrightarrow> replace k v m = m" |
143 |
"k \<in> keys m \<Longrightarrow> replace k v m = update k v m" |
|
144 |
by (rule mapping_eqI) (auto simp add: replace_def fun_upd_twist)+ |
|
29708 | 145 |
|
146 |
lemma size_empty [simp]: |
|
147 |
"size empty = 0" |
|
37052 | 148 |
by (simp add: size_def keys_def) |
29708 | 149 |
|
150 |
lemma size_update: |
|
37052 | 151 |
"finite (keys m) \<Longrightarrow> size (update k v m) = |
152 |
(if k \<in> keys m then size m else Suc (size m))" |
|
153 |
by (auto simp add: size_def insert_dom keys_def) |
|
29708 | 154 |
|
155 |
lemma size_delete: |
|
37052 | 156 |
"size (delete k m) = (if k \<in> keys m then size m - 1 else size m)" |
157 |
by (simp add: size_def keys_def) |
|
29708 | 158 |
|
37052 | 159 |
lemma size_tabulate [simp]: |
29708 | 160 |
"size (tabulate ks f) = length (remdups ks)" |
37052 | 161 |
by (simp add: size_def distinct_card [of "remdups ks", symmetric] comp_def keys_def) |
29708 | 162 |
|
29831 | 163 |
lemma bulkload_tabulate: |
29826 | 164 |
"bulkload xs = tabulate [0..<length xs] (nth xs)" |
35157 | 165 |
by (rule mapping_eqI) (simp add: expand_fun_eq) |
29826 | 166 |
|
37052 | 167 |
lemma is_empty_empty: (*FIXME*) |
168 |
"is_empty m \<longleftrightarrow> m = Mapping Map.empty" |
|
169 |
by (cases m) (simp add: is_empty_def keys_def) |
|
170 |
||
171 |
lemma is_empty_empty' [simp]: |
|
172 |
"is_empty empty" |
|
173 |
by (simp add: is_empty_empty empty_def) |
|
174 |
||
175 |
lemma is_empty_update [simp]: |
|
176 |
"\<not> is_empty (update k v m)" |
|
177 |
by (cases m) (simp add: is_empty_empty) |
|
178 |
||
179 |
lemma is_empty_delete: |
|
180 |
"is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}" |
|
181 |
by (cases m) (auto simp add: is_empty_empty keys_def dom_eq_empty_conv [symmetric] simp del: dom_eq_empty_conv) |
|
182 |
||
183 |
lemma is_empty_replace [simp]: |
|
184 |
"is_empty (replace k v m) \<longleftrightarrow> is_empty m" |
|
185 |
by (auto simp add: replace_def) (simp add: is_empty_def) |
|
186 |
||
187 |
lemma is_empty_default [simp]: |
|
188 |
"\<not> is_empty (default k v m)" |
|
189 |
by (auto simp add: default_def) (simp add: is_empty_def) |
|
190 |
||
191 |
lemma is_empty_map_entry [simp]: |
|
192 |
"is_empty (map_entry k f m) \<longleftrightarrow> is_empty m" |
|
193 |
by (cases "lookup m k") |
|
194 |
(auto simp add: map_entry_def, simp add: is_empty_empty) |
|
195 |
||
196 |
lemma is_empty_map_default [simp]: |
|
197 |
"\<not> is_empty (map_default k v f m)" |
|
198 |
by (simp add: map_default_def) |
|
199 |
||
200 |
lemma keys_empty [simp]: |
|
201 |
"keys empty = {}" |
|
202 |
by (simp add: keys_def) |
|
203 |
||
204 |
lemma keys_update [simp]: |
|
205 |
"keys (update k v m) = insert k (keys m)" |
|
206 |
by (simp add: keys_def) |
|
207 |
||
208 |
lemma keys_delete [simp]: |
|
209 |
"keys (delete k m) = keys m - {k}" |
|
210 |
by (simp add: keys_def) |
|
211 |
||
212 |
lemma keys_replace [simp]: |
|
213 |
"keys (replace k v m) = keys m" |
|
214 |
by (auto simp add: keys_def replace_def) |
|
215 |
||
216 |
lemma keys_default [simp]: |
|
217 |
"keys (default k v m) = insert k (keys m)" |
|
218 |
by (auto simp add: keys_def default_def) |
|
219 |
||
220 |
lemma keys_map_entry [simp]: |
|
221 |
"keys (map_entry k f m) = keys m" |
|
222 |
by (auto simp add: keys_def) |
|
223 |
||
224 |
lemma keys_map_default [simp]: |
|
225 |
"keys (map_default k v f m) = insert k (keys m)" |
|
226 |
by (simp add: map_default_def) |
|
227 |
||
228 |
lemma keys_tabulate [simp]: |
|
37026
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
229 |
"keys (tabulate ks f) = set ks" |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
230 |
by (simp add: tabulate_def keys_def map_of_map_restrict o_def) |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
231 |
|
37052 | 232 |
lemma keys_bulkload [simp]: |
37026
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
233 |
"keys (bulkload xs) = {0..<length xs}" |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
234 |
by (simp add: keys_tabulate bulkload_tabulate) |
7e8979a155ae
operations default, map_entry, map_default; more lemmas
haftmann
parents:
36176
diff
changeset
|
235 |
|
37052 | 236 |
lemma distinct_ordered_keys [simp]: |
237 |
"distinct (ordered_keys m)" |
|
238 |
by (simp add: ordered_keys_def) |
|
239 |
||
240 |
lemma ordered_keys_infinite [simp]: |
|
241 |
"\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []" |
|
242 |
by (simp add: ordered_keys_def) |
|
243 |
||
244 |
lemma ordered_keys_empty [simp]: |
|
245 |
"ordered_keys empty = []" |
|
246 |
by (simp add: ordered_keys_def) |
|
247 |
||
248 |
lemma ordered_keys_update [simp]: |
|
249 |
"k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m" |
|
250 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (update k v m) = insort k (ordered_keys m)" |
|
251 |
by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb) |
|
252 |
||
253 |
lemma ordered_keys_delete [simp]: |
|
254 |
"ordered_keys (delete k m) = remove1 k (ordered_keys m)" |
|
255 |
proof (cases "finite (keys m)") |
|
256 |
case False then show ?thesis by simp |
|
257 |
next |
|
258 |
case True note fin = True |
|
259 |
show ?thesis |
|
260 |
proof (cases "k \<in> keys m") |
|
261 |
case False with fin have "k \<notin> set (sorted_list_of_set (keys m))" by simp |
|
262 |
with False show ?thesis by (simp add: ordered_keys_def remove1_idem) |
|
263 |
next |
|
264 |
case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove) |
|
265 |
qed |
|
266 |
qed |
|
267 |
||
268 |
lemma ordered_keys_replace [simp]: |
|
269 |
"ordered_keys (replace k v m) = ordered_keys m" |
|
270 |
by (simp add: replace_def) |
|
271 |
||
272 |
lemma ordered_keys_default [simp]: |
|
273 |
"k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m" |
|
274 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)" |
|
275 |
by (simp_all add: default_def) |
|
276 |
||
277 |
lemma ordered_keys_map_entry [simp]: |
|
278 |
"ordered_keys (map_entry k f m) = ordered_keys m" |
|
279 |
by (simp add: ordered_keys_def) |
|
280 |
||
281 |
lemma ordered_keys_map_default [simp]: |
|
282 |
"k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m" |
|
283 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)" |
|
284 |
by (simp_all add: map_default_def) |
|
285 |
||
286 |
lemma ordered_keys_tabulate [simp]: |
|
287 |
"ordered_keys (tabulate ks f) = sort (remdups ks)" |
|
288 |
by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups) |
|
289 |
||
290 |
lemma ordered_keys_bulkload [simp]: |
|
291 |
"ordered_keys (bulkload ks) = [0..<length ks]" |
|
292 |
by (simp add: ordered_keys_def) |
|
36110 | 293 |
|
31459 | 294 |
|
295 |
subsection {* Some technical code lemmas *} |
|
296 |
||
297 |
lemma [code]: |
|
35157 | 298 |
"mapping_case f m = f (Mapping.lookup m)" |
31459 | 299 |
by (cases m) simp |
300 |
||
301 |
lemma [code]: |
|
35157 | 302 |
"mapping_rec f m = f (Mapping.lookup m)" |
31459 | 303 |
by (cases m) simp |
304 |
||
305 |
lemma [code]: |
|
35157 | 306 |
"Nat.size (m :: (_, _) mapping) = 0" |
31459 | 307 |
by (cases m) simp |
308 |
||
309 |
lemma [code]: |
|
35157 | 310 |
"mapping_size f g m = 0" |
31459 | 311 |
by (cases m) simp |
312 |
||
35157 | 313 |
|
36176
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents:
36110
diff
changeset
|
314 |
hide_const (open) empty is_empty lookup update delete ordered_keys keys size replace tabulate bulkload |
35157 | 315 |
|
29708 | 316 |
end |